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The smallest representation of a split Lie algebra of type 7 over a field of
characteristic zero has dimension fifty-six and s closely related to the split
exceptional simple Jordan algebra. This representation has been studied by
Freudenthal [4] and Seligman [11]. We show that it is possible to define a
multiplication and a trace on the representation space so that the Lie algebra
7 is realized by the derivations and left multiplications by elements of trace
zero. The derivations alone form a Lie algebra of type 6. The Killing
forms of these Lie algebras are also presented. Later we slightly generalize
the fifty-six dimensional algebras so as to obtain as algebras of derivations a
class of Lie algebras of type 6 including the "twisted" algebras. Although
these include all real forms of , no new forms of occur. Finally a method
of twisting ’s is given. This results in a class which contains all real forms
of .
Throughout, he ehraerisi of he ground fild is no wo or hree.

1. Cayley and Jordan algebras
In this section we collect some facts about Cayley algebras and exceptional

simple Jordan algebras. The following properties of Cayley algebras are
proved in [6]. A Cayley algebra is an eight-dimensional central simple
alternative algebra. It possesses an involution x --, x* such that the quadratic
norm form n(x) xx* permits composition: n(xy) n(x)n(y). We linear-
ize n(x) to obtain a non-degenerate symmetric bilinear form on @:

(x, y) 1/2[n(x + y) n(x) n(y)] 1/2(xy* -+- yx*).

A Cayley algebra has an identity 1 and every element is of the form al x0
with (x0,1) O. Then (al + x0)* al x0. A basis can be chosen for

so that the norm form becomes

n(z) + +
Here p, a, r are non-zero field elements. To exhibit them we will write

(p, , r), even though they are not uniquely determined by . A Cayley
algebra with zero divisors is called split.
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THEOREM. Two Cayley algebras over the same ground field ch. 2) are iso-
morphic if and only if their norm forms are equivalent. Any two split Cayley
algebras are isomorphic.

We turn now to exceptional simple Jordan algebras [1], [2], [5], [8], [12], [14],
[15]. An algebra is an exceptional simple Jordan algebra if there is an ex-
tension of the ground field such that( is isomorphic to an algebra (8, r)
of the following form. Let be a Cayley algebra over , and r a diagonal
matrix diag {, , }, where the are non-zero elements of . The ele-
ments of (, r) are 3 X 3 matrices of the form

--I Z*i x 7i 7

1 a x*
--1 $

z 7 7 Y a

where ae; x, y, ze. The product in (8, r) is ab 1/2(a.b - b.a),
where a. b is ordinary matrix multiplication. Such a matrix algebra is called
reduced, and every finite-dimensional exceptional simple Jordan algebra is
either reduced or is a division algebra.
Although a reduced exceptional simple Jordan algebra may have different

representations as an algebra of matrices, the Cayley algebras occurring are
all isomorphic, and we refer to them as the coefficient algebra of (, r).
For (1) we will usually write

The following define the multiplication. Let (ij]) be a cyclic permutation of
(123). Then

ei ei ei e O, ei xi e xi ix..
--1

The element e el + e. - ea is a unit element.
We define trace (a) al + a2 + a3. The trace is not dependent on the

particular matrix representation. The bilinear form (a, b) trace (ab) is
symmetric and non-degenerate. It can be induced on a division algebra from
a reduced extension. We have (e, e) 3 and (ab, c) (a, bc). Further-
more, every element a satisfies a cubic equation

a (a, e)a 1/2[(a, a) (a, e)]a N(a)e O,

where Y(a) 1/2(a, a) 1/2(a, a)(a, e) + (a, e).
For a in (1)

N(a) ai a2ot3 -- 2(xy, z*) Otl 7-l’/.n(y) ot27-lT3n(z) ot3 7-i71 It(x).

Linearization of N(a) yields a symmetric trilinear form (a, b, c) such that
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(a, a, a) N(a). The non-degeneracy of the trace form then defines on (
a commutative cross-product a b by (a b, c) 3(a, b, c). It turns out
that

a X b ab 1/2(a, e)b 1/2(b, e)a 1/2[(a, b) (a, e)(b, e)]e,
(2)

b X (a X a) 1a b a(ab) - 1/2(a, b)a.

The semi-norm preserving group M(() is the group of all linear bijections
S on such that for some fixed ps 0 in the field and for all a in (,
N(aS) psN(a). The norm preserving group L() is the subgroup of those
S with ps 1. The map

Ua x ----> 2a ax ax
is in M((); Ua U’a; N(xU,) N(a)N(x). (See [7].) Here * is the
transpose with respect to the trace form on . For reduced , any non-zero
a may play the role of ps. For, if a a-lel W e. W e, let S aU. Then
ps 0.

Let R(a) denote the map x -- xa in (. The set of maps R(a) D where
trace a 0 and D is a derivation of is closed under commutation and forms a
Lie algebra (() of type E6. (() is known to consist of all linear transforma-
tions A on such that for every a, b, c in ,
(3) (aA, b, c) - (a, bA, c) - (a, b, cA) O.

2. Definition of the algebra
Let be an exceptional simple Jordan algebra over a field of characteristic

not two or three. We define the algebra ((; , ) to be set of quadruples
x (a,/, a, b) for a, in and a, b in ; , 0 in . We will write

(4) X af -- fir2 -- a12 - b2.

A bilinear multiplication is defined as follows.

f f, ff O,

Say i j, where {i,j} {1, 2}.

f ai -a..
(5) af O, af ai

aib (a, b)f,

al b 2o(a X b)2, a b. 2io-(a X b)

Notice that f fl -t- f is an identity element for ((; ti, ). A trace and a
bilinear form can be defined on 9l(; , w) as follows. For x in (4),
tr (x) a -t- ft. If y f - vf - c. - d, then

(x, y) tr (xy) a - v - (a, d) - (b, c).

This bilinear form is symmetric and non-degenerate, and (x, e) tr (x).
However, (x, y) is not an associative form; that is, (xy, z) (x, yz) in general.
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For (alfl, b) O, while (a, f b) ti(a, b). This reflects the patho-
logical non-associativity of Yt((; , ).

LEMMA. (; , ) is not flexible or power-associative.

Proof. Let e be the identity element of . Then (e el)e 6f, while
e12(e2 e2) 60tif.
LEMMA. }(; , o) is central simple.

Proof. Let be a non-zero ideal in (; , ). If contains ao" 0
and b is an element of such that (a, b) 0, then aib -t- b.a i(a, b)f is
in, and (; t, o). Next, if x af - f ai - b e !PA with a
0, then [f(f x)]f -a . Finally, if x af W ff with / 0 is in
!fit, then ai. x a e !fit. Thus ((; , ).

3. Derivations and left multiplications
In this section we show how Lie algebras of types E6 and E7 can be realized

as algebras of linear transformations on (; i, ).
THEOREM. The derivations D of t(; , ) are given by

(6) D" f --. O, f -. O, al --. (aD), b2 --* ( bD*),
where D2 (). Hence, the derivation algebra 3() is a Lie algebra of
type E6.

Proof. To see that conditions (6) are necessary, we substitute various
elements of Tt into the equation (xy)D (xD)y x(yD). First we let
x y fl. If f D fl -[- ?f2 - C12 d21, we obtain

Hence n 0 and c d 0, so that fl D 0. Similarly f2D 0. Next
fori jsupposethat aD f-b vf-t- c - d. We setx fand
y aitoobtain v 0andd 0. HenceaD (aD) for linear
transformations D. on (. Next we let x a12 and y bl and obtain
0 (aDl b) -b (a, bD21) so that DI D*13. Finally, with x a12 and
y c we obtain

-2(a X c)D* 2oaDl X c -}- 2a X cD12.
Hence for all b e ,

((a X c)n, b) -t- (an12 c, b) + (a X cD2, b) O.

This implies that

(a, c, bD) + (aD12, c, b) -}- (a, CDl, b) O,

which amounts by (3) to saying that DI. e (). Hence the conditions are
necessary. To show that they are sufficient entails an obvious verification,
which we omit.
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Under the action of () the space 9 decomposes into the trivial repre-
sentation on f -t- f. and two inequivalent 27-dimensional representations on

/a’ael and {b’bel.
We turn now to Lie algebras of type E. Let () be the linear space of

transformations on spanned by (9) and the left multiplications
L(x) y ---> xy where tr (x) 0.

THEOREM. Dimension (9) 133, () is closed under commutation, and
the following products hold, where a, b, c, d have trace zero and D ().

(7) [L(x), D] L(xD),

(8) [L( f.), L(a)] --L(a),

(9) [L(fi f), L(b)] -L(b.),

(10) [L(a.), L(c.)] [L(b), L(d)] 0,

(11) [L(a), L(b)] ($(-(a, b)L(f f) + E),

where E 2R(1/2(a, b)e ab) -t- 2JR(a), R(b)].

Proof. The truth of the dimension assertion is clear. To show that ()
is closed, it is sufficient to verify the products. For (7),

y[L(x),D] (xy)D- x(yD)= (xD)y.

Let z f -t- f. - g -t- h.. For (8),

z[L(f f.), L(a)] al2(fl vf2 gl.l + h21)l

(f --f)(va - 2(a X g) - (a, h)f

--]a(a, h)f ],a (a X g).

:a-- 12Z.

Equation (9) is established in the same way. To prove (10) we first calcu-
late c(a z).

c(a. z) c(a - 2(a X g) -t- (a, h)f)

2y(c X a)2 -{- 6i(c, a, g)f.

This expression is symmetric in a and c. Hence [L(a), L(o2)] 0. Simi-
larly [L(bx), L(d)] 0. Finally, to verify (11) we show that
z[i(a), /(b)] + (a, b)(f f)z zE.

b(a. z) a(b2 z) - (a, b) (fx f)z

b(a + 2o(a X g -t- it (a, h)f)

-a(b - (b, g)f - 2t-(b X h))

+ (a,b)(f-,f- g12 - h21)
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4b X (a X g) d- (a, h)b. $(b, g)a

4a (b h) d- -(a, b)h 1/2$(a, b)g

hE),(gE)- ( *

where gE 4b X (a )< g) (b, g)a 1/2(a, b)g. We must verify thut

E 2R(-(a, b)e- ab) d-2JR(a), R(b)].
We have

2gR(1/2(a, b)e ab) + 2g[R(a), R(b)]

(12) 2((a, b)g- g(ab) d- (ga)b- (gb)a)

-t- 2(--25 X (a )< g) T 1/2(b, g)a -t- -}(a, b)g).

Linerizing (2) we obtain

2b X (a X g) (ag)b a(gb) g(ab) d- 1/2(a, b)g 2r 1/2(g, b)a.

Therefore the right side of (12) is zero.

THEOREM. 9) is central simple.

Proof. Let I 0 be an ideal in (9). Suppose first that some L(a) 0
is in I. Since () acts irreducibly on ,

[L(ai), (9)] 9

_
H.

Then if e is the identity of ,
[L(e), L(e.)] -3L(f ) e .

Therefore,
[L(] .), ] ._ /.

inally for any a of trace zero in (}, [L(e), L(a)] is a non-zero element of
)(9), which is simple. Hence, (9) __c I, and (9) . We now show
that any ideal contains some L(a) 0. Let

T aL(f --f) -}- L(a) + L(b) -I- D .
If a 0, then

[/(f f), [i(f, f), T] -}T] (8/9)L(a,) e .
If b 0, then

[i(f f.), [i(f f), T] - ]T] (8/9)L(b.)

Finally, if a b 0, then for some c, [L(c), T] will have a non-zero compo-
nent in 9. Hence (9) is simple.

In the next section we show that the Killing form of () is non-degenerate
for characteristic not two or three. This will show that (9) is a classical
Lie algebra of type E7 for algebraically closed fields of characteristic p > 7.
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Actually, Seligman [11] has computed the root spaces for (9) and has shown
directly that they satisfy the axioms for classical Lie algebras [9], [10]. Hence
(9) is of classical type E for algebraically closed fields of characteristic
2, 3.

4. Killing form
The Killing form K( of a Lie algebra is defined by K(A, B)

trace (ad A) (ad B), where T(ad A) IT, A]. In case ( is reduced our
representation enables us to calculate directly the Killing form of (9). The
details are tedious and uninteresting. Therefore only the results are given.
The Killing form K for () can be built up by first computing the Killing
formsK of (() and K of (). Let )(a, I’) where has norm form
n(x). Let no(X) be that norm form restricted to elements x such that
(x, 1) 0. Then K is equivalent to

-2 (n() + 7n() + 7n()
+ no(y) + no(y) -[- no(y) + no(y)).

For K we have K(R(a), G) 0 for G e )((). Further, the restriction of
K to {R(a) tr (a) 0} is equivalent to

K is equivalent to

Now let Q(a) (a, a) trace (a) be the quadratic form induced on ff by
its trace. For K we have

K(L(f, f2), i(fl f2)) 24,

g(L(fl- f2), ,) g(L(f f2), (?ft)) O,

g(L(ai), L(b) O,

g(L(a12), L(b2,)) 36(a, b),

g(D, E) (3/2)g1(D1 E),

where D, E are in (91). Thus K is equivalent to

(14) 6 -t- 2Q(a) 2Q(b) -t- 6K.
For characteristic not two or three the discriminants of K, K, K are non-
zero.

5. Classification of the algebras
A characterization of the isomorphisms between 9( ti, ), i 1, 2

is given by the lemma which follows. Let f and f be the idempotents of
9 ;f and f those of
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LEMMA. The isomorphisms of onto are the linear bijections q of the
following forms.

(1) o f, fo f, a:o (aS),, b21 ,(bS*-),, where
S and N(aS) )-N,(a).

(2) f, f, a12 1 5-2(aS*-1)21, b21 (bS), whe
--1S" and N:(aS) () N(a).

Proof. To prove that the stated conditions are necessary, we observe first
that if is an isomorphism then () -(). Hencef must be an
idempotent annihilated by (); that i, f f orf. First suppose that
=f;. Then=f. If

then
a 3()(a) 3,f; + c + 2d.

Therefore a 0, d 0, and a (aS). Sflarly b (bT).
Expanding (ab) (a)(b ), we obtain

so that T S*-. Finally from (ab) (a)(b) we obtain

2 (a X b)S*- 2 aS X bS,
so that

( )-’ (a X b)S*-, cS) (aS X bS, cS).

Setting a b c, we obtain ( 5)-N(a) N(aS). The calculation
in case f f is similar. The verification that the conditions are scient
is straightforward and is omitted.

CoaoAV. (; 5, w) is isomorphic to (; 1, a5) and to
(; 1, a--) for any a O.

Proof. In the lemma let 5, , 1. In an isomorphism (1) we
a3--l-1

More detailed information about isomorphisms from to is obtained
from the semi-norm preserving maps S. Reduced exceptional simple Jordan
algebras are characterized by the presence of non-zero elements a such that
N(a) 0 [12]. Hence if maps S : exist, then is reduced if and
only if is reduced. Between reduced algebras the maps exist if and only
if and have isomorphic coefficiem algebras [5], [13]. Furtheore, we
observe in section one that for a reduced algebra and any p 0 a map
T : exists such that N(aT) pN(a). This establishes the following
corollary.
COOLRY. Over a field of characristic not two or three let be a reduced

exceptial simple Jordan algebra and another exceptial simple Jordan
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algebra. Then t(1 1, ool) and (2; i2, o2) are isomorphic if and only if
2 is reduced and 1 and 2 have isomorphic coelgcient algebras.

Hence, for( reduced, 91((; , o) is isomorphic to 9l 9t(; 1, 1).
the following characterization of the automorphisms Aut

We have

COROLLAIV. For reduced, Aut (9l) consists of the maps

S’’fl --’> fl, f2 -’ f2, a12 (aS)2,521 (bS*-l)21
and

*- b2 (bS)

where S e L().

The subgroup L()’ {S’" S eL(})} has index two in/kut (!t) and is
isomorphic to L(). Jacobson [8] has shown that the center Z of L() con-
sists of {aI a 1} and that for reduced L()/Z is simple.

LEMMA. For reduced the center Z’ of Aut (9t) is {aI a

Proof. It suffices to show that no T" is in Z’. If T" is a central element,
then T" I"T’. For all S in L((), S’I" I"(S*-1) ’. Since S’I"T’
I"T’S’, we then have S*-IT TS. Suppose that

e T 1 el + 2 e2 -- 3 e3 -- X12 -- Y23 -- Z31.

Let S Ua where N(a) 4-1. Since Ua U* it must be true that
T Ua TU. Select a al el -t- a2 e. -t- aa ea where al as a8 4-1. A direct
computation shows that

2
el U TU, a(a 1 el -t- a 2 e2 -t- a3 e3 -t- Cl a2 x12 -t- a2 a3 Y23 -- aa al z31).

For all admissible choices of the a, el T e U, TUa only if 0,
x y z 0, and a 1. Hence e T y ei and the ground field is GF(5).
However if we let a ae. zs then

el U TU -2
’I ’’3 ?(Z)213 el,

e T 71 el.

Over a finite field, n(z) is a universal form. Hence e T 0, a contradiction.

CORO,LtlY. For reduced L()’/Z’ is a simple normal subgroup of index
wo in Aut (9t)/Z’.

6. -forms
We define an algebra 9t over a field to be an 9t-form if there is an exten-

sion field such that 9t 9l(; , ) over . We call 9t(; , ) a reduced
9t-form. To construct an example of a non-reduced 9t-form we let {(/X)
be a quadratic extension and let 9t 9t((; 1, 1) over . We let 9Ix be the
-subspace of 9tspanned byf f -t-f, /X(fl -f), al -b al, /X(bl b)
for a, b e . Then 9tx is a non-reduced 9t-form, and (gtx) 9t.
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The derivation algebra of x is a twisted Lie algebra of type E. This can
be shown as follows. Any derivation D of x extends to a derivation of
HenceD R(c -[- "V’k d) + E -[- "x/kE, where trace (c) trace (d) 0,
and E, E. e (). We know (a2 + a2)D is in 9x. That element is

(ca)- (ca) -I- /k((da).- (da).)

-4- (aE)2 "4- (aE1)21 "- /h((aE2) -I- (aE.)).

Hence c 0 and E2 0 and D12 /kR(d) + El. These derivations
(x) form a Lie algebra of type E6 for which the 54-dimensional space
spanned by the elements a a2 and /k(b2 b2) is irreducible but not
absolutely irreducible. The Killing form for )(91x) can be read off from (13).
It is equivalent to

(15) 6k -t- 2k A- 6k(’71’ n(xl) -f- 5’-l’/2n(x2) "4- ,),-an(x)) -t- 3K2.
By letting be the real field and letting and X vary, we obtain the five
real Lie algebras of type E.

7. Lie algebras of type E
Any isomorphism between and 9 induces an isomorphism between

(9) and (92). Hence for reduced exceptional simple Jordan algebras,
() and (N.) are isomorphic if the coefficient algebras of the Jordan

algebras are isomorphic. As the following proposition shows, we do not
obtain any additional Lie algebras of type E7 as ().

PROPOSITION. (x) - ().

Proof. (x) is the -subalgebra of () spanned by

’hL(f f2), L(a2 + a2), /hL(b b), /hR(c), D.

A direct computation shows that the following map is an isomorphism of
(x) onto (). Let e be the identity of .

’XL(f f2) --+ -L(heir. - e21),

L(e2 -I- e2) --* 3L(fl --f2),

L(al -t- a21) -- 2R(a) if (a, e) 0,

/XL(b2 b) -- L(),b b)

/hR(a) -- 1/2L (kay2 -t- a2) if (a, e) 0,

D --. D.

There is a way of putting an effective twist into (). Let (/)
be a quadratic extension of the ground field and defined ()x to be the
-subspace of ()a spanned by /kL(f f), .x/kL(a -t- a), L(b b2),
/,R(c), D, where a, b, ce (over ), trace (c) 0, and D e ((). Then
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()x is an -subalgebra with Killing form

6X A- 2XQ(a) 2tQ(b) -t- 6K’
where K is the form (15). If is the real field, we obtain all four real forms
of @ by letting ( and h vary.
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