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1. Introduction

A partial duality for homomorphisms between matrix algebras of continu-
ous functions into the real numbers, the complex numbers, or the integers
modulo a prime is obtained in 2. This leads to results oa retractions and
splitting extensions of algebras of continuous functions. We then present, for
homomorphisms between matrix Mgebras of continuous real- or complex-
valued functions, a representation by means of a continuous mapping between
the underlying spaces and an automorphism. This is used in 3 to obtain
natural bijection from the family of equivalence classes of extensions of
matrix algebra of continuous functions by another to a subset of the product
set of continuous mappings of certain related spaces and quotient groups of
groups of units in related algebras. Finally, we give conditions under which
an extension of an algebra of real- or complex-valued functions by another
consists of functions that are continuous with respect to a topology obtained
naturally from the topologies on the original spaces (cf. [9, Corollary 1]).
For background the reader is referred to [3] and [10]. We shall use the nota-

tion, terminology, and results of [3] and [10] freely.
In this paper, the real field, complex field and field of integers modulo

prime p are denoted by R, K, and J, respectively. The letter X will be
generic symbol for R, K, or J after Corollary 1, it will indicate R or K only.
If the X-algebra A has an identity, the element 1E of L,,(A) is written simply
E, and the identity matrix is designated by I. We do not assume that
X-homomorphism between X-algebras with identity necessarily maps one
identity to the other.

All topological spaces are assumed to be completely regular Hausdorff
spaces. The algebra of all continuous functions from a space X into
will be denoted by C,,(X, X), the subalgebra of bounded functions by
C* (X, X), and the subalgebra of functions vanishing at infinity by C,0(X, X).
The symbol X will be omitted from these three expressions when it seems
propriate, and the subscript n will not be included when n 1. Note that
L,,(C(X, X)) is a X-algebra, and that there is a natural X-isomorphism of
C(X, X) onto L(C(X, X) ). We shall use whichever X-algebra is conven-
ient t ny point in the discussion. The sme symbol will be used for
constant function and the matrix that is its value. For F e C,,(X), the
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trix obtained by extending each element of F to vX or to fiX will be written
F or F, respectively.

Since C 0 for any algebra A of :-valued continuous functions, by [10,
Proposition 2] we may and shall represent any extension of A by A with the
graph r of the regular homomorphism 0 h - P that it induces. If we
choose as (f) so that [10, (4)] holds, then we have O(f) as + [A], for
all leA. Thus the elements (f, a) of 1 may be written in the form
(f, + g), where g e A.

2. DuliCy a.d retrcctions

The first step in studying retractions is to generalize the duality theorem
given in [3, 10.8]. To prove Proposition 1 for the cases K and J, we
require two lemmas.

LEMMA 1. If X is a realcompact space, and x is a K-algebra homomorphism
from C(X, K) onto K, then there exists a point x of X such that x(f) f(x) for
all f e C(X, K).

Proof. If x(f) were not real when f e C(X, R), then f x(f)l would be
invertible, which is impossible. Thus, x restricted to C(X, R) is a homo-
morphism onto R, so the result follows from [3, 10.5(c)].

LEMMA 2. Let I be any proper ideal in C(X, J), and set

0}.
Then the family {Z(f) f e I} has the finite intersection property.

Proof. This follows from the identity

Z(f) n Z(g) Z(/"-1 + g’-- (fa)’-).
])ROPOSITION 1. Let X and Y be completely regular spaces, with X realcom-

pact. When is finite, assume in addition that Y is locally compact and zero-
dimensional and that X is compact and zero-dimensional. Then every homo-
morphism

T C(X, ) .--. C,(Y, )
induces a homomorphism

To C(X, ) -- C(Y, )

and a unique continuous mapping from the set D {y e Y (TI)(y) O}
into X such that for g e C X To g y g y for all y e D and
(To g)(y) 0 for all y Y D. The set D is open-and-closed in Y.

Proof. For each y e D, we consider the mapping from C(X, ) into L()
defined by F -- TF(y). Its restriction to the constant functions induces a
-algebra endomorphism t of L(). Since (TI)(y) O, t 0; and
because L(,) is a simple algebra, t is a monomorphism, and hence a non-
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singular linear transformation of L(E). Thus t is onto L(), whence so
is the mapping F TF(y).

Let f e C(X, 3). For y e D, T(S(f)) (y) e L(), and because S(f) is
in the center of C(X, ), T(S(f))(y) is in the center of L(). Thus,
T(S(f))(y) S(k) for some/ e. Writing k g(y), we obtain in this
way a function g C(Y, ) such that T(S(f)) S(g). Note that g(y) 0
for y e Y D. The -Mgebra homomorphism To C(.X, ) ---. C(Y, 3) is
now defined by S(T0 f) T(S(f)).
We first prove the result about under the assuraption that To 1 1 (so

that D Y). For each y e Y, the mapping g ---> (To g)(y) is a E-homo-
morphism of C(X, ).into ; and since (To 1)(y) l(y), it is onto . By
Lemmas 1 nd 2 nd the hypotheses on Y, the kernel of this homomorphism
is a fixed maximal ideal M in C(X, ). Because C(X, ) separates the
points of X, M has the form {g e C(X, ) g(p) 0} for a unique p e X.
We define (y) p. Clearly (To g)(y) g(cb(y)) for all g e C(X, ) and
y e Y (cf. [3, 10.5(c)]). Thus, To (g) g. Since C(X, ) determines the
topology of X, the proof of [3, 3.8] with the real field R replaced by shows
that is continuous. By [3, 10.2], is unique, b.ecause C(X, E) separates
points.
The proof for general homomorphisms To is obtained from the result above

in the same manner that [3, 10.8] is obtained from [3, 10.6]. We need only
observe that D is locally compact zero-dimensional if Y is, and that the Mgebr
of functions in C(Y, ) that are zero on Y D may be identified with
C(D, 5C), to which it is isomorphic under restriction.
The duality exhibited in Proposition 1 will now be, used to obtain a duality

for retracts. The proof is complicated slightly by the fct that a retract of
an Mgebra might be a retract of a direct summand.

THEOREM 1. Let X and Y be realcompact spaces, and assume they are com-
pact and zero-dimensional when is finite. Then C,(Y, ) is a retract of
C,(X, if and only if Y is a retract of X.

Proof. Assume that C,(Y, ) is a retract of C,(X, ). For homomor-
phisms

T C,(X, ;E) .--> C,(Y, ) and T’ C,(Y, :E) ---> C,(X, )

such that TT’ is the identity on C,(Y, ), we have T’(I) e and T(e) I,
where e is n idempotent in C,(X, :E). Let D be the open-end-closed set

{x X :e(x) 0},

and identify the sublgebra of functions in Ca(X, ) that are zero on X D
with C,(D, 3) By Proposition 1, there exist continuous maps Y --. D
and b’’ D -- such that To(f) f for f e C(D, ) and To(g) g’ for
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geC(Y,X). Now for g e C( Y, a:) andyeY,

(g,’,)(y) ((g,’),)(y) To(g,’)(y) (To(Tog’))(y)= g(y);

since C Y, ) separates points, ,’, is the identity on Y. Hence Y is a retract
of D. But D is trivially a retract of X, nd retraction is transitive; so Y is
retract of X.

Conversely, if Y is retract of X, nd, Y -- X, ,’ X --+ Y re maps
such that ,’, is the identity on Y, we define homomorphisms

T" C(X, ) C(Y, X), T’ C(Y, ) C(X, )

by T(F) F, T’(G) G’. Then for 11 G e C(Y, ), (TT’)(G)
G’ G, whence C Y, ) is retract of C(X, ).

COROLLARY 1. Let Y be a closed subset of a realcompact space X, and assume
that X is compact and zero-dimensional when is finite. Set

A {G eC(X, ) G[Y] {0}}.

Then C,(X, ) is equivalent to a splitting extension of A by C( Y, if and
only if Y is a retract of X.

Proof. If X is relcompct, then Y is realcompct [3, 8.10]. Hence, by
Theorem 1, Y is retract of X if nd only if C( Y, X) is retract of C(X, ).
By [10, Theorem 2], this occurs exactly when C(X, ) is equivalent to s
splitting extension of A by C( Y, ).

As special case of Corollary 1, we have precise characterization of those
compctifictions X of locally compact spces Z such that the extension C(X)
of Co(Z) by C(X Z) is splitting extension.
We note that by [7, Thm. 2, p. 215], Proposition 1, Theorem 1, nd Corollary

1 pply to Boolean rings nd p-rings.

Example 1. Let 1 be the discrete spce of positive integers. The struc-
ture space of the Boolean lgebr E of all subsets of N is N [4, p. 76]. Since
E is isomorphic to C(N, J), and every function in C(N, J) cn be extended
to N, one sees quickly that the intersection A of all the free maximal ideals
in E is the ring of all finite subsets of N. The structure space of A is N.
The structure space of the lgebrs a E/A is N N [7, Prop. 1, p. 205].
Since N N is not retract of N [2, Cor. 2.8], E is not equiwlent to
splitting extension of A by A. Of course, Corollary 1 yields more; we cn get
similar information bout C(N, ) when E is R, K, or any J.
Most of the results presented in the rest of the pper could be obtained for

J, but to simplify the statements we now restrict to the rel nd complex
fields.
The set of all nonsingular matrices U over the algebr of -vlued functions

on Y stisfying the condition U-FU C( Y, ) for ll F e C( Y, a:) wiI[ be
denoted by G(Y, ) or G(Y). We give some characterizations of G(Y).
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(1)
(2)
(3)
()

C(Y).

PROPOSITION 2. Let U [ui’] be a nonsingular n by n matrix over the
algebra of -valued functions on Y, and write U-1 Ivan.]. The following are
equivalent.

UeG,(Y).
For all i and j, U-lEvi U
For all i, j, , and l, vk uj C(Y).
The product of U 1-1 and n (not necessarily distinct) elements of U is in

Proof. The equivalence of (1) and (2) follows from the fact that each
F C,(Y) can be written in the form F .fiE. withf, e C(Y). Also,
the element of U-1Ei U in the ]d-th place is v u, so it is immediate that
(2) and (3) are equivalent.

(3) implies (4). Since U-1)-1 U, every element of U is the product
of U and a finite sum of terms which, apart from sign, are products of n 1
elements of U-1. Hence the product of U -1 and n elements of U may be
written as a finite sum of products, each having n 1 factors of the form
vk u. By assumption each vu e C(Y), so the product is in C(Y).

(4) implies (3). Each vu is a finite sum of terms which, apart from
sign, are products of the type described ia (4).
From the definition of G.(Y) and the equivalence of (1) and (3), it follows

easily that G(Y) is a group of units. The following example shows that in
general G(Y) properly contains the units of C,,(Y). Indeed, chere can be
elements in G(Y) such that no nonsingular scalar multiple is ia C(Y).

Example 2. Let Y be the unit circle, and let U be the 2 by 2 matrix of
functions on Y such that

u u sin (/2), u -u, cos (/2), 0 < < 2
Applying Proposition 2, we see easily that U G(Y, R). Now suppose
r is a nonzero scalar such that rU C.(Y, R). Then r is continuous except
possibly a 0, since ul is continuous and nonzero except at 0; also, r is con-
tinuous from the right at 0 because u has this property and u(0) 0. It
follows that r does not change sign, whence ru is not continuous at 0, a
contradiction.
The next theorem is an improvement on Proposition 1 for R or K,

and is related to [8, Theorem 1].
TEOnE 2. Let X and Y be completely regular Hausdorff spaces, and let

T C,(X, ) -- C,( Y, ) be a -algebra homomorphism. Set
n {ye Y" (TI)(y) 01.

Then there exists a continuous mapping ofD into vX, and a unit U G,(D, ),
satisfying

TF(y) U-l(y)F((y))U(y), if y eD,
O, if yY-- D, FC,(X,).
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Furthermore,. the mapping (F, y) ---> U-(y)FU(y) from L,,() X D into
L,,() is continuous, D is an open-and-closed subset of Y, and [D] is dense in
vX if and only if T is one-to-one.

If we assume in addition that T maps C,(X, ) onto C,,( Y, ), then is a
homeomorphism of Y onto a C-embedded subset of vX.

Proof. As observed in the proof of Proposition 1, for each y e D, the endo-
morphism t, is a linear automorphism of L(3), so it is the identity on the
center. By [6, p. 237], there exists a nonsingular matrix U(y) such that
t(F) U-I(y)FU(y) for each F e L(). This defines U on D. Now the
restriction of TE to D is U-1E U, so U-IE U e C,(D). By Proposition 2,
UeG,(D).
By Proposition 1, there exists a continuous mapping 4 D .---> vX such that

To f(y) fv((y)) if y e D and To f(y) 0 if y e Y D. Thus for y e D,
T(S(f))(y) S(Tof(y)) S(f’4(y)).

Now given any F [f] e C,,(X), we write F _,. S(f)E.
TF(y) _,. T(S(f))(y)TE,(y)

Then

,. S(.f(4(y) U-I(y)Ei U(y)

U-(y)(. S(]O(y))E)U(y)

U-(y)FV(O(y)) U(y), yeD.

It is obvious that TF(y) 0 for y e Y D.
For fixed constant function F [c], if we write U [u], U- [v],

the ]c/-th element of U-1FU is

)-. v, c. u., .c v, u,.

By Proposition 2, each v, uz e C(D), so each element of U-IFU is a linear
combination of continuous functions on D, with coefficients c**. From this
one can show without difficulty that the function (F, y) U-(y)FU(y)
from L.() X D into L.(3) is jointly continuous.

Proposition 1 implies that D is an open-and-closed subset of Y. The re-
maining statements of the theorem may be obtained by modifying the proof
of [8, Theorem 1], replacing (., y) by U-(y)(.)U(y) and a(., y) by
U(y) (.)U-(y). In this case, the same method can be used to prove the
joint continuity of both functions.

3. Extensions of algebras of continuous functions

We consider only extensions of C,,o(Z, ), where Z is locally compact, by
Cn(Y, ), where Y is realcompact, and R or K. We shall be concerned
with spaces that are, as sets, the union of the given sets Z and Y. The various
topologies on Z u Y that will arise are obtained as follows (cf. [5, p. 121]).
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DEFINITION. Let W be a subspace of fZ that contains Z, with W Z
closed in W, and let g be a continuous mapping from W Z into Y. The
adjunction space obtained by adjoining W to Y by means of g is defined to be
the quotient space of the topological sum of W and Y in which each point
in the range of g is identified with all of the points in W Z in its preimage
under g, while points in Z, and in Y but not in the range of g, remain distinct.
We allow the possibility that W Z and g be the empty function, that is,

that the adjunction space be the topological sum of Z and Y. Also, it may
turn out that distinct adjunction spaces going with the same spaces Z and Y
are homeomorphic; but they are essentially different, relative to the embedding
of Z and Y in them.

PROPOSITION 3. Let Z be a locally compact space. Then Mcnocz is
:E-isomorphic to C*(Z), and Pccz is :E-isomorphic to C,,(Z Z).

Proof. By [10, Theorem 3], M0<z is :E-isomorphic to a subalgebra of
C(Z), and it is clear that the image of M0cz in C(Z) contains C*(Z). Let
f e C(Z) be unbounded, and let {z.} be a sequence of points in Z obtained by
selecting one point from the preimage of each point of a sequence in the range
of f that approaches infinity. Define a function g on the compact set
{z} u (Z Z) by g(z) 1/](z), and g[SZ Z] {01. Then g has an
extension to a function g’ e C(Z) such that h g’ Z Co(Z). Obviously,
fh Co(Z). Thus, by [10, Theorem 3], f is not in the image of Mc0z.
Hence Mz is :E-isomorphic to C*(Z).
Now the :E-algebra C,,o(Z) is :E-isomorphic to L,,(Co(Z)), and Ccz 0;

so by [10, Theorem 4], Mcnoz is :E-isomorphic to L,,(Mcoz). It follows
that L(Mccz) is :E-isomorphic to L,,(C*(Z)), which is :E-isomorphic to
c*.(z).

Since C* (Z) is :E-isomorphic to C,,(Z), the second conclusion follows easily.

THEOREM 3. Let Z be a locally compact space and Y a realcompact space.
There is a natural bisection from the family of euivalence classes of extensions
of C,,o(Z) by C,(Y) onto the set of ordered pairs (, I), where is a continuous
mapping of an open-and-closed subset D ofZ Z into Y and I is an elemen$

o] he group G,,(D ) modulo its center.

Proof. By [10, Proposition 2], there is a natural bijection from the family
of equivalence classes of extensions of C,o(Z) by C,(Y) onto the family of
:E-homomorphisms of C,(Y) into Pc.,z and by Proposition 3, Pc,,z is
:E-isomorphic to C,(Z Z). Thus, we need only show that there is a
natural bijection from the family of :E-homomorphisms of C,(Y) into
C,(Z Z) onto the set of ordered pairs (, U) of the type described.

Now given any pair (, U), let D be the domain of and U any element
in the class . We associate with (, [7) the :E-homomorphism

T" C,,(Y) C,,(Z Z)
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defined by
TF(z) U-l(z)F((z) U(z) if z e D,

TF(z) 0 if ze(Z- Z) D.

This is clearly well defined. By Theorem 2, the mapping (, ) --. T thus
defined is onto. One can show without difficulty that it is one-to-one, by first
disposing of the case T 0, then considering the set of constant matrices on
D, and finally choosing F to be a suitable scalar matrix.

Extensions of C*-algebras have been studied in [1]. Theorem 3 gives more
precise information about a special kind of C*-algebra than may be found in
[1], where ordinary equivalence classes are not computed. Also, Proposition
3 could be deduced from [1, Theorem 3.15]; our approach is quite different.
An extension of Co(Z) by C(Y) will be said to be equivalent to a subalgebra

of C(X) if it is equivalent to an extension of the form

0 ---+ Co(Z) " C(Y) ---* O,

where E’ is a subalgebra of C(X), a’ is the monomorphism naturally induced
by an embedding of Z into X, and ’ is the epimorphism naturally induced by
restriction to a subspace of X homeomorphic with Y.

TI-IEOREM 4. Let Z be a locally compact space, Y a tea!compact space, and
X a space containing complementary subspaces homeomorphic with Z and Y,
such that Y is closed in X. An extension of Co(Z) by C(Y) is equivalent to a
subalgebra of C(X) if and only ifX is the adjunction space obtained by adjoining
a subspace of Z to Y by means of a restriction oJ the corresponding continuous
mapping of an open-and-closed subset ofZ Z into Y.

Proof. Let E be an.extension of Co(Z) by C(Y), let 0’ be. the correspond-
ing continuous mapping of an open-and-closed subset V of Z Z into Y,
and let X be the adjunction space obtained by adioining the subspace Z u U
of Z to Y by means of 0’ U, where U c V. For each f e C(Y), 0(f) may
be identified with1 (Z Z). But also 0(]) f0’ on V, whence f0’
on V. Thus the function h defined on the topological sum.of Y and Z u U
by h Y f, h lZ as, and h U f0’, is continuous. It follows from the
definition of adjunction space that h induces a function ] C(X) such that
flY f and ]iZ zs. For any g e Co(Z), the function defined by
IY 0, iZ g, is clearly in C(X). We define a mapping p of the
extension E onto the subalgebra

{] -ff f e C(Y), g e C0(Z)}

of C(X) by p(f, y + vg) ] + g. It is easy to verify that p is a homo-
morphism, if one observes that- is additive on Co(Z), and ag’ for
f’e C(Y), g’ Co(Z). It then follows that E is equivalent to a subalgebra of
C(X).
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Conversely, assume that

O Co(Z) E C( Y) 0

is equivalent under # to

a’ E’ ’0 --* Co(Z) C(Y) --+ 0,

where E’ is subMgebr of C(X), nd X is spce th% contains complemen-
tary subspaces homeomorphic with Z nd Y, such that Y is closed in X.
We suppose, s we my, that E is the graph of regular homomorphism.
For ny z e Z, choose g, e Co(Z) so that g,(z) 1. Note that for ny
g eCo(Z),(O, vg) #a(g) a’(g) g. NowfornyfeC(Y),

(/, )(z) [(f, )(o, ,)](z)

[((f, ) (0, g,) )l(z)

(o, ( ))(z)
g(z)

z(z

Thus, (f, ) Z z]. We also have

f (f, z) #’($, ) (f, ) Y.

Let 0’ be the continuous mpping of an open-end-closed subset V of/Z Z
into Y corresponding to the class of extensions containing E. Let i’ denote
the continuous extension to #Z of the embedding mp of Z into #X, nd let
W be the preimage of X under i’. Now W Z is the preimge of Y in W
[3, 6.11], so W Z is dosed subset of W. Also i’[ W is dosed mpping
[3, 10.13], so X is the djunetion spce obtained by djoining W to Y by
means of i’ (W Z). Next, let q e W Z, nd let {z} be net in Z con-
verging to q. Then {i’(z)} converges to i’(q). Since

k(1, o-)(i’(q)) I,

{b(1, )(i’(z))} {,(z)} converges to 1. Hence (q) 1, or

o(1)(q) i,

whence q e V. This implies that W Z V. If we show that O’ (W Z)
i’l (W Z), then it will follow that X is the adjunction space obtained

by adjoining W to Y by means of 0’1 (W Z). Suppose, on the contrary,
that there exists p e W Z such that O’(p) i’(p). Let {z} be a net in Z
converging to p. Choose f e C(Y) so that f(O’(p)) 1 and f(i’(p)) O.
Since a]V fO’, we have a(p) 1, so that {(z)} converges to 1,
whence {a](i’(z))} converges to 1. Hence {i’(zr)} converges to i’(p),
{#(f, zz)(i’(z))} converges to 1, and #(f, zz)(i’(p)) 0; this contradicts
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the continuity of #(f, ) at i’(p). It follows that

z) i’i (w z).
Example 3. Let Z R, nd let Y be one-point spce, so that

C(Y, R) R. Since Z Z consists of two connected open-end-closed
subspces [3, 6.10], there re exactly four continuous mppings of n open-
nd-closed subset of Z Z into Y, nmely, the mppings whose domains
re Z Z, the two components of Z Z, nd the empty set. Thus there
are exactly four equiwlence classes of extensions of Co(R, R) by R. The
second nd third classes contain extensions th% re isomorphic, although
inequivlent. The lst class contains the direct sum of Co(R, R) nd R.
In the first three cses, there re infinitely mny nonhomeomorphic d]unc-
tion spces X such that some sublgebr of C(X, R) is in the equiwlence
class; in the lst cse, there is only one, nmely, the topological sum of Z
nd Y.
Now let Y be two-point spce. Similar considerations show that there

re exactly nine possible continuous mppings, nd hence nine equivalence
classes of extensions.
COOLLAV 2. Let X be a locally compact space, Y a compact subset of X,

and Z X Y. There is an equivalence class of extensions of Co(Z) by C(Y)
containing a subalgebra of C(X).

Proof. The mpping e th% embeds the topological sum of Z nd Y into
fiX is continuous. It hs continuous extension e’ %o the topological sum
of fZ nd Y. Since X is locally compact, it is open in/X [3, 3.15(d)]. Let
W denote the preimge of X under e’. Then W n/Z is open in Z, nd hence
W n (Z Z) is open in/Z Z. Also W Z is the preimge of Y under
e’, nd since Y is compact it is closed in X; thus

(w- z) z)
is closed in Z Z. It is easy to verify that X is the adiunction space ob-
tained by adjoining the subspace W n Z ofZ to Y by means of the mapping
e’ restricted to the open-and-closed subset W n (Z Z) of/Z Z. Hence
the equivalence class of extensions corresponding to this mapping contains
subslgebra of C(X).

Compactness of Y is not necessary in Corollary 2, as one sees easily by
taking X to be R and Y to be {x R x _< 0}. Now it is clearly necessary
that Y be C-embedded in X, so one would like to assume only that Y is
closed, C-embedded realcompact subset of X. But. the following example
shows that this is not sufficient.

Example 4. LetX R,Y N, andZ X-- Y. Then X is a locally
compuct space and Y is closed, C-embedded reulcompuct subset of X.
But no extension of Co(Z) by C(Y) can be equivalent to u subalgebra of
C(X). For, as shown in the proof of Theorem 4, if an extension E is equiva-
lent to sublgebr E’ of C(X) then ech (f, ) in E mps to function
in E’ that coincides with a] on Z and f on Y. Choose f e C(Y) to be the
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characteristic function of the even integers, and let g be the image of (f, as)
in E’. Then f2 f, so

(lz) (lz) () () r- co(z).
But this is impossible, since there is a noncompact set A Z such that
glA 1/..

Alternatively, one can apply Theorem 4 directly. It is not hard to see
that X cannot be the adjunction space obtained by adjoining subspace of
Z to Y by means of the restriction of any continuous mapping of an open-
and-closed subset of Z Z into Y.
There seems to be no nice analogue of Theorem 4 for matrix-valued func-

tions. The following example shows that the only adjunction space on
which the functions will, in general, be continuous is the trivial one--the
topological sum of Z and Y.

Example 5. Let Z R, Y be a one-point space, and

O" C.(Y) C.(Z Z)
be the monomorphism onto the constant functions defined by OF(z) U-’FU
for all z e OZ Z, where U is u unit in C(Y) L() that is not in the
center. Then the induced mapping ’OZ Z -- Y is onto Y. Let
F e C.(Y) be a matrix that does not commute with U. Now (F, a) is an
element of the graph of 0, which is in the equivalence class of extensions of
Co(Z) by C.(Y) corresponding to (, ). Since a (OZ Z) O(F),
we have

lim,.= a(z) O(F) U-FU F.

It follows that (F, a) cannot represent a continuous function on ny ad-
junction space except the topological sum of Z and Y.
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