
ON THE TRIANGULATION OF THE REALIZATION OF A
SEMISIMPLICIAL COMPLEX

BY

S. WEINGRAM

In some mimeographed notes of Barrett [1], in which he shows that the
geometric realization of a semisimplicial complex has a simplicial subdivision,
there appear to be several errors, one in the statement of the subdivision
theorem and two more in the proof. This note will give (we hope) a correct
statement and proof of this theorem (Theorem 1.1), and will draw as a conse-
quence the theorem of h/[ilnor [4] that the homotopy groups of the realization
S(X) of the singular complex of a space are naturally isomorphic to those

of the space itself.
We will write ssc for semisimplicial complex. Notation and terminology

as in [4] or [5], except that we will denote the abstract n-simplex by Z(n), the
gedmetric n-simplex by An.
The main result is the following theorem.

THEOREM 1.1. Let X be a ssc and XI its realization [4]. Then there is a

functor D from the category of ssc’s to that of ordered simplicial complexes, a

transformation of functors D 1, and, for each X, a map t DXI IX
such that

(i) t is a homeomorphism (and therefore a triangulation of IX I;
(ii) t defines a subdivision of the CW complex IX I; and
(iii) k(X) is homotopic to t by a homotopy F such that for each cell e of
DX I, F maps e X I into the smallest cell x of X which contains t(I e I).
We will give the proof later, in Sections 2, 3, and 4.

COROLLARY 1.2. (Simplicialapproximationtheorem). Iff :1XI-* Ylis
any map, then f is homotopic to the realization of a ss map of subdivisions of X
and y I. If IX I, Y are finite and therefore metrizable, then for any pre-
scribed e > O, the homotopy between f and its ss approximation can be chosen so
that it does not displace a point outside of an e-disc.

Apply the simplicial approximation theorem to the map

f’ DXI -* DY 1, where f’ tlft |

Some remarks about the singular complex of a space. Let X be a space, and
S(X) its singular complex. Let px IS(X) --+ X be the map sending the
point (P, x) of S(X)I into xn(P) [4].
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PROPOSITION 1.3. Let K be any ordered simplicial complex and let
g K X be any map. Then there is a unique ss map g K -- S(X) such
that g p, g I. Moreover, this universal condition uniquely determines S(X)
and p: from among all maps p’ Xr -’* X of ssc’s into X up to equivalence.

Proof. Given g, we define as follows. Let a be any n-simplex of ]K[
and a its characteristic map, monotone in terms of the orderings on
the vertices of and a. If P e , let

" (P) (7(P), g.) S(X) .
It is easy to check that K S(X) is well defined and it is clear from
the definition that g px .
To see that this map is uque, suppose g were a second ss map from K to

S(X) such that g px[g’ . Then for any a, for any point P of a,

(a)(P) g(P) px(7(P), g’z) g’(z)(P).
Thus and g’(a) are the same singular n-simplex.

If X’ were any other ssc and p’ ]X’ X a continuous map th the
universal property above, then there is a homeomorphism h S(X) X’

h.such that px p in fact, h is the realization of a ss isomorphism j. To
construct h (or j), let x be any nondegenerate simplex of S(X), and consider

XIx, A" X. By the universal condition there is a unique x, (n)
such that p’x’ x.. Let j(x) x. It is easy to check that j defines a map
of S(X) into X’ such that [j] p’. Silarly, we can construct
j’ X’ S(X) such that p px j . It follows that if x A" X is any
sinlar simplex, that px j p’ j px . Therefore, by the
uniqueness of , 3 3x , each , and therefore j" identity. Similarly,
33 idontity.

THEOREM 1.4 [4]. The map px induces isomorphisms of homotopy groups
in all dimensions.

Proof. Let [f] z.(X, ,) be the class of the map f" (S’, ,) --, (X, ,).
We assume that S is the realization of an ordered simplicial complex K with
vertex ,. Then there is a unique ss map

K f- S(X),

such that f px If* I. Let the base point be chosen in S(X) at the vertex
lying in the preimage p-l(,). Then fr must map the vertex of K S
onto ,, since p(If I(*)) vertex of X. Hence

s(x)l, .) --. .)

maps the class of [f[ onto If]. Therefore p, is surjective.
Suppose that g S", ,) --, (X, ,) composes with p to give a null homotopic
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class. Again we assume S" is an ordered simplicial complex K with vertex
at ,. By Theorem 1.1, g is homotopic to a ss map gPl KI -* IS(X) t,
and thus p. g’ is nullhomotopic. There is a map H K X I --, X which
reduces to p. gPl on KI X 0, is constant at on KI X (1) and sends
X I into .. Ki X I has a triangulation containing KI as the subset

[KI X 0, and X I as a 1-simplex. Hence there is a factorization
H p H i, where H maps the ssc K X I into S(X). By the uniqueness
of the factorization gPi= P’i gP* i, so the map HPl must reduce on
K X (0) to la I. It is thus a nullhomotopy of g I. Therefore, g ], and

also g, must be nullhomotopic. Therefore p, is injective, and so is an iso-
morphism.
The technique of proof of Theorem 1.1 is the following. We use the bary-

centric subdivision functor on the category of ssc’s [2], and a second functor,
a starring subdivision functor.
We will prove that for any X, SdX belongs to a class of ssc’s (regulated

ssc’s) with the property that the realization is a regular CW complex. On this
subcategory of ssc’s, the starring functor is just the classical starring tri-
angulation for regular CW complexes. Moreover, we will prove that if X i
regulated, then there is ass map }, *X -- X (natural with respect to maps of
regulated ssc’s) which, upon realization, sends a simplex in the subdivision of
the cell x. into a face of this simplex. This, together with some properties
of Sd will be enough to establish Theorem 1.1.

We will need the following facts about the barycentric subdivision functor
Sd on the category of ssc’s. The simplest way to define it is as the standard
barycentric subdivision operator on the subcategory of ordered simplices and
ordered simplicial maps, with vertex ordering in (decreasing) order f dimen-
sion of the face that the vertex represents, and then extending it as a direct
limit functor over the category of all ssc’s and maps. For our purposes,
though, it is more convenient to define it by explicit analogy with that given
by Milnor for the geometric realization, so that certain corresponding state-
ments carry over to this case without further proof.

Let 2;(n) be the abstract n-simplex, an ordered simplicial complex.

DEFINITION 2.1. Sd (n) is the ordered simplicial complex whose vertices
are the faces of 2;(n) partially ordered as follows: a r if r is a face of a;
and whose simplices are all nonincreasing sequences of vertices. If

2(n) - 2(m) is an ordered simplicial map (monotone on the vertices),
then Sd maps (a0, ) into (Oz0, .). In particular, this defines
Sd d* *Sd 2(n) --. Sd 2(n + 1), and Sd st Sd 2(n - 1) --. Sd 2(n).

If X is an ssc, let MP(X) be the union (JSd 2(n) X x. of one copy of
Sd 2(n) for each n-simplex x of X, given the obvious ss structure. We
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define an equivalence relation (R on M’(X) by setting (, d x) (Sd d a, x)
for each simplex a2(n- ), and (a,sx) (Sdsa,x) for each
2;(n 4- 1).

DEFINITION 2.2. Sd X is the ss complex which we obtain by passing to the
quotient. (The ss operations are thus given by: d(a, x) (d , x) and
(s , x,) s(a, x,), where we have let (a, x) stand for the equivalence
class of the element x of Sd 2;(n) )< x .)

If f X --, Y is ass map, then Sd f(a, x,) ((r, fx,).

It is easy to verify that these definitions define functor from the category
of ss complexes to itself.
To further describe the structure of Sd X, we want the analogue of Lemma

3 of [4] which describes a unique representutive from each equivalence class of
the quotient set Sd X. We note that any simplex a of Sd 2;(n) has a unique
representation Sd F*r, where F* Z(p) --, 2;(n) is a face operator embedding
2;(p) as the F face of 2;(n) and is an interior simplex of 2;(p), that is, has
for zero vertex the vertex corresponding to the simplex 2;(p) itself. (Upon
realization, such a simplex of Sd A would contain interior points of A.)
This representation is found by finding the unique smallest face F*Z(p)
"containing a", the one whose vertices are the distinct vertices from among
the sequence of faces which give a in Sd Z(n). F* is the face operator which
embeds this face in 2;(n). It follows then that the following lemma is proven
exactly as Lemma 3 of [4]:

LEMMA 2.3. In the equivalence class of every element r X x, of M (X) there
is a unique irreducible representative r X y, Where is interior to Sd (p and
y is nondegenerate. We define the selection function 0 that picks this class out
of the given class as follows: represent r )< x, uniquely as Sd F*r X x,, where
F* is a face operator and r interior; let Fx, Dye, where D is a degeneracy
opera,or and y nondegenerate, and let r SdD*r. Then 0( )< x,)
rXy.

Thus it follows that, as in [4]"

LEMM. 2.4. The characteristic ( ss map of the simplex (, x, of Sd X is
the composition of the inclusion map of (r into Sd Z(n) with Sd where is
the characteristic map Z(n) --> X of x, Sd is bijective on the interior
simplices on Sd 2; (n).

PROPOSITION 2.5. For any ssc X, there is a homeomorphism SdX --* X
identifying Sd X with a subdivision of the CW complex X I.

Proof. We will subdivide IX by a modified star-subdivision process. In
each face of each simplex of M(X) we will choose an interior point. We
proceed inductively as follows. If a X x, is a vertex, we select it itself as the
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interior point. Suppose that we have selected one interior point of each
simplex of dimension >n in M(X) so that whenever the face x of A X x
is identified with the face r x, the points chosen are dentffied wth each
other. Let x be an n-dimensional face of A xm. If F*v and
Fx, is a nondegenerate (n-)simplex of X, choose the barycenter of this face.
If not, say Fx Dx’, a degeneracy D of the nondegenerate p-simplex
x’(p < n), then choose any interior point of which is identified with the
point chosen (inductively) in A X x. It is easy to see that this extends
the selection of interior points over dimension n, and thus we can select such
"pseudo-barycenters" in each simplex of M(X).
Then we subdivide each cell Ix,* of XI by starring A x for each

simplex x of X, joining the already defined subdivision on the boundary of
each face to the chosen interior point by straight lines, segments of .planes, etc.
Because the maps d* and s* which identify the simplices of M(X) to give
X are linear, they will define a consistent subdivision of X ]. Clearly this

subdivision is the homeomorphic image of Sd X I. We define such a homeo-
morphism as follows. Take any simplex x,* (irreducible representative)
and map it into A,* x in M(X) by mapping its vertices onto the "pseudo-
barycenters" to which they correspond in A x, the points already chosen,
and extending linearly. It is easy to check that this is indeed a homeo-
morphism. |

PROPOSITION 2.6. There is a natural ss map (x) :Sd X -+ X and a
homotopy F Sd X X I -- X between and t, for any map as in the
preceding proposition, with the further property that F maps Ix,, X I, for any
n-cell x, of ISd X ], into the cell whose interior contains

Proof. The map is the one which sends the simplex a x. into (r),
where r is the simplex of 2;(n) whose vertices are the last vertices of a. It is
easy to check that this is well defined, and it maps a simplex a x,* of Sd X
into a face of x,*. The homotopy F is defined in the simplices of
M(X) (J,*>0 A,* xX,, and then projected onto X i; it is the linear homotopy
whichmoves each "pseudo-barycenter" towards the last vertex of the simplex
it corresponds to. |

3. Regulated ssc’s
DEFINITION 3.1. Let x be a simplex of the ssc X and let Z(n) --* X be

its characteristic map. We say that x is regulated if for each pair of faces
y y’ which both contain the zeroth vertex, (y) 4(y’) and on vertices
k 0, (k) (0). If each n0ndegenerate simplex of X is regulated, we
say that X is regulated.

PROPOSITION 3.2. For any ssc X, the ssc Sd X is regulated.

Proof. This follows from the fact that for any nondegenerate x in X, with
characteristic map , the map Sd Sd 2:(n) --* Sd X is bijective on the "in-
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terior simplices", those simplices of Sd 2(n) which have for zeroth vertex the
vertex corresponding to Sd
The property of being regulated is the only property of Sd X we will need.
Let x be a regulated n-simplex of X, let 2(n) --. X be its characteristic

map, and Ib the corresponding realization, a characteristic map for the cell
[xn of IX I. We will first analye the identifications of points of A under
the map I I.
LEMMt 3.3. There is an integer p and a face operator F such that cbl is

bijective on all open cells outside of the p-dimensional face F*A of A". On this
face, there is a face F*Aq such that the restriction of b to F*A is
where D is a suitable degeneracy map and Fx a nondegenerate face of x.

Proof. We note that if I identifies interior points of two open cells, then
it identifies all interior points of one with the other. Thus no interior point
of the n-dimensional simplex A is identified with any other point. Let p be
the highest dimension in which an interior point of a p-dimensional cell, say
F*A is identified with an interior point of another cell, say F’*Ar. Then,
clearly 4 identifies F*Z(p) with a degeneracy of F"*(r). Let
be the smallest face of 2(n) containing both F*((p) and F"*Z(n), the face
whose set of vertices is the union of the sets of vertices of the two faces. If
we assume that FrP*(n) is not a face of F*Z(p), then the set of vertices
isr strictly bigger than that of F*Y,(p) and hence F(i)*Y,(s) is a strictly
larger face of F*Z(n) than F*Z(p). This means in particular that
F(iix h(F(iii)*z(s)) is nondegenerate since its dimension is larger than p.
Because we are assuming x is a regulated simplex, and because F*Z(p) and
FP*(r) are simplices which are identified (or whose degeneracies are identified)
by, it follows that neither of them can have the zeroth vertex of
for a vertex. This is impossible; by hypothesis, F(ii)*2(s) is the smallest
simplex whose vertices contain those of the two given faces. Hence it is not
possible, if x is regulated, for F"*A to lie outside of F*A.
Suppose that P is an interior point of A, and (F’P, x) the corresponding

point of the simplex A" X x. in the union M(X), and suppose that identi-
fies this point with (F*Q, x,), where Fx is a nondegenerate face of x and Q
an interior point of Aq. That is (F’P, x) (Q, Fx), the latter an irreducible
point of M(X). Then the selection function sends (F’P, x) into (Q, Fx)
so that Fx DFx and D*P Q, where D is a suitable degeneracy operator,
by definition of . It thus follows that for any other point of F*A, that
14)I (F*P, x) b’ (D*P, F’x), and that therefore the restriction of

to the face F*A is the composition D* I’ I. |
To find the remaining identifications produced by I I, repeat this analysis

on (Aq, F’*x). Since Fx is a nondegenerate face of a regular simplex, it is
regular. Thus there is a dimension p of a face F*A such that on each open
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cell of dimension larger F,x is bijective, as it is also on all open cells of dimen-,.
sion p outside of F. , etc. Iteration of the preceding lemma gives the fol-
lowing"

COROLLARY 3.4. If X is a regulated n-simplex of X, then A’* -- IXmakes the following identifications (ana no others). There is a descending
sequence of faces of A’,

of dimensions dim a p dim r q and degeneracy operators D such that
(i) I II r is bijective on all open cells outside of +1,
(ii) ]l[(r,+l =D+([4I[r+);
(iii) [4,[ is bijectwe on the interior of r+. |

We will now prove that a regulated n-simplex realizes to a regular n-cell

IEMMA 3.5. Let ’ r be proper faces, let D* ---, r be a degeneration
map, let L be the quotient of A by the identifications of D*, and let A -- L be
the quotienr map. Then there is a homeomorphism h"
r _< q dim r, for any r-dimensional face , with inclusion map i -- r, we
have hi

Proof. Let a’ be the face of A opposite a. Each point P of A" has a unique
representation P (1 t)Q - tQ’, where Q e a, Define

p(P) P if 1/2_< t_< 1;
t(QW Q) - (1- 2t)D*(Q) if 0_< t_ 1/2.

Then

(i) p(P) p(P’) if and only if (P) (P’);
(ii) Imp is a compact convex subset of A; and
(iii) contains the simplex o of A" spanned by a’ and r, and the subset of
consisting of points with >_ 1/2.

These facts, easy to verify, are left to the reader. From (i) and the compact-
ness of A", it follows that Imp is homeomorphic to L. From (ii) and (iii),
Imp contains a small copy of A", the convex set with vertices {v}, correspond-
ing to the vertices of a’, and (v -t- b)1/2} where b’ is the centroid of a, and v
is a vertex of a. By radial projection from the centroid of the face of this
simplex determined by the simplices corresponding to a and r, we get a homeo-
morphism h A" --* Imp which restricts to a linear homeomorphism of the
simplex corresponding to onto 0. |

:PROPOSITION 3.6. Let x be a regulated n-simplex of the ssc X. Then Ix is
a regular n-cell of the CW complex IX I. Hence if X is a regulated ssc, then
XI is a regular CW complex.



410 s. EINGRAM

Proof. Suppose x is the simplex for which has the form described in
Corollary 3.4. Let L be the quotient space of A" after identifying points in
the faces al, a by D*, D Thus, Lr x I. Applying the pre-
ceding lemma inductively to L, we have a homeomorphism of L+I with A"
in which the points of faces of dimension _< dimension r+ are identified with
their images under the quotient map with the corresponding point of r+.
Thus L+2 is obtained from L+ by collapsing the points of a+ by the degen-
eration map D+I., and the inductive argument can proceed until we reach
L =Ixl. !

4. The Functor
DEFINITION 4.1. Let X be assc. We define *X, an ordered simplicial

complex as follows. The vertices of *X are the nondegenerate simplices of X
ordered as follows" x < y if y is a face of x. A sequence of vertices
(x0) x(n) for which x(0) _< _< x(n) is a simplex of *X. If f" X -- Yis ass map, we define an order preserving simplicial map *f" *X -- *Y by
setting .*f((x)) the nondegenerate simplex of Y for which f(x) is a degen-
er.acy, and extending to a simplicial map.

This defines as a functor from the category of ssc’s to that of ordered
simplicial complexes, a subcategory. On the simplicial subcategory, this is
just barycentric subdivision" on the general ssc, looking back at the description
of star subdivision of regular CW complexes, we see that if XI is a regular
CW complex, this is the starring simplicial subdivision. In this case, we note
that the simplex (x(0), x(n)) corresponds to a simplex lying in the cell
x(0) of IX I; and if n dim x(0), this will correspond to a simplex whose

interior lies in the interior of Ix(0) I.
In fact, let r I*XI -- XI be a triangulation by star subdivision of the

regular CW complex IX I.
PROPOSTmN 4.2. Let X be a regular CW complex, and let *X ---. X be

a ss map such that ((X(o), x())) is a face of X(o) for each simplex nonde-
generate in *X. Then is homotopic to r by a homotopy which maps
I(x(0), "-’, x(,)) X I into the cell whose interior contains the interior of

Proof. Obvious, for and r images of each simplex of I*1 are con-
tained in the same contractible subset of X I, the cell whose interior contains
the interior of the r image. Thus the assignment of this cell is an aspherical
carrier carrying both t and I !. |

PROPOSITION 4.3. Let X be a regulated ssc. Then there is an ss map
(natural with respect to maps of regulated ssc’s) *" *X ---. X such that
*X((x(o) x(,))) is a face of X(o) for each nondegenerate simplex of *X.

Proof. Let v (x(o),..., x()) be an arbitrary n-simplex of *X; let
2;(m) --* X be the characteristic map of a simplex of X which is nonde-
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generate and which has x0) for a face. Let m (0, 1, m) be the funda-
mental m-simplex of 2(m) and let {F m} be a descending sequence of faces of
m for which (F m) F(am) x). Let L be the last vertex of F am,
and let L (L,..., L0) be the corresponding face of am. Define
*X(v) (L). Since L is a face of F0 am, (L) will be a face of x0>. If we
can prove that *, (v) is independent of the choice of the particular descending
family of faces F m (because of the identifications under the characteristic
map of the simplex (m) this is not unique), then clearly the map *h will
satisfy our conditions.
We proceed by induction on n. If n 0, there is nothing to prove. Con-

sider the case n 1. Here v (X(o), x()). Let

(Fo m) (F,o () X(o) and (F m) (F m) x(),

where F deletes whichever vertices of a that F0 does and some others besides,
and similarly for F’ and F. Since they both have the same image in X, the
dimensions of Fo a and F a are the same, as are the dimensions of F a

and F am. Since (Fo am) (Fo am), the map h" Fo a - Fo a defined
by mapping the it vertex of Fo a onto the i vertex of Fo a satisfies
lF0am= (lFam)h. Thus

((L1, L0)) ((h(L1), h(n0))) ((h(L), n’0) ),
where L’o is the last vertex of F’o, and it suffices to prove that

((h(nl), L)) ((n’, L)),
where Lx is the last vertex of F’ a Either h(Lx) < L’I or h(L) > L’
assume the former. Then (h(Lx), L’, L’o) w is a face of 2(m), and b(w) a

L’face of a regulated simplex It must be degenerate because (h(Lx) ()
and thus its zeroth and first vertices are identified. If b(w) So z, then
do (w) d (w) and we are done. If (w) sl z, then z is a 1-simplex of
X which has its first and second vertices equal (since they are h(h(L’) and
(L’)) and therefore is degenerate. Thus (w) s So Z’ and therefore
do (w) d (w) and the proposition is true in this case too.
Assume inductively that *h is well defined whenever v has dimen-

sion <:n 1, for n >__ 2, and consider the case that v, as above, has n -t- 1
vertices. Let {F am} be a second descending sequence of faces of a for which
(F am) x), let L be the last vertices and L’ the simplex they form. Let
z h(L),z’ (L’). We will provez z.
Our induction hypothesis implies that all corresponding faces of z and z’

are equal.
Suppose first that z and z’ are degenerate, say z Dz z’ D z where

D and D’ are degeneracy operators and zl, z are nondegenerate. Let F and
F’ be face operators such that FD 1 and F’D’ 1. Then z FD’z’
FD’F’Dz so that FD’F’D 1. Similarly F’DFD’ i so that FD’ F’D 1
andz zl. It is then easy to see thatz z.
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Next, suppose that z is degenerate, say z s z. Then d z d+ z and
thus the corresponding faces of z are equal. Because this implies that a face
of z containing its zero* vertex is identified to another one, and because z’ is
a face of a regulated simplex, it follows that z must also be degenerate and
therefore we are back in the case just above.

Finally, suppose that z (and therefore also z’) is nondegenerate. Then the
following lemma implies that z z.

LEMMX 4.4. Let X be a regulated ssc and z and z nondegenerate faces of a
Zsimplex v of X. If d, z d,, z, where n dim z (tim z, then either z

or there is an n q- 1-simplex u of X such that z d,, u, z d,,+ u, or z
d, u, z d,+ u. If in addition, n >_ 2 and d,_ z d,_ z, then z

Proof. Let 2;(m) --, X be the characteristic map of v, and let U be a
minimal face of 2(m) such that u (U) has both z and as faces. Since
z and z’ z’are nondegenerate, u must be nondegenerate. If Fu z and F
then because of the minimality of U the zero* vertex of U must lie in either
d,, FU or in d, F’U. Since d,, Fu d F’u, then, d, FU d,, F’U. Thus
again because of the minimality of U, either U is an (n q- 1)-simplex and F
and F’ delete the nth and (n -t- 1)’ vertices, or U is an n-simplex and z z’.
(Otherwise we could replace U by the strictly smaller simplex whose vertices
are the n vertices common to d, FU and d, F’U and throw in the last two
vertices which are cancelled by d from FU and F U.)

If in addition, n >_ 2 and d,_ z d,_ z, then this is a relation identifying
two faces of u one of which contains the zero vertex and thus the correspond-
ing faces of U must be equal, in particular the last vertices must be identical.
Thusz z. |

It follows from 2.6, 4.2, and 4.3 that the following statement is tree:

PROPOSTm 4.5. Let be the category of regulated ssc’s and ss maps. Then
there is a natural transformation * --> 1 on . Moreover, if X is any regu-
lated ssc and tx *X -> X a starring triangulation, then there is a homotopy
F" *X X I--> IX[such that

Fil*xI x (0) I*xxl and Fll*xI
and for each simplex of *X, F a X I has its image in the cell whose interior
contains ( |

Proposition 4.5 together with the corresponding proposition about Sd im-
plies Theorem 1.1. The subdivision D is the composition of with Sd. The
composition of the maps for the two functors Sd and give the map ), called
for in the theorem, and similarly the composition of the two homotopies gives
the.desired homotopy.

5.
In closing we would like to discuss the relation between the functors Sd and
and the transformations associated with them. The difference between
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them is that Sd is a direct limit functor, while is not. In fact, if we start
with ,, restrict it to the model subcategory of abstract n-simplices and ordered
simplicial maps, and propagate this restriction over all ssc’s as a direct limit
functor, we get Sd. Thus on general grounds, there is a transformation of
functors Sd --* ,. Let *h --, 1 be the transformation we have con-
structed on the subcategory of regulated ssc’s, which includes the model sub-
category. If we restrict this to the model subcategory and extend over all
ssc’s by direct limits, the result is just the natural transformation }, Sd --* 1.
With the definition given in 4.2 for the map *h, we have proven the following:

PROPOSITION. On the category of regulated ssc’s, *.. |

The question arises whether we can define *h over all ssc’s so that this is
true, and the following example shows that this is not so. Let X be the ssc
with one nondegenerate simplex in dimension two and one vertex. *X is
1-cell, and it is clearly impossible to have the map h(X) Sd X --* IX I,
a map of S to itself of degree 1, factor through a map into I. If we define a
ssc to be regular if in each nondegenerate n-simplex there is a vertex with the
property that no face of dimension <_n which has this distinguished vertex
for a vertex is nondegenerate [1], then it is still impossible to define * for this
subcategory of the ss category. For example, if X is the ssc obtained from
the ordered 2-simplex by identifying vertices (1) and (2) (but not identifying
the 1-simplex they determine) then a similar argument shows that
I,(X) ]Sd X --* IX I, a map of spaces of the homotopy type of S and
of degree 1, cannot factor through *X i, a contractible space. (This by the
way, shows that a "regular" simplex in terms of [1] need not give a regular
cell upon realization, as is asserted in [1].) It is impossible to find any ss map
in these cases from *X to X which maps onto X.
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