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Introduction
Suppose that L is a locally convex topological linear space, L* is its con-

jugate space, K is a compact convex subset of L, and E is the set of all
extreme points of K. By the Krein-Milmun Theorem [9], [3, pp. 83-84],
K cl con E and hence sup fE: sup fK for each f L*; moreover, the
K-supremum of f is actually attained on E. If E is finite (that is, if K
is a finite-dimensional convex polytope) then

(I) for each f L* the number sup fE is an isolated point of the set fE.
Here we are concerned with the restrictions which condition (I) imposes on
the topological structure of E The following results are established.

(a) When L is finite-dimensional, condition (I) is equivalent to the finite-
ness of E

(b) When L is a Banach space, (I) implies the isolated points of E: are
dense in E Conversely, for each infinite-dimensional Banach space L and each
compact metric space Q in which the isolated points are dense, there is a compact
convex set K in L such that (I) holds and E: is homeomorphic with Q.

(c) In general, (I) does not imply E has isolated points. Indeed, for each
totally disconnected compact Hausdorff space Q there is a locally convex space L
and a compact convex set K in L such that (I) holds and E is homeomorphic
with Q.

These results are for compact convex sets, but some related results re ob-
tained for locally compact closed convex sets containing no line.

Two lemmas
The lemmas of this section will not be used in proving (a), (c), or the first

part of (b). They will be used for the second part of (b) and for a related
finite-dimensional result.
For subsets X and Y of a metric space with distance function p, let

(X, Y) inf {p(x, y) x X, y Y}.
For a point x of the space let ti(x, Y) ti({x}, Y). The following result
may well be known, but lacking a specific reference we include a proof.

TOPOLOGICAL LEMMA. For r 1, 2, suppose that A, is the set of all accu-
mulation points of a compact metric space Q and that the set Q, A of all
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isolated points of Qr is dense in Qr. Then every homeomorphism of A1 onto A2
can be extended to a homeomorphism of Q1 onto Q2.

Proof. For the sake of notational simplicity, we assume Q1 and Q are

disioint and we use the symbol p for both distance functions. Since Ar is
compact there is a function , on Qr to A such that i(q, A) p(q, ’(q))
for all q e Qr. The hypotheses imply also that Q - A, is countably infinite
and hence can be sequentially ordered. Consider an arbitrary homeomor-
phism of A1 onto A2. The desired extension b of will be constructed in
the form b u 7 u "-1, where
(1) dmnTu rngi" Q A1 and dmni’u rng7 Q.’ A..

Let u be the first point of Q1 A with respect to the sequential ordering.
Assign u to dmn 7 and let 7(u) be the first point of Q As such that

(2) p(7(u), rl(u)) < (u, A).

Let v be the first point of Q A. unless this point happens to be 7(u), in
which case let v be the second point of Q As. Assign v to dmn and let
’(v) be the first point of Q A such that ’(v) u and

p((v), -lr(v)) < (v,

Proceed to define 7 and ’, step by step, in the following manner: at each odd
step, let u be the first point of Q1 A not previously assigned to dmn 7 u rng i’,
assign u to dmn 7 and let 7(u) be the first point of Q. As which satisfies
(2) and has not been previously assigned to dmn rng 7; at each even step,
let v be the first point of Q As not previously assigned to dmn i" u rng 7,

assign v to dmn and let ’(v) be the first point of Q A which satisfies (3)
and has not been previously assigned to dmn 7 u rng . Since Q A is
dense in Q, the specified choices can be made. They lead to functions 7
and for which (1) holds and

dmnTnrng" 0 dmn’nrngT.

With b u 7 u -1, it is plain b is a biunique mapping of Q onto Q. and we
want to show is a homeomorphism. Since is a homeomorphism and Q and
Q are compact, it suffices to show that if x, and y, are sequences in Q A1
and Q-- As respectively, with

x,--xeA, y,--yeA, and (x) y,

then (x) y. By choosing a suitable subsequence if necessary, we may
assume x, is entirely in dmn 7 or entirely in rng f. For the first case note
that r(x,) -- x, whence rl(x,) --, (x), and with

it follows that
p(y,, -(x,) < (x,, A) -- 0

y lim y, lira r(x,) (x) (x).
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In the second case, y. is entirely in dmn and a similar argument applies.

GEOMETRICAL LEMtA. If L is a normed linear space, K is a totally bounded
subset of L whose closure is convex, and J is a complete convex proper subset of
K, then there is a sequence B. of open balls in L J satisfying the following
five conditions"

(i) lira (radius of B.) 0;
(ii) lira/t(S., E) 0;
(iii) each point of Ej t cl (K J) is the limit of a subsequence of B.
(iv) any closed halfspace supporting J but not K misses some of Bi’s;
(v) each ball B is centered at a point of K J.

Proof. For each integer n _>_ 2 let

Xn {x e K, J" l/n < (x, Ej) <- 1/(n- 1)}.

Being totally bounded, Xn contains a finite set Yn such that (x, Y,) 1In
for each x e X.. Form the sequence B. by listing first the bails of radius
rain (1, (yl, J)/2) centered at the various points yl of Y1, next the balls of
radius min (-, t(y2, J)/2) centered at the various points y of Y, ...,
then the balls of radius min (1/n, (y, J)/2) centered t the various points
y of Y, .... Conditions (i), (ii), (iii) and (v) are readily verified. For
(iv), let us consider an arbitrary closed halfspace W supporting J but not K.
Since J is compact, E intersects the bounding hyperplane of W, whence there

L*exist w e E n W, z e K W and f e such that

I]fll 1 and W {vL’f(v) <-f (w)}.

For each ), [0, 1] let zx (1 )w -F z. Then z0 e E, zx el K J for
all e ]0, 1], and (zx, E) is a continuous function of . It follows that for
sufficiently large n there exists X(n) e ]0, 1] such that zx() e cl X.,. Further,
there exists yn e Y. with Y. zx(.) II <- 1/n. If b is any point of the open
ball B centered t y and having radius _< 1In, then IIb zx(.) < 2In und
consequently, with l]fli 1,

f(b) f(w) > f(zx(,,)) 2In f(w) X(n)f(z w) 2/n.
But

so it follows that h(n) >_ 1/(nil z w ]]) and

f(b) --f(w) >\l]z_ wll -"
When n is sufficiently large the right-hand expression is positive and then B
misses W.

CoroLlArY. If J is a compact convex subset of a separable normed linear
space L, there is a sequence B of balls in L J satisfying the following four
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conditions"
(i) lim (radius of B.) O;
(ii) lira (B., E) O;

(iii’) each point of E is the limit of a subsequence of B
(iv’) any closed halfspace supporting J misses some of the B’s.

Proof. Let A denote the closed affine hull of J. A theorem in [4, p. 460]
guarantees the existence of a nonsupport point p of J relative to A, or, equiva-
lently, a point p such that the union of all rays from p through the various
points of J is dense in A. We assume without loss of generality that p is

L*the origin 0, whence A is a linear subspace of L and for eachf e it is true that

supfJ > 0 or f(a) 0forallaeA

Let p, be a sequence of points dense in L and let h be a sequence of positive
numbers such that h, p, -- 0. Finally, let

K con (2J u {hip1, h2p2, "’}).
Then K is totally bounded by Mazur’s Theorem [10], [3, p. 80] and hence by
the Geometrical Lemma there is a sequence B of balls in L J satisfying
conditions (i)-(v). Since K 2J it is then evident that (iii’) holds and it
remains only to verify (iv’). Consider an arbitrary linear form f e L* {0}.
From the definition of K it is plain that 0 is a nonsupport point of K relative
to L, whence sup fK > 0. But sup fK > 2 sup fJ, so it follbws that no closed
halfspace supports both J and K and we then see from (iv) that any closed
halfspace supporting J misses at least one of the B’s.

The finite-dimensional case

We shall begin this section by proving assertion (a) from the introductior

THEOREM. A compact convex set K in R is a polytope if and only if, for
each linear form f on R, the number sup fE: is an isolated point of the set fEK.

Proof. The "only if" part is obvious. For the "if" part when d 2,
consider in R a compact convex set K which has infinitely many extreme
points. The boundary of K includes an accumulation point y of E, and R
admits a linear form f, not identically zero, such that supfK f(y). It is
easily verified that y e EK and f(y) is an accumulation point of the set fE.
Now suppose the "if" part is known for d j (where j > 2) and consider

a compact convex set K in R’+1 such that for every linear form f on R+,
the number sup fE is an isolated point of the set fE. We want to show K
is a polytope and for this it suffices, in view of a characterization of polytopes
in [8, p. 91], to show rK is a polytope whenever v is the orthogonal projection
of R+ onto a j-dimensional linear subspace S of R’+. Of course K is
compact convex set, and it is easily verified that E vE. For an ar-
bitrary linear form g on S, gr is a linear form on R’+ and hence, by hypothesis,
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sup gE is an isolated point of the set grE. But gEr grE and

sup gE sup grK sup gE

so sup gE: is an isolated point of the set gE. Since g is arbitrary, we
conclude from the inductive hypothesis that K is a polytope. Since is
arbitrary, this implies K is a polytope and completes the proof.

R. R. Phelps has produced a second proof of the above theorem, based
on the following fact rather than on the characterization of polytopes from
[8]; If K is a compact convex set which satisfies condition (I) and H is a
supporting hyperplane of K, then the intersection K l H also satisfies con-
dition (I).

CoRoIV. Suppose that Q is a compact metric space and F is a finite-
dimensional linear space of continuous real functions on Q. Suppose that for
any finite P Q there exists g F with sup gQ sup gP. Then there exists
fo F such that the number sup fo Q is an accumulation point of the set fo Q.

Proof. Let L denote the coniugate space of F and the evaluation mapping
of Q into L, so that vq(f) f(q) for all q e Q and f e F. Since all members of
F are continuous, v is continuous and hence the set vQ is compact. Let
K con Q, a compact convex subset of L. Note that E vQ and
K con E, while the hypothesis about the existence of g implies K is not
the convex hull of any finite subset of vQ. It follows that E is infinite, and
by the theorem just proved there is a member f0 of F such that sup f0 E is
an accumulation point of foE. Then supf0Q is an accumulation point
of f0 Q and the proof is complete.

In the corollary, F is not required to include the constant functions nor to
separate the points of Q. Even if these requirements are added, the corollary
may fail when F is infinite-dimensional. Indeed, let L be an infinite-dimen-
sional separable Banach space, q a linearly independent sequence of points
dense in L, and k, a sequence of positive numbers such that k, q, --, 0. Let
Q {0, k q, k q, }, a compact subset of L, and let F denote the set of
all restrictions to Q of the continuous affine forms on L. Then the corollary’s
conclusion fails, even though its hypotheses are satisfied except for the re-
quirement that F should be finite-dimensional. The closed convex hull K
of Q is compact and satisfies condition (I), thoughE is infinite. An elabora-
tion of this example is used, in the second theorem of the next section, to
prove the second part of (b).
Extreme points are important not only for compact convex sets, but also

for those closed convex sets K which are locally compact and contain no line.
Indeed, any such K (in a locally convex space L) is the closed convex hull
of its set E of extreme points together with the union of its extreme rays
[5, p. 237]. Some members of L* may have infinite supremum on K, or
have finite supremum and yet fail to attain a maximum; however, there are
also members f of L* {0} which do attain maxima on K, and each such f
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attains its K-maximum on EK [5, pp. 236-237]. This suggests the following
weakened form of condition (I)"

(II) For each f in L* which attains a maximum on K, the number supfE
is an isolated point of the set fEK.

Plainly (I) and (II) are equivalent when K is compact. When K is a
closed convex subset of R containing no line, (II) is equivalent to the finite-
ness of E. For d >_ 3, the situation in R is described by the following
result in conjunction with the first theorem of the next section.

THEOREM. If Q is a compact metric space in which the isolated points are
dense, and if the set A of all accumulation points of Q is homeomorphic with a
subset of a (d 3)-sphere, then there is a closed convex set K in R such that K
contains no line, (II) holds, and E is homeomorphic with Q.

Proof. Let , denote the transformation of R onto itself carrying each
pointx (x1,x, ...,x)eRontothepoint,(x) (-x1,x, ...,x).
Let I] denote the Euclidean norm for R and let

R- {xR’x 0}, H {xR-" [x] 1, x > 0},

s li 0}.
Then H and rH are opposite hemispheres of the (d 2)-sphere

s II II 1},

in which their common boundary is the (d 3)-sphere Sa-. By hypothesis,
there is a homeomorphism of A into Sa-. We 11 extend to a homeomor-
phism of Q into H u Sa- such that any hMfspace h Ra- supporthg the set
Q u r# Q at a point of A is in fact a supporting hMfspace of Sa-. Let us
assume for the moment that has been constructed, and let C denote the
uon of all rays in Ra which issue from the origin and intersect the (d 1)-
ball

(-1,0,...,0, 1}.

Then C is a pointed closed convex cone which contMns the ray T from the
origin through the point (- 1, 0, ..., 0, 0); C is supported Mong this ray by
a unique closed halfspace in Ra, namely by the halfspace {x eRa. xa 0}.
Let

K C + con CQ

Plainly K is convex, and K is closed for C is closed and conQ is compact.
It is easily verified that K n Ra- c H + T, whence it follows that K contMns
no line and E #Q. It remMns to show that (II) holds and of course to
construct the homeomorphism .

Consider an arbitrary linear form f on Ra, not identicMly zero, such that the
K-supremum of f is attained on K and hence at a point of E Q. Let G
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denote the hyperplane {xeR :f(x) supfK}. If G misses A then
(G, A) > 0 and G E consists of a finite number of isolated points of
E; then plainly supfE is an isolated point of fE:. If G intersects A
then either G R- or G R- is a hyperplane in R- which supports
S- at a point of S- and therefore contains a translate of the ray T. This
contradicts the special relationship, mentioned above, among C, T, and the
halfspace {x R x < 0}.
Only the construction of remains. Applying the Geometrical Lemma

with the roles of J and K played by the sets con ,A and con S- respectively,
and noting that Eo.a A, we see that there is a sequence b, of points of
con S- con A such that (b,, A) --, 0, each point of A is the limit of a
subsequence of b,, and S- is supported by every closed halfspace in R-which supports con A and includes all the b?s. Since all points of A are of
unit norm, it is clear the these properties of the sequence b, are possessed
also by the sequence y,, where y y/[] y ]]. Each point y is in H or
rH, and we define z y when y e H, z r(y) when y e rH. Then every
halfspace supporting the set

A {z, z, ...} u r{z, z, ...}
at a point of A is a supporting halfspace of S-. By the Topological Lemma,
can be extended to a homeomorphism b of Q onto the set

.A u {z, z, ...} H u S-,
and this completes the proof.

The normed case

The first part of assertion (b) above is extended by the following result,
which involves condition (II) rather than condition (I).

THEOREM. If L is a normed linear space, K is a locally compact closed con-
vex subset of L containing no line, and supfE: is an isolated point of E when-
ever the linear from f L* attains a maximum on K, then the isolated points of
E: are dense in E.

Proof. A point p of K is said to be exposed provided that there exists f L*
such that the K-supremum of f is attained at p but nowhere else on K.
Plainly (II) implles that each exposed point of K is an isolated point of E.
But for K as described, it follows from [6, p. 91] that the exposed points of K
are dense in E.
THEOREM. For each infinite-dimensional Banach space L and each compact

metric space Q in which the isolated points are dense, there is a compact convex
subset K of L such that (I) holds and E is homeomorphic with Q.

Proof. We assume without loss of generality that the Banach space L is
separable. Let A denote the set of all accumulation points of the compact
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metric space Q. Let B and S denote, respectively, the closed unit ball and the
unit sphere of the Hilbert space , taken in the weak topology. Thus B is a
compact convex set and’the set S E is dense in B. For each point
p (p2, p, of the parallelotope P --. [2-, 21-], let

As is easily verified, a is a homeomorphism of P onto the set

P {(x, x2,’.’) eS xl > 0; i >_ 2 2-(+-) <_ x _< 2-}.
As is well known, every separable metric space can be topologically embedded
in P. It follows that there is a homeomorphism r of A1 into aP.
We are going to construct a biunique linear transformation q of into L such

that the restriction of to B is continuous (hence a homeomorphism) and the
compact convex set B is not supported by a closed hyperplane at any point
of the set aP. Assuming for the moment that has been constructed, let us
see how to complete the proof. Note thatE S, whence it follows (with
the aid of,Milman’s theorem [11], [3, p. 84]) that E1 oon z Z for every com-
pact set Z c qS. Let J cl con qrA1, a compact convex set (by Mazur’s
theorem) with E rA. The set J u qS is totally bounded and has as its
closure the convex set qB. Further, every closed hyperplane supporting J
includes a point of aP and hence does not support qS. Applying the Geo-
metrical Lemma with the role of its K played by the set J S, we obtain a
countable subset 12 ofS J such thatE is the set of all accumulation points
of 12 and Is is not contained in any closed halfspace supporting J. By the
Topological Lemma, the homeomorphism r of A onto E can be extended to
a homeomorphism k of Q onto E u 12. Since kQ is a compact subset of qS,
CQ is the set of all extreme points of the compact convex set K cl con bQ.
Further, for every f L* {0} there exists/ such that

sup fJ < , < sup fI.
and since the set {y e I.:f(y) > } is finite it is plain that sup rE,: is an
isolated point of fE:. Thus K satisfies condition (I) and the proof is com-
plete except for the construction of .
By [7, p. 192], the separable Banach space L contains a sequence u, u.,

of points of unit norm such that the linear hull of the u’s is dense in L and such
that , v, whenever , and , are sequences of real numbers th
u vu. In particular, the points u are linearly independent.

12For each pointx (x,x,. )e let

(x) 4-’xue L,

where the series converges because L is complete and xu <- x II. Then
is a biunique linear transformation of into L and it is easily seen that the

restriction of to is continuous. If the set B is supported by a closed
hyperplane at one of its points, that point is of the form (y) for some y e S
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andL admits a .continuous linear form fsuch that supfB fq(y). But then
f is a continuous linear form on whose maximum on B is attained at y,
whence (using known properties of 2) there exists > 0 such that

f,(x) " yx, x (x, x, "’) el.
On the other hand, it is clear that

whenever the series u converges, and applying this to the series for
(x) we conclude that

f (x) (x, )

It follows that uY 4-f(u). If y eaP then

contradicting the fact that f is continuous.
(By means of a slightly more careful construction, the theorem can

be proved under the assumption that L is an infinite-dimensional F-space.

The 9enerai
For a convex set K in an arbitrary topolocal linear space, condition (I)

implies that every exposed point of K is an isolated point of E. Thus there
are circumstances other than those of (b) under which (I) impfies the existence
of isolated extreme points. The most interestg of these is based on a recent
theorem of Amir and Lindenstrauss [1], asseing that if L is a Banach space
in its weak topology, then every compact convex subset of L is the closed
convex hull of its set of exposed points. On the other hand, the follong
result shows that (I) does not imply the existence of isolated extreme pots
unless some supplementary condition is added.

TnEOaEM. For each totally disconnected compact Hausdorff space Q there
is a locally convex space L and a compact convex set K in L such that (I) holds
and E is homeomorphic with Q.

Proof. Let denote the class of all sultaneously open and dosed sub-
sets of Q. Since Q is compact and totally sconneeted, eve open subset of Q
is a union of members of . Let C denote the space of all continuous real
functions on Q, S the subspace of C consisting of all finear combinations of
members of , M the space of all sied borel measures on Q, and K the sub-
set of M consisting of all probability measures on Q. For each point q of Q,
let uq denote the member of K which assis unit measure to the set {q}. De-
fine the bilinear form ( by setting

(% u) du(q)

for all y e C and e M. Let L and L’ denote the space M under its topologies
a(M, S) and a(M, C) respectively, and let v denote the identity mapping of
L’ onto L.
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Under the usual identification, L’ is the conjugate space C* in its weak*
topology. It follows from a well-known theorem [2, pp. 501-502] that

E= {q:qeQ},

nd that, in the relative topology from L’, K is a compact convex set for which
E is homeomorphic with Q. But then K must have these same properties
in the relative topology from L, for y is continuous and L is Hausdorff space.
For every linear form f L* there exist real numbers ,, , and members
U,, ..., U of such that

for all e M. Then clearly the set fE, is finite and (I) holds.
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