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1. Introduction

Bing showed [10] that for a pair of intersecting 2-spheres S and S’ in E
such that S’ is tame there is a small homeomorphism of E onto itself which
adjusts S so that the components of its intersection with S’ consist of a finite
number of mutually exclusive simple closed curves in the inaccessible part of a
Sierpinski curve together with sets of small diameter which fail to intersect
the Sierpinski curve. Theorems 6.1 and 6.2 of this paper show that analogous
results hold for topological embeddings of polyhedra in 3-manifolds. In
order to prove these theorems we will need to extend to the case of polyhedra
certain results about tame Sierpinski curves on spheres. These results were
developed by Bing in [5]-[9].

In general we follow the definitions employed in [1]-[10]. We include a
few important old definitions here as well as introduce a few new terms.
We use the term complex to mean geometric complex and we allow infinite

complexes. Simplexes are closed. That is, they contain their boundaries.
An n-manifold is a separable metric space such that each point has a neigh-

borhood which is homeomorphic to Euclidean n-space E’. An n-manifold
with boundary is a separable metric space such that each point has a neighbor-
hood which is homeomorphic to either Euclidean n-space or the closed upper
half space of Euclidean n-space. We use the term surface as a synonym for
2-manifold with boundary.

In a 3-manifold a set X which is homeomorphic to a polyhedron is tame
if there is a triangulation of the manifold in which X underlies a subcomplex.
For triangulated 3-manifolds an equivalent definition is that there is a homeo-
morphism of the 3-manifold onto itself which carries X onto a polyhedron
[1], [22]. A set X in a 3-manifold is locally tame at a point p if there is a
neighborhood N of p in the 3-manifold and a homeomorphism of C1 (N)
into a 3-simplex which takes C1 (N) n X onto a polyhedron. A set X in a
3-manifold is locally tame if it is locally tame at each of its points. In [1],
[22] it is shown that if a closed subset X of a triangulated 3-manifold is locally
tame then there is a homeomorphism of the 3-manifold onto itself which
carries X onto a polyhedron.
An arc ab in E pierces a disk D at a point p of Int (ab) if there is a neigh-

borhood of p in ab-which intersects D only at p and a positive number e such
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that no arc of diameter less than connects ap to pb without intersecting D.
An equivalent condition is that for any simple closed curve J in E containing
a neighborhood of p in ab there are simple closed curves in D arbitrarily near
p which link J. Here the linking is homology linking with Z2 coefficients which
is a symmetric form of linking. In [6, Sections 1-3] it is shown that the first
condition implies the second, and the other implication follows from argu-
ments like those employed in [7, special case]. An arc ab in a 3-manifold
pierces a disk D at a point p if there is a neighborhood 0 of p in the 3-manifold
and a homeomorphism h of 0 into E so that the image under h of some subarc
of ab pierces at h(p) the image under h of some subdisk of D.
A null sequence or a null collection of sets is a sequence or collection of

sets such that for each positive number at most a finite number of the sets
have diameters exceeding . A Sierpinsi curve is any topological space which
is homeomorphic to the complement in a 2-sphere of the union of the interiors
of a dense null sequence of mutually exclusive disks on the sphere. A point of
a Sierpinski curve is an accessible point of the curve if there is an embedding
of the curve into a 2-sphere so that the image of the point is arcwise accessible
from the complement of the image of the curve. If no such embedding exists
then the point is called an inaccessible point of the curve. Any two Sierpinski
curves are homeomorphic; further, the image of an accessible point of a
Sierpinski curve under any embedding of the curve into a 2-sphere is arcwise
accessible from the complement of the image of the curve [24]. A Sierpinski
curve in a 3-manifold is tame if it lies on a tame disk.
A disk D is normally situated in a surface S if D either lies in Int (S) or

intersects Bd (S) in an arc. A Sierpinski curve is normally situated in a
surface if the closures of the components of its complement in the surface
are mutually exclusive normally situated disks. Suppose that S is a surface
and suppose that X is a Sierpinski curve which is normally situated in S.
Define A(X, S) to be those points of X which are arcwise accessible from
S X, and define I(X, S) to be those points of X which are not arcwise
accessible from S X. If S is a disk it is possible for points of I(X, S) to
be accessible points of the Sierpinski curve X so one should not equate A (X, S)
and I(X, S) with respectively the accessible and inaccessible points of X.
A topological space is of pure dimension two if it is two-dimensional and

has no open subsets of dimension less than two. Suppose that W is a
topological space which is homeomorphic to a finite polyhedron of pure dimen-
sion two. We call a compact set X in W a universal curve in W if W possesses
a curvilinear triangulation Tw such that the intersection of X with each 2-sim-
plex of T is a Sierpinski curve which is normally situated in that simplex.
We say that a universal curve X in W is normally situated with respect to a
curvilinear triangulation T of W if X misses the 0-skeleton of T and if
the intersection of X with each 2-simplex of T is a Sierpinski curve which
is normally situated in that 2-simplex. If X is a universal curve in a space
W we denote by A (X, W) the set of points of X which are arcwise accessible
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from W X and by I(X, W) the set of points of X which are not arcwise
accessible from W X. Note that a universal curve in a space W is not
connected if W is not connected.
We use the term general position in the following senses. A collection of

points in Euclidean space E is in general position if no / -t- 2 of them lie
in the same k-plane (/ < n). A pair of complexes K and L in E are in
general position with respect to each other if for each simplex s of K and each
simplex of L the vertices of s and miss each other and the combined col-
lection of vertices is in general position. Polyhedra K and L in a piecewise
linear n-manifold, or a polyhedron K and a complex L in a piecewise linear
n-manifold, or a polyhedron K and a complex L in E are in general position
with respect to each other if for each point p of K n L there is a polyhedron
N(p) which contains a neighborhood of p in the manifold or E, there are
polyhedra K(p) and L(p) in N(p) K and N(p) n L which contain neigh-
borhoods of p in K and L respectively, and there is a piecewise linear homeo-
morphism of N(p) into E which takes K(p) and L(p) onto complexes in
general position with respect to each other.
We denote the join of a pair of joinable simplexes s and by st. Similarly

we denote the join of a pair of joinable complexes K and L by KL. See [26]
for a definition of join.
By an e-set in a metric space we mean a set of diameter less than e. We

use the expression pwl as an abbreviation for piecewise linear. The letter p
denotes the metric on a metric space, and the letter I denotes the identity
homeomorphism of a space onto itself.

2. Fattening up polyhedra
In this section we prove some lemmas about thickening up topological

embeddings of polyhedra in 3-manifolds. These lemmas will later help us to
extend certain self homeomorphisms of topological embeddings of polyhedra
in 3-manifolds to homeomorphisms of the 3-manifolds onto themselves. In
some cases alternate polyhedral versions of lemmas are stated in parentheses.
These alternate versions will not be used here but will be used in [11], [12].
The proof of Lemma 2.1 was suggested to the author by Joseph Martin.

LEZX 2.1. Suppose that M is a 3-manifold and D1, ..., D, ..., D,
(n > 1) is a collection of disEs in M whose pairwise intersections are all the
same, anarcA in Bd (D). SetH UDandB (LJBd (D)) Int (A).
Suppose that 0 is an open set in M containing H B.
Then there is a reordering DI, D,, D.+I DI of the disks D, and

there is a connected open subse U of 0 which contains H B such that
U- (H B) has exactly n-components U, U where each C1 (U) n H
D u D+I. Further each open dis Int (D u D+) separates U into two

components U and (U U) u (Umo+ Int (D)).

Proof. From [19], H has a neighborhood in M which can be embedded in
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E so we might as well assume that M E3. Further H is an absolute
retract so there is a mapping r of C1 (0) onto H such that ri is the identity.
Let O’ denote the subset of 0 which consists of the points x such that p(x, r(x)
is less than p(x, B). A neighborhood of H B is contained in 0’. Define
U to be the component of O’ which contains H B.
Let P(/c) (2 _< / _< n) denote the following proposition. The disks

D. kD1, Dk can be reordered DI, D, ,+, D so that
U ((H B) n (Ui_<k Di)) has exactly/ components U, ..., U where
each

k kC1 (V) n (U<k D) D u D,+,
kand where U is separated by each Int (D. u D,.+I)into two components

U and Uij V) u Ui<k and Died D Int (D)).
./ ./+.

If P(n) is valid then the lemma follows by setting each D9 D. and each
U U. We show that P(k) is valid for all k (2 _< k _< n) by induction.

Proof that P(2) is valid. The open disk Int (D1 u D.) separates U. To
see this use [6, Theorem 5.3] to find an arc in U which pierces Dt u D. at
a point p and otherwise fails to meet D1 u D. If Int (D1 u D,.) does not
separate U then can be completed to a simple closed curve J in U whose
intersection with D1 u D is p. Since pierces D1 u D,. at p there are simple
closed curves on D1 u D. which link J. Any such simple closed curve is
homotopic to Bd (D u D) missing J so Bd (D1 u D.) links J. But J can
be pushed into H B missing Bd (D1 u D) by pushing each point x of J
along the line segment missing B from x to r(x), and then r(J) can be shrunk
to a point in the contractible set H B which does not meet Bd
Thus Bd (D1 u D) cannot link J, and we conclude from the contradiction that
Int (D1 u D) separates U.
From [4, Theorem 5] and the fact [25, Theorem 5.35 of Chapter 2] that a

2-sphere in E is locally two sided it follows that a connected surface which
is a closed subset of a connected 3-manifold separates the 3-manifold into at
most two components and is the boundary of each component. We conclude
that there are two components U and U2 of U Int (D1 u D,.). Set
D D1 D D and D, D1 We then have the relation

C1 (U}) n (D1 u D.) D u D+.
This verifies that P(2) is valid.

Proof that P() implies P(k + 1). Suppose that we have established for an
integer k that P(/) is valid. Then we have a reordering D, D,

k k VkD+ D, of the disks D1, D and components U1,
k

of U ((H B) n (U<D) such that each
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Let U denote the U which contains Int (D+).
The open disk Int (D+) separates U into two components U and U

and it is contained in the closure of each. To see this choose an arc s in U
which pierces D+ at a point q and otherwise fails to meet D+. If Int (D+)

jfails to separate U then there is a simple closed curve in U which contains
s and whose intersection with D+ is q. An argument like the one in the
case of P(2) obtains a contradiction by showing that J both links and fails
to link Bd (D+ u D). Thus we may conclude that Int (D+) separates U.

Just as in the case of P(2) we conclude that U Int (D+) has exactly
two components U and U and that the closure of each of these contains

U)nInt(D) . IfCl()D+. Suppose for convenience that C1 U
U) in Int Intshared a point with C1 (D) (D+) it would follow from

[4, Theorem 5] and [25, Theorem 5.35 of Chapter 2] that U U would be
non empty. Thus we may conclude that

CI(U) (+D) D D+
and C1 (U) n (U+i D) D,+ o D+i.

+ .< n+i D + +SetD D (3 r), D+ =+, -,+(j> r+ 1) U
(j < r),U + U+’", U+,andU +U kr+ 1). The reader
may use these terms to verify that the first half of the conclusion in P(k + 1)
is valid. To verify that the second half of the conclusion is valid note that
for each integer j the sets

Int (D))and (U +U u (U<+ ,
+

are mutually exclusive open sets whose sum is U Int (D u +.
Since U+1 is connected it follows from our remarks in the proof of P(2)
that the other open set is connected.
We have established that P(k) implies P(k 1) and that P(2) is valid.

By induction we may conclude that P() is valid for all k (2 k n) and
thus that the lena is true.
We leave the proof of the following lemma to the reader.

LEMMA 2.2. Suppose that vA- is an n-simplex in E which is the join of a
point v and an (n 1)-simplex A-. Suppose that 0 is an open set (open
polyhedr) in E"which ctains Int (A"-) and which is separated by Int (A-)
into two cpents, O and 0.
Suppose O is the compent of 0 Int (A"-) ch hatA- lies in the clore

of 0 n Int (vA"-).
Then there is a (pwl) homeomorphism @ of vA- into itself which is the identity
A- and which sends vA- A"- into 0.

LEMMA 2.3. Suppose that M is a (triangulated) 3-manifold, D is a tame
(polyhedral) dis] in M, A is an arc on Bd (D), and 0 is an open set (open
polyhedron) containing Int (A).
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Then there is a tame (polyhedral) disk D1 whose boundary contains A such
that Dl n D A and D1- Bd A c0.

Proof. If M does not have u triangulation use [3], [20] to give it one.
From [1], [22] the triangulation can be chosen so that D is u polyhedron. Let
B be a polyhedral cube in M whose interior contains D, and let h be a pwl
homeomorphism of B into E.
From [15, Section 4] there is a pwl homeomorphism h. of E onto itself

which takes hi(D) onto a 2-simplex va where is a 1-simplex that is the image
of h(A). Let A1 be a 2-simplex which has as a face, which lies in the same
plane as va, and which intersects va in exactly . Let P denote the plane which
contains A and v. Now hhl(O Int (B)) P is an open set (open poly-
hedron) containing Int (a). Thus we may apply the appropriate version of
Lemma 2.2 to find a (pwl) homeomorphism of A1 into itself such that

(A) vz , 1 I and (A)- Bd(z)= h2h(O).

For the tame (polyhedral) disk D we tke (h2 hl)-l(b(A1)).
LEMM/k 2.4. Suppose that M is a (triangulated) 3-manifold, D is a tame

(polyhedral) dis in M, and 0 is a connected open set (open polydedron) con-
taining Int (D) such that 0 Int (D) has two components 01 and 03.

Then there is a (polyhedral) 3-cell C in M such that

D Bd(C) and C--Bd(D) 01.

Proof. As in the proof of Lemm 2.3 we choose a triangulation of M if one
has not been provided so that D is a polyhedron in that triangulation; and
we find a polyhedral cube B in M whose interior contains D, pwl homeo-
morphism hi of B into E, and pwl homeomorphism h of E onto itself
which takes hi(D) onto a 2-simplex A.

Let v be a point of E which does not lie in the plane of A and which is on the
side of A such that the points of vA A near points of Int (A) lie in h, hi(0).
Use Lemmu 2.2 to find a (pwl) homeomorphism of vA into itself such that
! I and (vA A) c 0.
For the tame (polydedral) 3-cell take (h2h)-(q)(vA)).

3. An engulfing lemma for universal curves

Bing showed [10] how to adjust the inaccessible part of a Sierpinski curve on
a 2-sphere so that it engulfs a closed one dimensional subset of the sphere.
Here we will prove the same sort of result about universal curves on topological
images of polyhedra. Just as in the proof of the engulfing lemma in [10] we
will wish to employ the following lemma.

LEMM 3.1. Suppose that S is a surface which is either a 2-sphere or a dis
and X is a Sierpinsi curve which is normally situated in S.

There is a map g of X onto S which maps I(X, S) homeomorphically onto
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the complement of a countable dense set of points in S and which maps distinct
components of A (X, S) onto distinct points in the countable dense set.

Proof. Let G denote the upper semicontinuous decomposition of S into
points and disks where the non-degenerate elements of G consist of the closures
of the components of S X. From [23] we find that there is a homeo-
morphism h of the decomposition space G’ associated with G onto S. Let r

denote the projection map of S onto G’ which sends each element of the de-
composition G onto a point of G’. The map g is then given by hvlx. Each
component of A (X, S) is the boundary of one of the non-degenerate elements
of G so g maps A (X, S) onto a countable dense set of points in such a way that
distinct components of A(X, S) go onto distinct points. The map g is
clearly a homeomorphism on I(X, S).

Here is a construction which we will employ several times ia the rest of
this paper. We have a normally situated Sierpinski curve X ia a surface S,
and we wish to construct a certain one dimensional set iu I(X, S). We map
X onto S by the map g promised in Lemma 3.1, construct a one dimensional
set in S, adjust the set slightly so that it misses the image of the components of
A (X, S), and bring the adjusted set back under g-1 into I(X, S).

LEMM/k 3.2. Suppose that M is a 3-manifold, W is a subset of M which is
homeomorphic to afinite polyhedron ofpure dimension two, and T, is a curvilinear
triangulation of W with i-skeleton W.
Suppose that X is a universal curve in W which is normally situated with

respect to Tw and which is such that each component of W X has diameter less
than s.
Suppose that Y is a closed one dimensional subset of W whose distance from

Wo exceeds s and whose intersection with W1 is zero-dimensional. Suppose that
W is locally tame at each point of the closure of each component of W X whose
closure intersects Y, and suppose that Z is a closed subset of M whose intersec-
tion with W is contained in I(X, W).

Then there is a homeomorphism h of M onto itself which takes each simplex
of Tw onto itself, which moves no point by as much as s, which is the identity
on both Z and the complement of an s-neighborhood of Y, and which adjusts
I(X, W) so that h(I(X, W)) I(h(X), W) contains Y.

Proof. We will define h first on W and then use the lemmas of Section 2
to extend h to a homeomorphism of all of M. Consider the components of
of W X whose closures intersect Y. Denote the closures of these com-
ponents by H1, H, .... This is a null collection of mutually exclusive
s-sets. We use Lemma 3.1 in the manner indicated by the rerffark following
its proof to find a new null collection of mutually exclusive s-sets H, H,

such that (1) each H is contained in some He and each H contains some
Hi, (2) the intersection of an H with a k-simplex of T is either empty or a
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/c-cell, (3) for each integer i,

n C1 (W H,) c I(X, W),

(4) each H misses Z, and (5) W is locally tame at each point of [JH. A
similar construction is employed in the proof of the engulfing lemma in [10].
Condition (1) and the fact that each H has diameter less than s insure that
no H intersects W0.
As in [10] we will define h so that it is the identity except on [J H and so

that it moves each H n I(X, W) to contain H n Y.
Each H that does not intersect W1 is contained in the interior of some

2-simplex of T. The intersection of X with H is a Sierpinski curve X
such that the boundary of the disk H is contained in I(X, W) and in
I(X, H). The proof of the engulfing lemma in [10] shows how to define a
homeomorphism hi on H which is the identity on Bd (H) so that

h(I(X H) h(H n I(X, W)

contains Y n H.
For eachH that intersects W1 let H, Hj, denote the disks which

are the intersections of H with the 2-simplexes of T. We define a homeo-
morphism h of H onto itself which takes each Hj onto itself, which is the
identity on each Bd (H.) (H. W), and which movesH n I(X, W) W1
so that h(H I(X, W) WI) contains Y a H W.
For each H let X denote the Sierpinski curve h(X H). Consider

the components of H X, whose closures intersect both Y and W. Let
Hn H,, denote these closures. Define a second homeomorphism
h of H onto itself so that h sends each H onto itself, is the identity on
each Bd (H), and adjusts each H so that h(H) misses Y. For each
H let ., denote the Sierpinski curve h( "X,).
For eachH let H, denote the disk which is obtained fromH by deleting

the components of H .. that intersect Bd (H). Now Y n H H
and Y n Bd (H’) I(X’, H). Thus as before we may employ the
construction in [10] to define a homeomorphism h of H’, onto itself which is

Y" h(I(the identity except on each Int (H’) so that for each , , H))
contains Y n H.
We define a homeomorphism he of H onto itself by the rule he h h h.

The set h(I(X, H) contains Y n H.
The homeomorphism h is defined to be the identity on W H and it is

defined to be he on each H. Since no H intersects Z and since each H has
diameter less than e we see that the part of h thus far defined is an e-homeo-
morphism of W onto itself which is the identity on Z n W and which moves
each simplex of T onto itself.
To extend h to all of M first construct a null collection of mutually exclusive

open sets of diameter less than e, 0, 0, so that each 0 misses
Z and contains H (H n C1 (W H) ). Since W is locally tame at each
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point of (J H it follows from the two dimensional Schoenflies theorem that
arcs in tame disks are tame so each H; is locally tame and therefore tame
[1], [22]. For each H which is a disk that intersects W1 use Lemma 2.3 to
find a disk such that

nW HnW1 and .., -Bd W) cO.
Let H’ denote the disk H u ..,. For the remained (H)’s set H H.
Let W’ denote the sum W u ( ) Extend h to by defining it on each

so that it takes, onto itself and is the identity onBd (H’) (H/ W).
If an H is a disk then h is the identity on Bd (H). Use Lemma 2.4 to

find a pair of 3-cells C and C in M such that

CC H/ Bd(C)oBd(C,) and (CuC) -Bd(H’) 0.
Define h to be the identity on Bd (C) H’ (k 1, 2) and then extend h
to take each C onto itself.

If H’ is not a disk then use Lemmas 2.1 and 2.4 to locate a finite collection
of 3-cells C, C, so that the sets C (C, H) are mutually
exclusive sets in O and so that each C, H is a disk on Bd (C) of the form

u H,,, Define h to be the identity on each Bd (C,) Bd (C,) H
and then extend h so that it takes each C onto itself.
For each integer i define a 3-cell C C. These 3-cells are mutually

exclusive e-sets which miss Z. The part of h thus far defined moves only
points in the interiors of the C’s. Thus we can define h to be the identity
on M (W ( C)) and we have the promised homeomorphism.

If we forget about curvilinear trianlations ia the case of .a disk we ob-
tain the follong corollary to Lena 3.2.

COROLLARY TO LEMMA 3.2. Suppose that M is a 3-manifold, D is a disk
in M, and X is a Sierpinski curve normally situated in D ch that each com-
pent of D X has diameter less than e.
Suppose tt Y is a closed one dimensial subset of D whose inersecti with

Bd (D) is either zero-dimsiol or is contained in I(X, D). Suppose that
D is locally tame at each point of the clore of each compent of D X whose
closure intersects Y, and suppose that Z is a closed bset of M whose intersec-
ti with D is cained in I(X, D ).

Then there is a homeomorphism h of M onto itself which akes D to itself,
which moes no point by as much as , which is the identity on both Z and the
complement of an e-nehborhood of Y, and which adjusts I(X, D) so that
h(I(X, D)) I(h(X), D) ctains Y.

4. Tameness modulo tame sets
LEMMA 4.1. Suppose that M is a 3-manifold, D is a disk in M, and {X}

is a countable collection each of whose elements is either a tame arc or a tame
Sierpinski curve normally situated in D.

Suppose that D is locally tame modulo (J X.
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Then D is tame.

Proof. As shown in [19] a neighborhood of D can be embedded in E
so we might as well assume that M is Ea.
For each X that is an arc let {X.} be a collection of arcs in Int (D) such

that (J. X. X Int (D).
For each X which is a Sierpinski curve let J, denote that unique simple

closed curve in X which bounds a diskD containing X. Use Lemma 3.1 as
previously to find for each X a collection of simple closed curves {J,l in
Int (D) such that each J lies in I(X, D) and such that if D denotes the
disk which J bounds then Int (D) 13 D. For each X and each D
let X denote the Sierpinski curve X a D. We have for each i the relation
X, Int (D) (JX. For each X let /AI denote the collection of
components of A(X,, D) which lie on J. Unless J Bd (D) each A is
a spanning arc of Bd (D). For each A let {A,} be a collection of arcs in
Int (D) such that (J, A. A Int (D).

Consider the collections of tame arcs and tame Sierpinski curves
and {X,} in Int (D). The set ([3.X) u ([J,.., A,) is equal to
((iX,) Int (D). Now Int (D) is locally tame modulo ( 13 X) u ( (J A.)
so from [9, Theorem 3.1], Int (D) is locally tame. From [1], [22] there is a
homeomorphism h of E onto itself such that h(Int (D)) is locally polyhedral,
and from [16, Lemma 5] there is a 2-sphere S in E which contains h(D)
and which is locally polyhedral modulo h(D). Let S denote the 2-sphere
h-(S’). It is locally tame modulo Bd (D) u ((JX).
From [8, Theorem 8.5] we see that S is locally tame at each point of Bd (D)

which misses [J X. Theorem 3.1 of [9] shows that S is tame since it is locally
tame modulo (J X. Since D is a subset of S it is tame by the two dimensional
Schoenflies theorem.

LEMMA 4.2. Suppose that M is a 3-manifold, W is a subset of M which is
homeomorphic to afinite polyhedron ofpure dimension two, and T, is a curvilinear
triangulation of W with i-skeleton W and 2-simplexes A ..., A, ....
Suppose that X} is a countable collection of sets each of which is either a

tame arc which lies in someA and misses Wo or a tame Sierpinski curve which is
normally situated in some A and misses Wo.

Suppose that W is locally tame modulo [J X.
Then W is tame.

Proof. From Lemma 4.1 we find that each 2-simplex A is tame. This
shows that W is locally tame modulo W0. The fact that W is locally tame
at points of W0 follows from our assumption that W is locally tame at each
point of W (J X and that (J X fails to meet W0. Thus W is tame [1],
[22].
Theorem 3.1 of [13] says that a set in E which is homeomorphic to a finite

polyhedron is tame if it has a curvilinear triangulation whose one skeleton
is tame and each of whose 2-simplexes is tame. The proof uses local arguments



INTERSECTION OF POLYHEDRA IN 3oMANIFOLDS 577

to show that such a set is locally tame. For this reason the theorem applies
equally well to sets in 3-manifolds, and we may thus conclude that W is
tame.

5. The existence of tame universal curves

In this section we show that for a given set W in a 3-manifold M where W
is homeomorphic to a finite polyhedron of pure dimension two and for a
given curvilinear triangulation T of W, there are many universal curves
which are normally situated with respect to T whose intersections with each
2-simplex of Tw are tame Sierpinski curves.
Lemma 5.1 extends a result of Martin [18] that a disk in E Contains many

tame arcs which reach out to its boundary.

IEMMA 5.1. Suppose that M is a 3-manifold, D is a dis] in M, and is a
positive number.

Then there is a tame Sierpinski curve X in D which is normally situated in D
such that each component of D X has diameter less than .

Furthermore if {X} is a finite collection of sets each of which is either a tame
arc in D or a tame Sierpinski curve normally situated in D, then X may be chosen
so that (J X I(X, D).

Proof. We may assume as in the proof of Lemma 4.1 that M is Ea. For
convenience we assume there is at least one X and e is so small that each X
has diameter greater than v. That we may make the first assumption fol-
lows from [5].

Let be a positive number such that each 3-subset of D is contained in an
-disk which is normally situated in D.

X’irst we construct Sierpinski curve in D which contains Bd (D)
and which lies on a disk that is locally tame modulo Bd (D). Let Q denote
the surface D (((J X) Bd (D)). From [9, Theorem 6.1] we find a null
sequence of mutually exclusive -disks D, ..., D, which are dense in Q
so that the set X Q (J Int (D) lies on a locally tame surface in M.
The proof of Theorem 6.1 of [9] shows that any surface in M is locally tame if
it contains X, is locally tame modulo X, and is homeomorphic to Q under
a homeomorphism that is the identity on X. We use [2, Theorem 7] to
define a homeomorphism g of D into M which is the identity on
X u ([J X) u Bd (D) and which replaces each -disk D by a new -disk
that is locally tame modulo its boundary. We assume for convenience that
g moves points so little that each 3-subset of the disk D g(D) is contained
in an e-disk that is normally situated in D. The disk D is locally tame at
each point of g(Q) and is thus locally tame modulo (U X) u Bd (D). The
proof of Lemma 4.1 shows that D’ is locally tame modulo Bd (D) Bd (D).
Let X’ denote the Sierpinski curve X u ( (J X) u Bd (D).

Just as in the proof of Lemma 4.1 the disk D lies on a 2-sphere S. Follow-
ing the construction in the proof of Theorem 9.1 of [8] we find a tame Sierpinski
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curve in S such that 13 Xj c I(X", S) and such that each component of
S X" has diameter less than .

It is an inconvenience for us when the closures of two components of
D’ (X" n D’) intersect in Bd (D’) so we will cut away part of X" to find
a Sierpinski curve for which this does not occur. Consider the components
of S X" whose closures intersect Bd (D). Let El, E, denote
these closures. Employ Lemma 3.1 to find an uncountable collection of
mutually exclusive simple closed curves {Jla} in I(X", S) so that each Ja
bounds a -disk EI on S which misses U X. and whose interior contains
The disk D’ cannot contain an uncountable collection of mutually exclusive
continua which separate it into three or more pieces. Thus we can find a

D’Jl such that each non-degenerate component of J n is an arc which
spans Bd (D’). Let E’ denote the corresponding E Let E, be the first
E that is not contained in E’. We repeat the step just outlined to find a
-disk E which fails to meet E’ "u (UX) such that Bd (E) I(X S)

D’and each non-degenerate component of Bd (E) n is an arc which spans
Bd (D’). By proceeding in this manner until all the E?s are covered up we
obtain a null collection of mutually exclusive -disks E, ..., E., which
miss U X such that each E is contained in some Int (E.), each
Bd (E) c I(X S) and each non-degenerate component of a Bd (E) n
is an arc which spans Bd (D’).

X" (X"Let X" denote the Sierpinski curve n ((J Int (E))) Each
component of S X" has diameter less than . Use the Corollary to Lemma
3.2 to find a -homeomorphism h of M onto itself which is the identity on
C1 (S D’) u (U X), which takes D’ onto itself, and which adjusts I(X’, D’)

I(X’, D) so that h(I(X’, D’)) contains X" D’n The -homeomorphism
h-1 pulls X" D’ D’ h-1 X"n back into I(X’, so we have r D’) I(X’, D)

Define the promised Sierpinski curve X to be that component of
h-(X’’ n D’) whose diameter exceeds e In the next paragraph we show that
there is exactly one such component.

Since each X- has diameter exceeding e and is contained in h-(X’’ n D’)
there is at least one component of h-(X’’ D’n whose diameter exceeds e.
Suppose there were two such components, X(1) and X(2). Let Z be a set
in D’ h-(X’’ D’) which is irreducible with respect to separating X(1)
from X(2). Since D’ is unicoherent Z is connected and is contained in some
component of D’ h-(X’’ D’n ) which is the image under h- of some com-
ponent of D’ (X" D’n Because of this h(Z) has diameter less than
so Z h-(h(Z)) has diameter less than 3. Thus Z is contained in a
normally situated e-disk in D’. Such a disk neither separates D nor contains
all of X 1 or ofX(2) so Z cannot separate X 1 fromX(2). This contradic-
tion comes from our assumption that there was more than one component of
h- X’’ Dn ) with diameter exceeding e. Thus X is well defined.
We now show that X is tme Sierpinski curve normally situated in D

such that the components of D X hve diameters less than e nd such that
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(J X c I(X,D). ThesetXis asubset of h-l(X’’) so ifitis a Sierpinski curve
it is a tame one. Note that (J X h-(I(X’’, S)). Let 01, 0,
denote the components of D X. For each integer i, C1 (00 n X n Int (D)
must be contained in h-(A (X’, S) ). Thus if C1 (0) is contained in Int (D)
then Bd (C1 (0)) is a simple closed curve of diameter less than 3 which is
a component of h-(A(X’’, S)), and hence C1 (00 is disk of diameter less
thn which misses X. Similarly if C1 (0) meets Bd (D) then
C1 (00 n X is an arc in h-(A(X’’, S)) which misses UX, spans Bd (D),
and has diameter less than 3 so C1 (00 is a disk of diameter less than e
which meets Bd (D) in exactly an arc whose interior is contained in 0.
It follows from the one densionality of X that C1 (0), ..., C1 (0),
is a dense null sequence of mutually exclusive e-disks which are normally
situated inD and miss U Xi. Considered asa subset of S, X is the complement
of the uMon of the interiors of those C1 (0)’s which are contained in Int (D)
and the interior of the big disk which is the sum of C1 (S D) and all those
C1 (O)’s which meet Bd (D). Thus X is a tame Sierpinski curve normally
situated in D such that the components of D X have diameters less than e
and such that UX c I(X, D).

LEMMA 5.2. Suppose that M is a 3-manifold, and that D and D2 are disks
in M ch that D n D is an arc A Bd (D) n Bd (D2). Suppose that X
and X are tame Sierpinski curves normally situated in D and D respectivvly
so that

Bd (D) Int (A) c I(Z, D) (k 1, 2).

Tn there are me Sierpinski curves X and X normally situated in D and
D2 respectively so that X c X (k 1, 2) and so that X’ n A X n
Furtrmore if (X2 n A) c (X n A) then the curves can be chosen so that

Proof. We prove the lemma first for the special ease where

(X n A) c (X, n A).

From the proof of Lemma 5.1 there is a Sierpinski cue X’ in D which
contains Bd (D) o X in I(X D) and which lies on a disk D’ that is
locally tame modulo Bd (D) Bd (D).

Let Dn, , D,,, denote the closures of those components of D X,
whose closures intersect A. EachD n A is an arc whose interior misses X.
We employ Lemma 3.1 as we have previously to find a collection of mutuMly
exclusive arcs t, t, in I(X’, D) which span Bd (D) and whose
interiors miss X so that for each t the closure of one of the components of
D, t is a disk D whose intersection th Bd (D) is the same as D n A.
These properties insure that the D’s are mutually exclusive and that each
D Bd (D n A) misses X.

Let X denote the Sierpinski curve X X’ n ( Int (D, u D)), and
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set X’ X. Use [2, Theorem 7] to find a homeomorphism g of D u D
intoM which is the identity on uX and which takes (D u D) (X’uX)
onto a locally tame set. Lemma 4.1 shows that g(D) is tame. Thus g(A)
is tame. Since Bd (D.) Int (A) lies in X. it is tame. But g(Int (D))
is locally tame just as in the proof of Lemma 4.1 so we may conclude from
Lena 4.1 that g(D) is tame. Ts shows that X is tame. By construc-

Ztion X X nd ( a A) (X a A)
Now we prove the generl cse of the lemm.
Mking use gia of the proof of Lemm 5.1 we find Sierpinski curve
X in D such that Bd (D) I(X, D) nd such that X’ lies on disk D’

Dwhich is loclly tme modulo Bd Bd (D) Then imitating step
ia the proof of the specil cse of this lemm we cut out prt of X" to obtain
a tme Sierpinski curve in D such that

Bd(D) Int(A) I(X" D) and A X A.

From Lemma 5.1 we find a tame Sierpinski curve X in D such that
vu ivX u . I(X, D). But now X A X A and we can apply the

special case of this lemma to find tame Sierpinski surves X’ X in D
and X in D such that Z c Z (k 1, 2) and (Z, A) (X, A).

IEMMA 5.3. Suppose that M is a 3-manifold, W is a subse$ of M which is
homeomorphic o afinite polyhedron ofpure dimension two, and Tis a curvilinear
triangulation of W with i-skeleton W. Let A A, denote he 2-sim-
plexes, the 1-simplexes, and v v he vertices of T.

Suppose ha is a positive number.
Then there is a universal cure X in W which is normally situated wih respec

to T such that each component of W X has diameter less $han and such hat
each X A is a tame Sierpinsi curve.

Furthermore if {Y} is a finite collection of ses in W where each Y misses
Wo and is either a tame arc in someA or a ame Sierpinski curve normally situated
in some A, hen X may be chosen so tha [J Y I(X, W).

Proof. For each 2-simplex A and each vertex v on A let E be a disk of
diameter less than e/2 such that its intersection with Bd (A) is an arc whose
interior contains v. Choose the (E)’s so that they miss [J Y. and so that
two of them intersect only if they are associated with a common vertex v.
For each E let B denote the arc C1 (Bd (E) Int (A)).
For each 1-simplex and each vertex v on . let s be an arc on with

endpoints v and p. where p is accessible from some Int (A) by a tame arc.
Choose s. so that it does not intersect any B. Lemma 5.1 shows that such
arcs s. can. be found. From Lemmas 5.1 and 5.2 a p. is accessible from an
Int (/) by a tame arc if is a face of A.
Use Lemma 5.1 to find in each A a tame Sierpinski curve X which is nor-

mally situated in A such that each component of A X has diameter less
than /2, such that every Y. that is contained in A is contained in I(X,
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such that every p that is contained in Bd (A) is contained in I(X, A),
and such that the closure of no component of A X intersects both some
B and some s.
Now use Lemma 3.1 to find in each E an arc B which spans Bd (A),

lies in I(X, A), and has p’s for its endpoints. The conditions on the choice
of X enable us to find such arcs. For each E let E denote the subdisk of
E which is the closure of that component of A B which contains v.

Partition each A into disks as indicated in Figure 5.1 so that Bd (G)
is contained in I(X,/). For each F let X denote the Sierpinski curve
X F. For each 1-simplex letA., ...,h denote those 2-simplexes
vhich have as a face.
By repeated applications of Lemma 5.2 we find for each F a tame

Sierpinski curveXinFwhich containsX and which is such that
X. contains eachX . (r > 1). By further applications of
Lemma 5.2 we find in each F. (r > 1) a tame Sierpinski curveX
vchich contains X. and whose intersection with . is X. a.
For each A let X denote the Sierpinski curve (X G) u ([J X.). Let

X denote the sum J X. Because theX.’s match up along the ’s, X is a
universal curve. By construction no X meets W0 so X is normally situated
with respec to T. Since each X contains the part of X which misses the
e/2-sets E we see that each component of a , Xhas diameter less than
e/2 and thus that each component of W X has diameter less than e.
Further since each I(X, A) contains the Y’s that are contained in A
we find that [J Y I(X, W). To see that each X is tame use [3, Theorem
10] to find a homeomorphism g of W into M which is the identity on X and

J2

FIGURE 5.1
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which replaces W X by a locally tame set. Since each X is the finite
sum of tame Sierpinski curves each g(A) is tame by Lemma 4.1 and thus
each X is tame.

6. General position theorems for topological embeddings
of polyhedra

The promised theorems follow Lemma 6.1. The two theorems serve dif-
ferent purposes. Theorem 6.2 is the more natural generalization of Bing’s
result [10]; however, Theorem 6.1 is included because the proofs of the two
theorems are so similar. Theorem 6.1 is tailor made to be used in the proofs
of major theorems in [11], [12].

LEMMX 6.1. Suppose that D is a polyhedral disk in E, L is a straight line
which pierces D at a point p, and is a positive number.

There is a pwl homeomorphism h of E onto itself which is the identity on L
and outside an -neighborhood of p so that a neighborhood of p in h(D) lies in
the plane P through p which is perpendicular to L.

Proof. Let T be a rectilinear triangulation of E of mesh less than e/2 in
which both L and D underlie subcomplexes. Let vA be a 3-simplex in
Int (st(p, T)) which is the join of a point v on L and a 2-simplex A that is
pierced by L and misses D so that p is contained in Int (vA). The set
D n Bd (vA) is a polyhedral simple closed curve J. Since L pierces D at
p, J must separate v from A on Bd (vA). Let J denote the simple closed curve
P n Bd (vA). It also separates v from A on Bd (vA).

Define h on Bd (vA) so that it is a pwl homeomorphism of Bd (vA) onto itself
which is the identity on v and on A and so that it takes J onto J’. Extend
h to Int (vA) by sending each interval between p and a point x of Bd (vA)
linearly onto the interval between p and h(x). Let v’ be a point of L in
E vA so that vA v’A Int (st(p, T)). Extend h to v’(vBd (A)) by
sending each interval from v’ to a point x of v Bd (A) linearly onto the interval
from v’ to h(x). The homeomorphism h is the identity on Bd (v’A) so we may
define h to be the identity on E v’A and thus to be the identity except in
an -neighborhood of p.

Since h is the identity on v, v, p, and A it is the identity on L. The open
2-cell h(D) n Int (vA) is a neighborhood of p in h(D) which lies in P.

THEORE 6.1. Suppose that M is a 3-manifold with triangulation T whose
i-skeleton is T, D is a disk in M, and e is a positive number.
Then there is a tame Sierpinski curve X which is normally situated in D,

there is an e-homeomorphism g of D onto a tame disk in M, and there is an
e-homeomorphism h of M onto itself such that

1. each component of D X has diameter less than ,
2. g is the identity on X,
3. h is the identity except in an e-neighborhood of D,
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4. h(D misses To and h(D n T is afinite collection of points in h(I(X, D )
where l-simplexes of T pierce h(D),.

5. h(g(D) is a polyhedron in general position with respect to T., and
6. h(g(D) n T h(X) n T h(I(X, D) n T..

Proof. Let 0 be an e-neighborhood of D in M. All homeomorphisms h
constructed in this proof will be assumed to be the identity outside O. In
each case the reference used to assert the existence of a homeomorphism h
permits this assumption.
From [10, Theorem 3] there is an e/20-homeomorphism h of M onto itself

so that h(D) misses To and h(D) n T is a finite collection of points p,
p, where 1-simplexes of T pierce h(D). From [4, Theorem 5] and [14,
Theorem 6] each p lies on a tame arc A in h(D), and thus each h-[(p)- Alies on a tame arc h () in D.
From Lemma 5.1 we find a tame Sierpinski curve X which is normally

situated in D so that each component of D X has diameter less than e/20
--1 x4and so that Oh () I(X,D)

Use [3, Theorem 10] to find an e/20-homeomorphism g of D into M which
is the identity on X and which takes D X onto a locally tame set tha
misses h (T).
Lemma 4.1 shows that h(g(D)) is tame. From [1], [22] we find an s/20-

homeomorphism h of M onto itself which is the identity on T so that
h.h(g(D)) is locally polyhedral modulo [Jp h.h(D) n T. Then from
[21, Theorem 2] we find an e/20-homeomorphism h of M onto itself which is
the identity on T so that hh.h(g(D)) is a polyhedron.
For any 1-simplex s of T the join of s with lk (s, T) can be simplieially

embedded in E. Thus we can use Lemma 6.1 to find a pwl e/20-homeo-
morphism h of M onto itself which is the identity on T so that the poly-
hedral disk h h h h(g(D)) is in general position with respect to T near the
points p. Let h be a pwl e/20-homeomorphism of M onto itself which is
the identity on a neighborhood of T so that the polyhedron h h h h h(g(D))
is in general position with respect to T..
Each component of g(D) X has diameter less than e/20 + 2(e/20).

Since each h (i <_ 5) is an s/20-homeomorphism of M each component of
h hhh h(g(D) h h ha h h(X) has diameter less than 3e/20 + 5(2e/20)

13e/20. From the corollary to Lemma 3.2 there is a 13e/20-homeo-
morphism h of M onto itself which is the identity on T1 so that h takes
hhhhh(g(D)) onto itself and so that hhhhh.h(I(X, D)) con-
tains h h h h. h(g (D)) n T.
The promised homeomorphism h is defined to be hhhhh:h. It is

a 5(e/20) -t- 13e/20 or e-homeomorphism of M onto itself. Conditions 1-3
in the conclusion of the theorem are satisfied because of the choice of X and g
and the fact that each his the identity except on 0. Since h(Bd (D)) misses
T and since h (i > 1) is the identity on T, h(Bd (D)) misses T. Theorem
3.4 of [61 shows that each of the points p of h(D) n T is a point where a
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1-simplex of T pierces h(D). Thus Condition 4 is satisfied. Since
hhhh.h(g(D)) is a polyhedral disk in general position with respect to
T. and since h moves that disk onto itself we see that Condition 5 is satisfied.
Condition 6 is satisfied by the definition of h.
In [11], [12] we will make use of Theorem 6.1 in situations where we will

want to avoid the tedious restatement of the conclusions of the theorem.
To this end we define here a property, Property Q, as follows. Suppose that
M is a triangulated 3-manifold with triangulation T whose/-skeleton is T,
D is a disk in M, X is a tame Sierpinski curve normally situated in D, and

is a positive number. If there is an -homeomorphism g of D onto a poly-
hedral disk in M such that when is substituted for e and the identity homeo-
morphism for h in the statement of Theorem 6.1 the six conditions are satisfied
in the conclusion of the theorem, then we say that the quadruple (D, X, T, )
has Property Q.

THEOREM 6.2. Suppose that M is a (triangulated) 3-manifold, W is a set
in M homeomorphic to a finite polyhedron of pure dimension two, T, is a
curvilinear triangulation of W, and V is a tame (polyhedral) subset of M
homeomorphic to a finite polyhedron of dimension less than or equal to two.
Suppose that is a positive number.
Then there is a triangulation T ofM (there is a subdivision T of the triangula-

tion of M) in which V underlies a subcomplex, there is a universal curve X
in W which is normally situated with respect to Tw, there is an e-homeomor-
phism g of W onto a tame set in M, and there is an s-homeomorphism h of M
onto itself such that

1. each component of W X has diameter less than ,
2. g is the identity on X,
3. h is the identity except in an s:neighborhood of W,
4. h(g(W) is a polyhedron in general position with respect to V where V

is considered as a polyhedron in T, and
5. h(g(W) n V h(X) n V h(I(X, W) n V,

Proof. As before let 0 be an e-neighborhood of W. Each h will again be
considered to be the identity outside O.

If M is already provided with a triangulation in which V is a polyhedron let
T be a subdivision of the triangulation in which V underlies a subcomplex,
otherwise use [1], [22] to find a triangulation T of M in which V underlies a
subcomplex.
Use Lemma 5.3 and Lemma 4.2 to find a universal curve X in W which is

normally situated with respect to T so that each component of W X
has diameter less than e/6 and so that there is an e/6-homeomorphism g
of W onto a tame set in M such that g is the identity on X.
From [1], [22] there is an e/6-homeomorphism h of M onto itself such that

h(g(W)) is a polyhedron in T. We might as well assume that h(g(W))
is in general position with respect to V.
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Now each component of g(W) X has diameter less than 3t/6 so each
component of hl(g(W)) h(X) has diameter less than 3/6 - 2(t/6) 5/6.
Thus from Lemma 3.2 there is a 5t/6-homeomorphism h of M onto itself
such that for each simplex s of T, h takes hl(g(s)) onto itself and such
that

h.h(g(W)) n V h(g(W)) n V hh(I(X, W)).

Let h denote the e/6 W 5/6 or e-homeomorphism h hi. Just as in the
proof of Theorem 6.1 the five conditions in the conclusion of the theorem are
satisfied.
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