A REPLACEMENT THEOREM FOR NILPOTENT GROUPS WITH MAXIMUM CONDITION

BY
Eugene Schenkman ${ }^{1}$

The object of this note is to extend some recent work of J. Thompson and of G. Glauberman to nilpotent groups with maximum condition on subgroups. Our results derive from a slight simplification of the proofs as given in [1]. We are indebted to D. Hertzig and M. Suzuki for some corrections and improvements and to G. Glauberman for a preprint of his work.

We shall first consider a finitely generated nilpotent group S. Such a group has a finite normal series with cyclic factors of either prime or infinite order. We shall let $a_{0}(S)$ be the family of self-centralizing abelian subgroups of maximum torsion-free rank of S and will let $Q(S)$ be the subfamily consisting of those members whose torsion subgroups have maximal orders. We let $J(S)$ denote the subgroup of S generated by the members of $a(S)$.

In general $Z(H), C(H)$, and $N(H)$ will denote center, centralizer, and normalizer, respectively of $H . \quad C_{K}(H)$ will mean $C(H) \cap K$ and $N_{K}(H)$ will mean $N(H) \cap K$. The commutator $[a, b]$ will mean $a^{-1} b^{-1} a b=a^{-1} a^{b}$ and $[A, B]$ will denote the subgroup generated by all $[a, b]$ with $a \in A, b \in B$; $[A, B, C]$ will mean $[[A, B], C], A^{2}$ will denote $[A, A]$ and A^{n} will denote $\left[A^{n-1}, A\right]$. It will be convenient to let $[A, 1 B]=[A, B]$ and then to let $[A, n B]$ mean $[A,(n-1) B, B]$.

Our first theorem includes the replacement Theorems 3.1 and 4.1 of [1].
Theorem 1. Let S be a finitely generated nilpotent group and let B be a normal subgroup of S with B^{2} central in $B J(S)$. Let A be in $\mathbb{Q}(S)$ with $[B, A, A] \neq 1$, and further so that if B has an involution then either B is abelian or $[B, A, A, A] \neq 1$. Then there is an $A^{*} \in \mathbb{Q}(S)$ so that

$$
A \cap B<A^{*} \cap B \quad \text { and } \quad\left[A^{*}, A, A\right]=1
$$

Proof. Without loss of generality we may assume that $S=A B$. Then since B^{2} is central in $B J(S)$ (and consequently in S) and A is self-centralizing, $B^{2}<A$ and $A \cap B$ is normal in S (for any subgroup of B containing B^{2} is normal in B).

If we use bars to denote elements and subgroups $\bmod A \cap B$, then \bar{S} is the semi-direct product $[\bar{B}] \bar{A}$. Now we let $B_{1}=C_{B}(A)$ (therefore $\left.B_{1}=A \cap B\right)$ and inductively let B_{n} be the set of $b \in B$ so that $[b, A] \leqq B_{n-1}$. Since $[B, A, A] \neq 1, B_{3}>B_{2}$. Now $\bar{B}_{3} \bar{A}$ is nilpotent of class at most 2 and therefore for any fixed $x \in B_{3}$, the map ϕ defined by $a \phi=[\bar{x}, \bar{a}]$ for $a \epsilon A$ is a

[^0]homomorphism from A onto $[\bar{x}, \bar{A}]$ whose kernel C is the complete inverse image of the centralizer $C_{\bar{A}}(\bar{x})$.

We first show that we may always pick an $x \epsilon B_{3}, x \notin B_{2}$ so that $[x, A]$ is abelian. If B is abelian, this is the case for all $x \in B_{3}, x \notin B_{2}$ since $[x, A] \leqq B$. If $[B, 3 A] \neq 1$, we may without loss of generality take S (which is $B A$) to be $B_{4} A$ so that $[B, 4 A]=1$. Then $\left[S^{3}, S^{3}\right] \leqq S^{6}=(B A)^{6}$. But $[B A, B A]$ $\leqq B^{2}[B, A]$, and inductively we get that

$$
(B A)^{5} \leqq B^{2}[B, 4 A]=B^{2}
$$

thus $(B A)^{6}=1$ since B^{2} is central. It follows that S^{3} and hence $[S, 2 A]$ is abelian. Since $[B, 3 A] \neq 1,[S, 3 A] \neq 1$ and hence $[S, 2 A] \neq B_{1}$, $[S, A] \not \equiv B_{2}$. Thus when $[B, 3 A] \neq 1$, those x in $\left[B_{4}, A\right]$ not in $\left[B_{3}, A\right]=B_{2}$ have the property that $[x, A]$ is abelian.

The last case to consider is when $[B, 3 A]=1$ and $B\left(=B_{3}\right)$ has no involution. We proceed as follows. In general we have

$$
[x, a c]=[x, c][x, a]^{c}=[x, c][x, a][x, a, c]
$$

and similarly $[x, c a]=[x, a][x, c][x, c, a]$. Then if a and c commute and $[x, a]$ and $[x, c]$ commute,

$$
\begin{equation*}
[x, a, c]=[x, c, a] \tag{1}
\end{equation*}
$$

We use (1) in S modulo B^{2} with $x \in B, a, c \in A$, since for $x \in B,[x, A]$ is abelian modulo B^{2}; furthermore, since B^{2} is central in S we get for x, y in $B, a, c \in A$ that

$$
\begin{equation*}
[x, a, c, y]=[x, c, a, y] \tag{2}
\end{equation*}
$$

Then since B^{2} is central in B we see that

$$
[x, a, c, y]^{-1}=\left[x, a, c, y^{-1}\right]=\left[[x, a, c]^{-1}, y\right]
$$

and since $x \in B=B_{3}$, we see from $\left[x, a, c c^{-1}\right]=1$ that

$$
[x, a, c]^{-1}=\left[x, a, c^{-1}\right]
$$

Together we have

$$
\begin{equation*}
[x, a, c, y]=\left[x, a, c^{-1}, y^{-1}\right] \tag{3}
\end{equation*}
$$

By the Hall identity (Lemma 4.1 (b) of [1]),

$$
\left[x, a, c^{-1}, x^{-1}\right]^{c}[[c, x],[x, a]]^{x^{-1}}\left[x^{-1},[x, a]^{-1}, c\right]^{[x, a]}=1
$$

which simplifies (since B^{2} is central) to

$$
\begin{equation*}
\left[x, a, c^{-1}, x^{-1}\right][[c, x],[x, a]]=1 \tag{4}
\end{equation*}
$$

Then from (3) and (4) and the fact that B^{2} is central,

$$
[x, a, c, x]=[[x, c],[x, a]] ;
$$

and by symmetry, $[x, c, a, x]=[[x, a],[x, c]]$. Thus from (2) it follows that $[[x, a],[x, c]]$ is its own inverse and is therefore 1 since B has no involution. Thus in all cases there is an $x \in B_{3}, x \notin B_{2}$, so that $[x, A]$ is abelian as we wished to show.

From (1) it now follows that $[x, A, C]=1$ and then, if A^{*} denotes $[x, A] C$, that A^{*} is abelian. Since B has class at most $2, A \cap B=C \cap B$ and consequently $A / C \cong A^{*} / C$; for

$$
\begin{aligned}
A / C & \cong \bar{A} / \bar{C} \cong[x, A](A \cap B) /(A \cap B) \cong[x, A](B \cap C) /(B \cap C) \\
& \cong[x, A] /([x, A] \cap C) \cong[x, A] C / C \cong A^{*} / C
\end{aligned}
$$

It follows that A^{*} has the same torsion-free rank as A. Furthermore, since a nilpotent group has a normal torsion subgroup, by restricting consideration to the torsion subgroup we deduce (sence $[x, a]$ is periodic when a is) that the torsion subgroup of A^{*} has the same order as that of A and hence that $A^{*} \in \mathbb{Q}(S)$. Since $x \notin B_{2} ; A^{*} \cap B>A \cap B$; and since $[x, A] \leqq B_{2}$ and $\left[B_{2}, A, A\right]=1$, it follows that $\left[A^{*}, A, A\right]=1$ and the theorem is proved.

Corollery 1. Suppose B is abelian or has no involution with B^{2} central in $B J(S)$. If A is chosen in $\mathfrak{Q}(S)$ so that for no $A_{1} \in \mathbb{Q}(S)$ is $A \cap B<A_{1} \cap B$, then $[B, A, A]=1$.

We now introduce a notion of stability in terms of which we can formulate our next theorem. This "stability" includes, as can readily be checked, the notion of p-stability as given in [1]. Suppose that a group G has a finitely generated nilpotent subgroup S such that for each normal subgroup K of $G, S \cap K$ is intravariant in K and let T be any characteristic subgroup of G maximal in that $S \cap T=1$. We shall say that G is S-stable if when S and T are as above and if for arbitrary $P \leqq S$ such that $P T \triangleleft G, x \in N(P)$ with $[P, x, x]=1$ implies that $x^{n} \in S C(P)$ for all $n \in N(P)$. This means in particular that for P a normal subgroup of an S-stable group G with $P \leqq S$, $[P, x, x]=1$ implies that $x \in \bigcap_{g \epsilon G} S^{g} C(P)$.

Our next results include Theorem 4.3 and Theorem A as well as Corollaries 3.2 and 3.5 of [1].

Theorem 2. Let G be an S-stable group and let B be a normal subgroup of G cortained in S; suppose further that B is abelian if S contains an involution. Then $Z(J(S)) \cap B$ is normal in G.

Proof. We first assume that B^{2} is central in $B J(S)$ (and of course that $B \neq 1)$.

Let C denote $Z(J(S)) \cap B$ and let V be the normal closure of C in G. We must show that $C=V$. First we pick an $A \in \mathbb{Q}(S)$ so that for no $A_{1} \in \mathbb{Q}(S)$ is $V \cap A$ contained properly in $V \cap A_{1}$. By Corollary 1, this implies that $[V, A, A]=1$. If L denotes $\bigcap_{g \epsilon G} S^{g} C(V)$, then $L \triangleleft G$ and since G is S-stable, $A \leqq L$. Hence $Z(J(S)) \leqq X$ with X denoting $Z(J(S \cap L))$. By the Frat-
tini argument, $G=L(N(S \cap L))$. Since X is characteristic in $S \cap L$, $G=L N(X)$.

If $Z(J(S)) \neq X$, there is an $A \in \mathbb{Q}(S) A \neq L$ so that for no $A_{1} \in \mathbb{Q}(S)$ with $A_{1} \ddagger L$, is $V \cap A$ properly contained in $V \cap A_{1}$. Since $A \nsubseteq L, S$-stability implies that $[V, A, A] \neq 1$, and Theorem 1 implies that there is an A^{*} with $V \cap A^{*}>V \cap A$ and $\left[A^{*}, A, A\right]=1$. By the maximality of $V \cap A$ in the choice of $A, A^{*} \leqq L$ and hence $A^{*} \geqq X$. Since $C \triangleleft L$ and $C \leqq X$, it follows that $V \leqq X$. We then have (since $V \leqq X \leqq A^{*}$) the contradiction

$$
1 \neq[V, A, A] \leqq[X, A, A] \leqq\left[A^{*}, A, A\right]=1
$$

We conclude that $Z(J(S))=X$ and hence that C (which is then $X \cap B$) is normal in $G=L N(X)$. This proves the theorem for the case that B^{2} is central in $B J(S)$.

If B^{2} is not central in $B J(S)$ we can assume inductively (on the class of B) that $Z(J(S)) \cap B^{2} \triangleleft G$. But

$$
C=Z(J(S)) \cap B=Z(J(S)) \cap V
$$

and hence (since V is the normal closure of C and $[C, V] \leqq C \cap B^{2}$ a normal subgroup of G) $[V, V] \leqq C \cap B^{2} \leqq C$. Thus V^{2} is central in $V(J(S)$), and by the first part of the proof with V in place of B it follows that

$$
C=Z(J(S)) \cap V \triangleleft G
$$

and hence $C=V$ as was to be shown.
Corollary 2. Let G be an S-stable group, let $B=\bigcap_{g e \theta} S^{g}$, and suppose that $B \geqq C(B)$; suppose further that B is abelian if S contains an involution. Then

1. the center Z of $J(S)$ is a characteristic subgroup of G;
2. if B is abelian then B is the only element of $Q(S)$;
3. $G=C(Z(S)) N(J(S))$.

Proof of 1. Since Z is an abelian normal subgroup of $S,[B, Z, Z]=1$. The S-stability then implies that $Z^{g} \leqq S C(B)$ for all $g \epsilon G$. Consequently $Z \leqq B$. Since S is intravariant, B is normal in the holomorph H of G, and consequently by the theorem, $Z \triangleleft H$ or Z is characteristic in G as was to be shown.

Proof of 2. If $\mathbb{Q}(S)$ has an element other than B, choose an $A \in \mathbb{Q}(S)$, $A \neq B$, so that $A \cap B$ is maximal. If $[B, A, A] \neq 1$, then by Theorem 1 there is an A^{*} with

$$
A \cap B<A^{*} \cap B \quad \text { and } \quad\left[A^{*}, A, A\right]=1
$$

By the maximality of $A \cap B, A^{*}=B$. Then $[B, A, A]=1$ and S-stability implies that $A \leqq B$ as in the proof of 1 . Thus B is the only element of $Q(S)$ as was to be shown.

Proof of 3. Since $B \leqq S, Z(S) \leqq C(B) \leqq B$. Then $Z(S) \leqq Z(B)$. Since $B \triangleleft G, Z(B) \triangleleft G$, and by Theorem 2, if Z denotes $Z(B) \cap Z(J(S))$, then $Z \triangleleft G$ (and consequently $C(Z) \triangleleft G$). By the Frattini argument,

$$
G=C(Z) N(S \cap C(Z))
$$

Since $J(S)$ centralizes $Z, S \cap C(Z) \geqq J(S)$ so that $J(S \cap C(Z))=J(S)$, and $N(S \cap C(Z)) \leqq N(J(S))$. Thus $G=C(Z) N(J(S))$. Since $Z(S) \leqq Z$, $C(Z(S)) \geqq C(Z)$, and $G=C(Z(S)) N(J(S))$ as was to be shown.

Reference

1. George Glauberman, A characteristic subgroup of a p-stable group, Canadian J. Math., 1968, to appear.

Purdue University
Lafayette, Indiana

[^0]: Received February 9, 1967.
 ${ }^{1}$ The author is indebted to the National Science Foundation for support.

