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1. Introduction
We are concerned here with certain numerical invariants of homotopy type

akin to the Lusternik-Schnirelmann category.
It is known that cat B, the Lusternik-Schnirelmann category of a space B

(when renormalized) is an upper bound for conil B, the conilpotency class of
the suspension of B [18; Theorem 2.10]. Furthermore if B is an (n 1)-
connected CW-complex of dimension <_ (k -t- 2)n 2 and conil B <_ / then
cat B conil B [2; Theorem 2].

Berstein and Hilton [3; (2.1)] gave a definition of category which is equiva-
lent, for most classes of spaces, to the original one of Lusternik and, Schnirel-
mann. This definition suggests two other invariants, wcat B, the weak cate-
gory of a space B and wcat e, the weak category of the natural embedding map
e B -- 22B [3; (2.2)], [7; 5]. These two weak categories take values lying
between those of cat B and conil B, but we will show by examples in Section 2
that all the invariants are different.
None of these definitions of category and weak category duaIize easily in

the sense of Eckmann-Hilton. So Ganea introduced yet another definition of
category and weak category, in terms of a ’ladder’ of fibrations, which does
dualize. We will denote these invariants by G-cat and G-wcat respectively.
(See Definition 6.1 of [5] for the cocategory of a space.) In Sections 3 and 4
we will show that G-cat B is the same invariant as cat B but that G-wcat B is
different from wcat B.
We collect together the results on the relationships between the various in-

variants in the following theorem. All the numerical invariants in this paper
will be normalized so as to take the value 0 on contractible spaces.

THEOREM 1.1.
CW-complex; then

Let B have the homotopy type of a simply connected countable

cat B G-cat B _> G-wcat B _> wcat B _> wcat e _> conil B _> u-long B

and furthermore all the inequalities can occur.

Here o-long B is the length of the longest nontrivial cup product of positive
dimensional elements of H*(B; R), where R is any commutative ring.
Theorem 1.1 will follow from Theorems 3.4 and 3.5, [7; Theorems 4.4 and

5.2] and the remaining two inequalities follow directly from the definitions.

Received December 10, 1966.
The author was supported in part by a Science Research Council Studentship and

in part by a National Science Foundation grant.

421



422 w.j. GILBERT

Examples 4.7, 4.6, 2.4 and 2.3 will show that the first four inequalities can
be strict. The example given at the end of [2] in which B S e, where
a m is the generator of m(S), shows that the last inequality can be
strict.

All the examples will be spaces of the form S u e, where a e r_(S).
We will use Toda’s notation [16] for the homotopy groups of spheres. All
spaces in this paper have the homotopy type of countable CW-complexes and
have a base point denoted by and all maps preserve base points. The con-
stant map is denoted by 0. We will not usually distinguish between a map
and its homotopy class.

I would like to thank Professor T. Ganea for some helpful discussions
and Dr. I. M. James for his advice and encouragement.

2. Weak category of the map e

In this section we recall the definitions of the various categories and find
examples of spaces which distinguish wcat e from wcat B and conil B.

Let T+ be the subset of B+ consisting of points with at least one coordinate
equal to ,. Let j" T+ -- B+ be the inclusion map and let B+ be the
quotient space B+/T+ with identification map q" B+ -- B+. Let
A" B --* B+ be the diagonal map.
The category of a space B, cat B, is defined to be the least integer k _> 0

for which there exists a map B --* T+ with j o ----_ A. The weak category,
wcat B, is the least integer k _> 0 for which q A -- 0 and wcat e is the least
integer k >_ 0 for which q o A o e ----- 0" B -- (22:B)+. It is clear that
wcat B _> wcat e but the two invariants are different as Example 2.4 will
show.

It is proved in Theorem 3.20 of [3] that if B is a space of the form S e
then wcat B <_ 1 if and only if/(a) 0 where/" _(S) --* (S/ S)
is the crude Hopf invariant [3; (2.11)]. The arguments used in the proof
of this theorem may be adapted to prove the following proposition.

PROPOSITION 2.1. Le B S e’; then wcat e _< 1 if and only if
(e A e),() 0 (e A ).

The map e Sq ---> 2Y,Sq is the nuturul embedding and e/ e is the map from
the smash product Sq/ Sq which is e on each factor

LEIM 2.2. For q even, Y,Sq / 2Y,Sq has the same (5q 2)-homotopy
type as the cell complex

T S2q u e4q / aq / s3q 4q / s4q

2qwhere , 2[q, q] e mq-( .
Proof. The space 22Sq is homotopic to S, the reduced product complex
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of James [11], which has a cellular decomposition S Sq u eq ut e3q u ....
Milnor [12; Theorem 5] proves that

2:Sq-- Sq+ V Sq+ V Sq+ V "-’.

Hence it follows that the suspensions of the attaching maps in SJ are trivial.
In the complex Sq A S the following are the cells of dimension less than

5q. There is one 0-cell and one 2q-cell. There are two 3q-cells attached by
the maps 2q 0 and two 4q-cells attached by the maps 2q 0. The
remaining cell is a 4q-cell with an attaching map which we shall call

By the direct sum decomposition in [9] we can consider / an element o
mq_(Sq) $ mq_(S3q) $ mq_(Sq). Now both components of/ in mq_(Sq)
factor through 2 0. Let , be the component of f in mq_(Sq).
From the cohomology ring of 22S [15], for q even, and the multiplication

rule for the tensor product of two rings we see that the square of the
cohomology generator of dimension 2q in H*(S/ Sq) is 4 times a generator
of dimension 4q. Hence by Steenrod’s definition, the Hopf invariant of
is 4. When S / S is suspended all the cells are attached trivially [12;
Theorem 5], hence 2- 0 e 7r4q(.2qql). Therefore by the delicate suspension
theorem [17; (3.49)] /is a multiple of [q, q] and it follows from the Hopf
invariant that 7 2[t2q, t2q]o

Therefore T is the (Sq 1)-skeleton of Sq / Sq and it has the same
(5q 2)-homotopy type as 2Y,Sq A 12Y,Sq. This completes the proof of
the lemma.

Hence, for q even, there exists a map k T -- 12Y,Sq/ 12Y,Sq which induce,s

isomorphisms in homotopy in dimensions _< 5q 2. Now it is clear that

(e/ e), factors into

where i and j are the inclusion maps and j, maps monomorphicMly into a
direct summand.

In Theorem 5.2 of [7] it is proved that wcat e >_ conil B but it is mentioned
that an example of strict inequality has not been produced. We will now use
an example which occurs later in the above paper to show that the strict
inequality can occur.

Example 2.3. Let B S u, e where a w o o is the generator of
order 2 in r(S). Then wcat e 2 and conil B 1.

Proof. Here generates r+(S) and ’ generates m(Sa). This example
occurs in [7; (6.1)] where it is proved that conil B 1. (See [1; (1.8)] for
the definition of the conilpotency class of a suspension.)
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By Theorem II of [4] the sequence

8(S) , i,

is exact and hence Ker i, Im ,,. Since s(S7) is the cyclic group of order
2 and / 2[, ] it follows that , 0 and Ker i, 0. Now
Ker (e e), Ker (k, j, i,) 0 since the kernels of each of the maps
i,, j, and k, are zero.
The crude Hopf invariant (a) ’ 0 e s(S). Hence

(e e) ,(a) 0 and wcat e > 1 by Proposition 2.1.
In this example and in the later examples B is a complex containing three

cells and so by the classical definition of the Lusternik-Schnirelmann category
cat B < 2. Hence in this case wcat e 2.

Example 2.4. Let B S u, e where a v o a(3) o a(6) is the generator
of order 3 in m(S). Then wcat B 2 and wcat e 1.

Proof. The element a(k) is an element of order 3 in +(S). Let
H _(Sq)

_
be a Hopf invariant (see Definition 4.1). For

q 2 and n 4H is an isomorphism and hence H(a) a(3) a(6) m(S)
By Proposition 4.2 (a) H(a) a(4) o a(7) 0 and so wcat B 2.
by Theorem 3.20 of [3].

Hilton [8; p. 195] proves that [[, e], e] a(4)a,(7). Therefore
(a) [[, ], ] [, ] since 2[, ,] and (a) is of order 3.
By the naturality of the Whitehead product

i, () i, [% ,] [i, , i, ] 0 ,0(s u e)

sce i, 0. Hence (e e), (a) 0 and wcat e 1 by Proposition
2.1.

3. Gcec’s definition f
Let B be a sply connected space. Define the sequence of fibrations

( > o)

as follows. 0 is the standard fibration in which E0 is the space of paths in B
ending at ,, F0 is the space of loops in B and p maps a path onto its starting
point. Suppose inductively that has been defined. Let E+I E u CF
be the cofibre of i and extend p to a map p+l" +1 -- B by mapping CF
to ,. Convert p+l into a homotopically equivalent fibre map p+ E+ -, B;
this then defines Sk+.

DEFINITION 3.1. G-cat B is the least integer k >_ 0 for which there exists
a map r B --* E such that p o r

__
1; if no such integer exists G-cat B .

When p is converted into a cofibre map let C be its cofibre and q B --* C
be the induced map.
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DEFINITION 3.2. G-wcat B is the least integer k

_
0 for which q 0;

if no such integer exists G-wcat B

It is clear that G-cat B

_
G-wcat B.

As in the last section let T+1 be the subset of B+1 with at least one co-
ordinate equal to and let j" T[+ -- B+ be the inclusion map. Convert j
into a fibre map

j’ E(B+; B+, T+) B+

whose domain is the space of paths in B+ starting in B+ and ending in
T+. Its fibre is E(B+;., T[+) which is homotopic to the join of (k + 1)
copies of B [13; Theorem 2].

PROPOSWO 3.3. The fibraff ff is homotopic to fibrati indued by
t dal map A B B+ from t fibre map j’.

Proof. The fibration induc by h from j’ is

’RQ :h: B
T+ E(B+ T+)where Q E(B+; AB, ), R ,, andif eQ then

h() v (0), v being the projection onto the first factor.
It is tribally true that is homotopic to 0. Assume ductively that

$_ is homotopic to _.
F_ E_ P- B

The way E was constructed was to conve p into a fibration. Now p
is homopic to a map h:" Q u CRux B where h Q h and
h’(CR) .. Convert h into the fibre map v" U B where

U {(s, v)eQ_ u CR X B CQ_ X B’Jh:(s) v(1)}

and v(s, v) v(O). Then v is homotopic to the map p and has fibre

V {(s, v) eQ_, u CR_ X PBJh:(s) v(1)}.
Let

X" {(, v) eQ_ X SJh-,() v(0)} Q_

be a path lifting map for the fibration h_. Define the map

w" UQ E(B X B;, T X BuB X .)

by w(s, ) (k(, --)(1),, v) where for any path e Q_, is the path
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defined by ,(t) (st).
commutes.

Then the right hand square in the following diagram

V -- U B

R,_I X PB 13 CRm_I X [2B w

R, ; Qm

Hence w induces a map between the fibres V and Rm, which can be factored
into two maps w’ and w" defined by wr(s, ) (sX(, -)(1), ) and

w (s, ) (,,)eE(B >< B;,, T1 X BoB’ X ,).

By the same arguments used in the proof of [5; Theorem 1.1] w’ is a weak
homotopy equivalence. By standard excision arguments it is clear that w
induces homology isomorphisms and since B is simply connected w’r is also a
weak homotopy equivalence. Hence by the homotopy exact sequence for
fibrations, the 5-1emma and Whitehead’s Theorem [19; Theorem 1] is
homotopic to the fibration v and hence to ff. The theorem follows by in-
duction.
The following theorem is also proved in [6; Proposition 2.2] directly from

the classical Lusternik-Schnirelmann definition of category, instead of from
G. W. Whitehead’s definition used here.

THEOREM 3.4. G-cat B cat B.

Proof. Suppose G-cat B _< k so that there exists a map r" B --, E such
that p r 1. By Proposition 3.3 there exists a map

u" E "-+ T+

such thatjou Aopk’E-+ B+1. Let + uor’B -+ T[+I; then

jo4 jouor - Aopor - A.
Hence cat B < k.

Conversely, suppose cat B _< / and that there exists a map +" B -+ T+
and a homotopy t" B -+ B+ such that I’0 A and j o +. Define
the map

r" B -+ E(Bk+; AB, T+) by r(b)(t) t(b).

This is a cross-section to and by Proposition 3.3 induces a cross-section
to ff hence G-cat B _< /c.
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THEOREM 3.5. G-wcat B >wcat B.

Proof. The maps u and A induce a map A’ between the cofibres of p and j
such that the following diagram is homotopy commutative [14; (2.2)]. The
cofibre of j is B(k+l), the (/c 1)-fold smash product of B.

Ek
p B ,q C

TI+ 3_ B+X
Now suppose G-wcat B k; then q 0 and so

q A
___

A’o qk

___
0 B -- B(+)

Hence wcat B < k.

4. Weak category and the composite Hopf invariant

composite Hopf invariant and then find examples which distinguish G-wcat B
from wcat B and cat B.

Consider the following part of the ladder of fibmtions used in defining
G-wcat B.

fiB > plB ::Po:> :q0: Co

fiB * fiB "-* 2fB p1:: Ct
Here p0 is the standard fibre map if0 with cofibre Co. In the second fibration
ffl of the ladder pl is the evaluation map.
For the remainder of this section we will take B to be the cofibre of a map

a S- -o y. In particular we will take B to be of the form Squa e’. We
will now define a composite higher Hopf invariant in order to use it to approxi-
mate ZgtB by a simpler space.

Let D be the infinite one point union /> S(q-)+ and let r D --* S
(q-)+l

be the projection onto the k-th factor. Fix a homotopy equivalence

/" (2S-1, 2:Sq-l) --, (D, Sq)

which is the identity on S. This can be done by using the James’ maps
S --, S(-1) [10; p. 24]. Let 0" S- --* tSq be the canonical weak homotopy
equivalence of the reduced product complex [11]. Denote the suspension
homomorphism by 2: and the Hurewicz isomorphism by
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DEFINITION 4.1 [10; p. 24]. The composite higher Hop] invariant

H ,_(S’) -, ._,(D)

is defined by H . o o 07 o p.
For 1, the hr Hopf invariants

H"
_

(Sq)
_

(S(q-)+)

are defined by H , o H.
S(q-)+ p’Let D’ Vi> and let "D be the map wch shks

Sq to the base point. Define the composite hight Hopf invariant
H’’v,,_(Sq) v._(D’) by U’ p, oS.

In the next proposition we recall from (3.10) and Theorem (3.19) of [10]
the properties of the Hopf invafiants we ll need. We also state the con-
nections between these Hopf invariants and the crude Hopf invariant

A
and the delicate Hopf invariant

x s v s
as defined by Hilton in [3; (2.11)]. Part (ifi) comes from (3.14) of [10].
It follows from Proposition 4.3 of [5] that the delicate opf invariang

is equal to u James type Hopf invariant wch Ganea calls ’. For 2,
the higher Hopf invariants H can be obtained from,’ by projecting from
S BSq to the sphere S(q-x)+ and hence H(a) 0 if (a) 0.

PROPOSITION 4.2.

(i) H 1, the identity homomorphism;
(ii) U() o) U() o 2,, where r,,,(Sq) and, r,_(S-)
(iii) 2:H.;
(iv) if (a) O then S(a) O for lc >_ 2.

PROPOSITION 4.3. Let

2:Z a-- Y- X
be a cofibration in which Y is (q 1)-connected and Z is (n 3)-connected,
(n 1) >_ q >_ 3. Then there exists an (n q- q 2)-connected map
m Y u CZ ---, X where and Z --, Y is the adjoint of a.

Proof. Convert into a fibre map; let F be the fibre and j" F -- Y be
induced from the inclusion map of the fibre. Lift a to a map d:Z F
such that a ----- j d and by Lemma 3.1 of [5] d is (n -t- q 3)-connected.
Let C be the cofibre of fj F --, fY and extend fv to a map u C -- fX.
By Theorem 1.1 of [5] the fibre of u is homotopic to fF, fX; hence, u is
(n q- q 3)-connected. Let/ 2&; then/ --- 2fj o E 3 and in the following
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diagram the horizontal sequences are cofibrations and v is induced from the
maps between these cofibrations [14; (2.2)].

Since 2 is (n q 3)-connected, by applying the 5-1emma to the
homology exact sequence of the above cofibrations, we see that v is
(n q-q- 2)-connected.
Let m 2u v 2:fY ua CEZ ZBX and then the proposition follows.

Remark 4.4. If 2Z Sn-1 and Y Sq in the above proposition then
X Sq u, e and the map rn_(2sq). But

H(a) b, o O7 o a- b, (0)- o

and k, (2)7 is an isomorphism. Hence in the above proposition we can
consider to be H(a) and m to be the map m D tJ e -- 2lB.

THEOREM 4.5. If B S tJ e’, n 1 >_ q >_ 3, then G-wcat B _< 1 if
and only if H’(a) 0 e -,(D’).

Proof. Let m" Du e - 2fB be the map defined in Proposition 4.3 and
let C be the cofibre of the map p o m.

D (Jae’
pm

Im
B P

qi, ci

q; C
In the above diagram m iduces a map of cofibres m C’ .-, C. By apply-

ing the 5-1emma to the homology exact sequence of the above cofibrations
we see that m is (n q 1)-connected.
Now C B tJ C(D tJ e’) (S u, e’) tJ C( (Sq / D) tJ e") and p o m

maps Sq onto Sq with degree 1. Therefore since the embedding S C
can be pulled back to the cofibre (Sq /D) e it is nullhomotopic. Hence
shrinking Sq to a point C’ - C S tJ C(D’ tJ e) where p’ o H’(a)

D e Sand C is the cofibre of u --, which isinduced from p m.
We shall prove that C’ is homotopic to 2:D. Since pl o m maps D into Sq,

when we shrink Sq to a point e maps D to the base point.
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Now m," H(D tJa e) - H(F,B) is an isomorphism so that e maps the
n-cell onto S with degree 1. Hence, if the degree of on the n-cell is
-t-1, e is homotopic to the map which occurs in the following cofibration
sequence for "

Sn-1 D’ DP e Sn
2ti

u D’ ....
By [14; Satz 5], CPl which is homotopic to C, is also homotopic to Y,D’ and
the inclusion map S -- C is homotopic to 2. If the degree of on the n-cell
is -1 then the inclusion S -- C is homotopic to -2.

Let be the characteristic map of the n-cell in B. Factor
by means of ql.

Let e 7,(C) be the element represented by q o .
S" -- C is in the homotopy class ’. Hence

(B,Sq) --q)(C1,*)

(c/, ,)

The inclusion map

h :i::Y,8 --t-Y,H’ (a) e ,(2D’).
Let nl, (C1) represent q o 4; then we know that m, is an

isomorphism in dimension n. If n 1 >_ q >_ 3, C1 has no ceils in positive
dimensions less than q + 1 and it follows that q 0 if and only if 0.
Hence the following five statements are equivalent"

(i) G-wcatB_ 1.
(ii) q --- 0.
(iii) 0 ,(C).
(iv) ’ 0e (C’.) 7(2;D’).
(v) 2H’(a) 0e 7r(2D’).
Example 4.6. Let B S u, eis where a e yll o )14 71"17(S8) is an ele-

ment of order 2, then cat B 2 and G-wcat B 1.
Proof. Recall from Chapter 6 of [16] that the element sa of order 2 is the

generator of 1(S) and is defined by the secondary composition/y, 2, }.
The element . e v+(S) is the generator of order 8 in the stable 3-stem.
Since and are both suspensions it follows from Proposition 4.2 (ii)
that U’ a U’ e yll o y14.

Now H’(e) e r(S S S S) which by Theorem A of [9] is iso-
morphic to the direct sum decomposition

11(5) 11(7) 11(9) 11(11)
By the definition of Hk(e3) the projections of H’(83) on the first and third
summands are H2(e3) e 1(S) and H4(3) e ($9). The projections on the
other summands are zero since 7r(S) 0 and 71(S) Z.
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Now by (6.1) of [16] H(ea) uou8 and by a proof similar to that of
(2.3) of [16] we see that

U4(c) c {H4(3), 2u’, u7}1 0

since the coset consists of a single element. Thus the only non-zero com-
ponent of H’(a) is

H2(a) u5 us Ull ul e r7(SS).
From the information on the 12-stem obtained in the proof of (7.6) of [16]
we see that the suspension of H2(a) is zero and hence by Proposition 4.2
we conclude that (a) 0 while H’(a) O.

Therefore cat B 2 by [3; (3.20)], while G-wcut B 1 by Theorem
4.5 above.

Example 4.7. Let B S . e where a(3) is an element of order3
in r4($8); then G-wcat B 2 and wcat B 1.

Proof. The crude Hopf invariant (a) lies in (S) which contains no
element of order 3. Hence (a) 0 and wcat B 1 by [3; (3.20)].

By (13.10) of [16] Ha(a) x.a(7)e4(Sr) for some x 0 (rood 3).
Therefore ZHa(a) x.a(8) which is non-zero. Hence H(a) 0 and by
Theorem 4.5 G-wcat B 2.
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