
STRUCTURE OF MONOGENIC GROUPS

BY
1VI. PAJAGOPALAN

Rubel [91 introduced the notion of a monoenic locally compact abelian
roup recently. This paper describes the structure of such roups. We
introduce the notions of topologically divisible groups, canonical monogenc
roups and amalgam of topological groups. We show that a totally discon-
nected monogenic locally compact abelian group is a direct product L K
where L is a topologically divisible group and K is either a compact monothetic
group or a canonical monogenic group. If is monogenic but not totally dis-
connected then it is either of the form L where L is topologically divisible
and K s compact monothetic or is an amalgam L - K of a compact mono-
thetic group K and a group L such L/Lo is topologically divisible where L0 is
the connected component of identity of L. The structure of topologically
divisible groups and of canonical monogenic groups are described. In the
totally disconnected ,case the structure is an exact generalization of the result
of [7]. The notion of amalgam was discussed, by B. H. Neumann for discrete
groups.

Conventions and Notations. All groups occurring in this paper are assumed
to be locally compact Hausdorff and abelian groups. All notions in abstract
abelian groups are to be found in [3] and [4]. All notions in topological groups
which are not defined here are to be found in [5] or [10]. R’(n >_ 0) denotes
the usual real Euclidean group. If p is a prime then I denotes the group of
p-adic integers, and J the group of p-adic numbers.

DEFINITION 1. Let G be a group. A compact character x of G is a con-
tinuous character of G which is also open.

DEFINITION 2 (Rubel). A group G is called monogenic if there exists an
element x0 e G such that whenever H is a subgroup of G such that G/H is com-
pact we have that (x0) generates G/H topologically where G G/H is
the canonical map. Such an element x0 is called a special element of G.
DEFINITION 3. A group G is called topologically divisible if the only com-

pact character of G is the identity character. (See also [8]).

Note 4. The group J is topologically divisible for all primes p and every
discrete divisible group is also topologically divisible. A group G is topologi-
cally divisible if and only if whenever H is a closed subgroup of G such that
G/H is compact we have that H G. Loosely speaking a group G is topologi-
cally divisible if and only if it admits no non-trivial compact quotient groups.
In this sense our definition of topologically divisible groups generalizes the
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notion of abstract divisible groups. Dixmier [2] and Ahern and Jewett [1]
have described the class of in]ective locally compact abelian groups. From
their results it follows that the only group which is topologically divisible and
is also iniective in the class of all locally compact abelian groups is the group
containing only one element. But abstract divisible abelian groups are iniec-
rive in the class of all discrete abelian groups and also have no non-trivial finite
quotients. So we find that in the nondiscrete case no group has both these
corresponding properties. We shall see lter that every topologically divisible
group can, be obtained from the discrete divisible groups and the groups J
by using duals, subgroups and products. Finally we note that every mono-
genic group contains compact, open subgroup.

LEMMA 5. If G is a monogenic group and H is a closed subgroup of G then
G/H is also monogenic. If L is a topologically divisible closed subgroup of a
group G and G/L is monogenic then G is monogenic.

Proof. The first remark is easy to prove. The restriction to L of compact
character x of G is a compact character of L. So we get the second statement.
DFNxTO 6. An element x0 of a group G is said to be of compact order if

the closed subgroup generated by x0 is compact. If x0 is not of compact order
it is said to be of discrete order.

Remark. If an element x0 of a group G is of discrete order then the closed
subgroup that it generates is isomorphic to the group Z of integers.

LEMMA 7. A group G is topologically divisible if and only if the dual G* is
torsion free as an abstract group and consists of elements of compact order only.
If G is a topologically divisible group then G/H is also topologically divisible for
every closed subgroup H c G. In particular ifH is an open subgroup then G/H
is divisible. If G is a topologically divisible group then it is totally disconnected.

Proof. All statements are easy to prove.

LEMMA 8. Let H be a compact, open subgroup of a group G. Let G H D
where D is a discrete subgroup of G. Consequently if G is a topologically divisible
group then it is of the form S X H where S is a discrete torsion free divisible group
and H is topologically divisible and each element of H is of compact order.

Proof. The statement is an easy consequence of theorem 25.21 page 410
of [12].

DFXNTON 9. Let p be a prime and K an index set. For each i e K
let J be a group isomorphic to J. Let IIJ be the cartesian product

be an open, compact, subgroup for Jof the abstract groups J. Let I
for each i e K. Then I is isomorphic to I for each i e K. Then I
is isomorphic to I for each i e K. Let
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Let
B Ix ]x IliKJ and nxeA for some integer n}.

Then B is divisible as an abstract group. (See also page 419 of [12].) We
define a canonical p-group to be a subgroup H c B such that H D A
and H is given a topology r in which H is a topological group and A is
compact and open and the relative topology on A as a subspace of (H, r)
coincides with the product topology of l-Ii,K I*i.

DEFINITION 10 (Vilenkin and Braconnier). Let K be an index set and
let Gi be a group for each i e K. Let Hi c Gi be a compact, open subgroup
for each i e K. By the weak direct sum of the groups Gi modulo Hi we mean
the group G defined as follows: As an abstract group G l-Ii, Gi and consists
exactly of those elements whose i*h coordinate is in Hi except for a finite
number of indices. The topology on G is so given that it is made a topological
group and the group l-I, Hi with its product topology becomes a compact,
open subgroup of G. (Also see page 56-57 of [12].)

DEFINITION 11. Let p be a prime. In Definition 9 we introduced the
notion of a canonical p-group H. H has a compact, open subgroup IT I
which we may call A. Let P be a collection of primes. Then we can talk
about the weak direct sum of the groups H modulo A p where p e , as in
Definition 10. We call this sum, a weak direct sum of canonical p-groups.

THEOREM 12. Let G be a topologically divisible group where every element
is of compact order. Then G is the dual of a group G* which is the weak direct
sum of canonical p-groups. The converse is also true. Consequently a group
H is topologically divisible if and only if it is of the form D ) G where D is a
discrete torsion free divisible group and G is the dual of a group G* as in the first
statement.

Proof. Now we notice that a canonical p-group is totully disconnected
and torsion free as an abstract group and consists of elements of compuct
order only. From this it follows easily that if G* is weak direct sum of
canonical p-groups then it consists of elements of compact order only and is
torsion free as an abstract group and is totally disconnected. From this and
Lemma 7 it follows that the group G which is dual of G* is topologically divisi-
ble. Since G* is totally disconnected we get that all elements of G are of
compact order. This proves the converse of the first statement of the theo-
rein.

Now let G be a topologically divisible group where all elements are of com-
pact order. Let G* be its dual. Let H G be a compact open subgroup of
G which exists by Note 4 and Lemma 5. Then G/H is a discrete divisible
group which is a torsion group because all elements of G are of compact order.
So there is a collection ( of primes and index sets K for each p ( such that
G/H

_
_,i Z(p) where Z(p) is the p-primar) part of the group
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of rationals modulo 1 for each i e K, and the sum Z(p) is the weak
direct sum of the abstract groups concerned. Since Ha c G* is the dual
of G/H we get Ha II, II.,K, (I) where (I)’ is isomorphic to I for
all i e K,. Now G* is torsion free by Lemma 7 and since G is totally discon-
nected every element of G* is of compact order. Now put L, II,K (I)
for each p e (p. Then L is a compact subgroup of G* and is divisible for every
primeq # p. Let

H {xlxeG*; pxeL for some k 0,1,2,...}.
ThenH is a closed subgroup of G* for each p e (p and we get from the previous
remarks that G* is the weak direct sum of the groups H, modulo L where
pe(p.
Now it is easy to see that H is topologically isomorphic to a canonical

p-group in a natural way. So we find that G* is the weak direct sum of
canonical p-groups. From this and Lemma 8 we get the theorem.

LEMMA 13. Let G be a group and H G a closed subgroup which is a weak
direct sum of canonical p-groups. Let G/H be finite cyclic and p-primary.
Then G is either a weak direct sum of canonical p-groups or it is of the form
L X T where L H and is a weak direct sum of canonical p-groups and T is

finite cyclic. Actually T is the torsion subgroup of G.
THEOREM 14. Let G be a monogenic totally disconnected group with a special

element Xo of compact order. Then G is the direct product L X H of a compact
monogenic group H and a topologically divisible group L.

Proof. This follows by repeated use of Lemma 13, Theorem 12 and the
fact that a discrete divisible subgroup is a direct summand of every abstract
abelian group in which it is contained.

DEVlNITION 15. Let (P be a collection of primes. For each p e (P let G
be either a finite p-primary cyclic group with discrete topology or the group
I of p-adic integers. Let G II, G. Let (x,) be an element of
G whose pth coordinate is x for all p e (P. a is said to be a main diagonal of
G if the closed subgroup generated by x is G for all p e (p. Note that G is
a typical o-dimensional compact monothetic group in the product topology
and a its generator.

DEFINITION 16. A canonical monogenic group H is a locally compact
group of the following type:
As an abstract group, H is a subgroup (not necessarily closed) of a group

G as in Definition 15. Moreover H should be pure subgroup of the abstract
group G containing a main diagonal and the torsion subgroup of G. Now
we take some closed subgroup F c G such that F c H. H is now given a
topology r such that (H, r) is a topological group and F is an open subset of
(H, r) and the relative topology on F as a subspace of (H, r) coincides with
that when F is treated as a subspace of G.
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The reason for using the term canonical monogenic group in the above
definition is the following lemma"

LEMMA 17. A canonical monogenic group G is a locally compact group and
is a monogenic group with a main diagonal Xo as a special element. The group
G is also monogenic when treated as a discrete group. If L c G is a compact
open subgroup and xo L and is of infinite order then it is of discrete order.

Proof. That G is locally compact is obvious from Definition 16. Now
let G c H where H 1-I G as in Definition 15. Then the main result
of [7] shows that G is monogenic as a discrete group with a main diagonal x0
of H as a special element. Now every compact character x of G maps G
onto a finite subgroup of the circle. So it follows that G is monogenic as a
locally compact group with x0 as a special element. The third statement is
obvious.

LEMMA 18. Let G be a canonical monogenic group. Then nG is an open
subgroup of G for all integers n 1, 2, 3, .... Moreover the set of compact
characters separates points of G.

Proof. Let G c H be as in Definition 16. Then every continuous charac-
ter x of H gives a compact character of G by restriction. Now let L G
be the compact, open subgroup of G as in the Definition 16. Then the dual
L* of L is isomorphic to a subgroup of the circle and L* is a torsion group.
So nL is an open subgroup of L and hence is an open subgroup of G for all inte-
gers n 1, 2, 3, .... So nG is an open subgroup of G for all n 1, 2, 3, ...
LEMMA 19. Let G be a monogenic group with a special element of discrete

order. Let H G be an open subgroup which is topologically divisible and
such that G/H is a canonical monogenic group. Then G is of the form H )< L
where L is a discrete, canonical monogenic group.

Proof. Let K H be a compact open subgroup of G which exists by
Lemma 7 and the fact that H is open. Let G -- G/H be the canonical
map and 20 e G/H an element of finite order. Let x0 e G be such
that (x0) 20. Let M be the subgroup of G generated by H and x0. Then
M is seen to be monogenic with x0 as a special element. It is also clear that x0
is of compact order. A close look at the proof of Theorem 14 gives that
M H )< S where S is a cyclic group with generator y0 and y0 has the
same order as 2o. Then it follows that (y0) 2o. Now H/K is divisible
and hence G/K H/K X G/H. Let " G G/K be the canonical map
and F - (G/H). Then the previous argument shows that K is a pure,
compact, open subgroup of F. So by Lemma 8 we have that F K X L
for some discrete subgroup L. Then it is obvious that G H )< L.

TEOnEM 20. Let G be a monogenic group with a special element Xo of dis-
crete order. Then G M )< L where M is a closed subgroup of G which is
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topologically divisible and L is a closed subgroup of G which is a canonical
monogenic group.

Proof. First of all we observe that since the special element x0 is of discrete
order the group G should be totally disconnected. So the set of compact
characters of G coincides with the torsion subgroup rG* of the dual G* of G.
Let H be the annihilator of rG* in G. Let G ---, G/H be the canonical
map. Let 20 q(x0). Then 40 separates rG*. So rG* is isomorphic to a
subgroup of the circle. Moreover if y e G/H then it is possible to define a
character x of the discrete group rG* by the rule x(t) t(y) for all e r(G*).
Then we get a map G/H --, (rG*) where (rG*)* is the dual of the group
rG* with discrete topology by putting (y) x for all y e G/H. Let us
call (rG*)* F. Then we claim that is continuous and one-to-one from
G/H into F. Actually the continuity follows from duality and the one-to-
oneness follows from the fact that H is the annihilator of rG* in G. From
the structure of rG* it follows that there is a collection ( of primes such that
F I, F(p) where F(p) is either a discrete p-primary, finite cyclic group
or the group I of p-adic integers. Put b(G/H) S c F and give S the
topology r which makes G/H ---, S a homeomorphism. Then (S, r) is a
locally compact group. Now give the topology rl on F which makes F a
topological group with S as an open subgroup and such that rl on S.
Then rl is a stronger topology on F than the product topology of II, F(p).
So by Theorem 1 of [6] there is a closed subgroup A of F, (here F is taken
with the product topology), such that A c S and A is open in (S, r) and the
relative topology on A when A is considered as a subspace of (S, ) or as a
subspace of the product space 1-I F(p) is the same. Then (S, r) is a
canonical monogenic group. So G/H is topologically isomorphic to a canoni-
cal monogenic group.
Now we claim that H is topologically divisible. If not, H will contain a

closed subgroup M of G so that H/M is finite cyclic and p-primary and has
more than one element. Let us put G/M F’ and H/M T. Then T
is a finite subgroup of F’. Moreover every compact character of F’ gives a
compact character of G in a natural way. Thus we may identify rG* with
the set of all compact characters of F’. It is also easy to see that F’/T is
algebraically isomorphic to G/H and hence is a reduced group. So F’ should
be a reduced group. But every compact character of F’ is identically 1 on T.
So by Lemma 18 we have that T is contained in a divisible subgroup D of F’.
But then F’ cannot be reduced. This is a contradiction. So we get that H
is topologically divisible. Let V G/H be a compact open subgroup and

" G G/H the canonical map. Then by Theorem 14, we have that
-I(V) P X W where P is topologically divisible and W is compact and
monothetic. Then (P) should be topologically divisible also and since the
set of compact characters of G/H separates its points we have that (P) {0}.
So P H. Now looking at -(V) and using the same kind of argument as
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above using P we get that H c P. So -I(V) H W where (W) V.
Then G/W has H as an open, topologically divisible subgroup and G/WH
is a discrete, reduced, monogenic group. So by Lemma 19 we get that
G/W H N where N is a discrete group. By taking the complete inverse
of N in G we get that G H L where L is a canonical monogenic group.
This gives the theorem.

Remark 21. Let G1 and G. be two locally compact, Hausdorff groups
which are not necessarily abelian. Let H1 and H5 be two closed subgroups
of G1 and G. respectively and let T be a topological isomorphism between
and H.. :Now consider the free union G1 u G. of G1 and G.. Let us define
an equivalence relation S in G1 u G. by putting x S y where x G1 and y
if and only if eitherx yorx eHlandy ell5 andy TxorxeHsand
y ell1 andx T-l(y). We callF (Gt Gs)/S. Ifa eG1 andb G
then we define 5 to be equal to (ab)~ where denotes the equivalence class
in G G. to which an element of G1 G5 belongs. In similar wy we define
55 when a, b e G. Then we get u binary operation defined among certain
pairs of elements of F. It is cleur thut this operation in F is associative when-
ever it is defined. If F is given the quotient topology and if 5, and , are
two nets in F such that 5, - 5o and , -+ 0 and 5,, is defined for all and
500 is defined then 5,, -- 500. We denote by 0 the equivalence class of
G G5 to which the identity of G1 belongs. Then for each 5 in F there is an
inverse element (5)- in F such that (5)(5)-1 0 and if 5, is a net in F
which converges to an element 5o of F then (50) -1 converges to (50) -1.

DEFINITION 22. Let G1 and G5 be two locally compact belian groups and
H1 G and H5 c G5 closed subgroups. Let G5 be compact. Let T be a
topologicul isomorphism between H1 and Hs. Let F be the quotient space
described bove. Now take a transversal K1 of G1/H1 in G1 and a transversal
K. of G:/H in G5 so that the identity is chosen in G1 and G5 as representatives
for H and H5 respectively. We denote by 1 and/5 the equivalence classes
to which the elements in K1 and K5 belong. Now we define the amalgam
or topological amalgam G of G1 and G5 with respect to H1, H5 and T as follows"
G consists of all triplets (2, , ) where 2 /1,/ 1 and e/. We

define the addition (21,/1, ,) + (25,/, :) as the triple (2a,)a, ).where
21 -t- 25 2 -t- ; 1 -t- 5 -t- ; and ) 1 -}- 5 -t- + and 2 /

e /5 and , , ] e . Under this definition G becomes a group under
addition. Now we define convergence in G as follows" Let (, , ) be
a net in G directed by a set D. This net is defined to converge to an element
(i0, ]o, o) in G if and only if given a subnet D of D there is a subnet D1 of
D. such that , -- 0 and -+ )0 and -- 0 in F along
With the definition of the topology and addition above it can be verified

that G become a locally compact abelian group.

Remarlc 23. Let G be a group with two closed subgroups H and
Let H5 be compact and H H1 H and G H Hs. Then the identity
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map id: H -- H is a topological isomorphism and G is topologically isomorphic
to the amalgam of H1 and H2 with respect to H, H and identity, in an obvious
way. In such cases we shall only say that G is the amalgam of H and H2.
In general, if G is a group with a compact subgroup H then G is topologically
isomorphic to the amalgam of G and H. This provides us with the easiest
examples of amalgams of two groups which are not direct products. If the
groups H1 and H in Definition 22 consist of the identity alone then the
amalgam of G and G_ reduces to their direct product. Now we come to the
structure of monogenic groups which are not totally disconnected.

THEOREM 24. Let 5 be a collection of primes. For each p 5 let D be
an index set. Let H II. II,Dp J., where J., is the abstract group of
p-adic numbers for each a D and p 5). Let K., be a subgroup of
isomorphic to I for each a D and p 5). Give each K., the usual topology
of p-adic integers. Let K Ie II,) K., and give K the product topology.
Now let be a topology for H malcing it a locally compact group in which K is
open and is also such that the product topology on K coincides with the relative
topology of it obtained from (H, .). Let G* be any open subgroup of H such
that G*/K has torsion free rank less than or equal to c (the cardinality of contin-
uum). Then the dual G of G* is such that G/Go is topologically divisible and Go
is monothetic where Go is the connected component of identity of G. Consequently
G is monogenic. Every monogenic locally compact abelian group G such that
G/Go is topologically divisible is obtained in the above manner. If G is a mono-
genic locally compact abelian group with a non-triw:al connected component Go
of the identity then G is either the direct product L X K of a compact monothetic
group K and a topologically divisible group L or is an amalgam L - K of two
groups L and K through their connected components Lo and Ko of identity and
some topological isomorphism T between Lo and Ko. In the latter case we also
have that K is compact and L/Lo is topologically divisible and L is monogenic.

Proof. Now suppose G is a monogenic group and its connected component
Go of identity is not trivial. Let F G/Go and G -- F the canonical map.
Then F is a totally disconnected monogenic group with a special element of
compact order. So by Theorem 14 we have that F K X K where K
is topologically divisible and K is compact monothetic. Let -(K) L
and (--I (K2) K. Then K is a compact subgroup of G and L is such that
L/Go is topologically divisible and L K Go and LK G. Now it is clear
that G is topologically isomorphic to the amalgam of L and K through Go
where the isomorphism T from Go -- Go is identity. Since Go is compact
monothetic and L/Go is topologically divisible it follows that L is also mono-
genic. If Go is topologically a direct summand of L then L can be written as
H X Go where H is topologically divisible and we get that G is the direct
product H X K of H and K. So we get the last two statements of the theo-
rein.
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Now suppose G* is a locally compact abelian group with a compact, open
subgroup K of the type described in the theorem. Let G*/K be of torsion
free rank less than or equal to c. Let M be the subgroup of all elements of
compact order in G*. Then M is an open subgroup of G* and G*/M is a
torsion free subgroup of cardinality less than or equal to c. Now let G be
the dual of G*. Then G*/M is the dual of the connected component Go of
the identity of G. Since G*/M is isomorphic to a subgroup of the reals rood
1, we have that Go is monothetic. Moreover M is the dual of G/Go. Since
M has no element of discrete order other than identity, we have that G/Go
is topologically divisible. By reversing the above steps one can see that if
G is a monogenic locally compact abelian group such that G/Go is topologically
divisible then it can be obtained as in the first part of the theorem. This
completes the proof of our theorem.

Example and Remark 25. The last theorem gives the structure of mono-
genie locally compact abelian groups which are not totally disconnected. We
find that such a group is an amalgam of a compact group and another locally
compact group. This amalgam does not always become a direct product and
we give an example below to illustrate this point. Thus the previous theorem
is the best possible result in this direction. For an example we take the group
I of p-adic integers with usual addition and topology where p runs through
all primes. We call the group p I to be H for each prime p. Then H is
an open subgroup of I for each ’p’. Now put G* III where is
the set of all primes. Now give a different topology v on G* in which it be-
comes a locally compact group and in which the group H IIH is open
and the relative topology on it from (G, v) coincides with the product topology
of I-I H. Let G be the dual of G* with topology r. Then the connected
component Go of identity of G is monothetic and G/Go is topologically divisible
and Go is not a topologically direct summand of G. Trivially then G is the
amalgam of Go and G.
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