
INVARIANT IDEALS OF POSITIVE OPERATORS IN C(X). II

BY
H. H. ScEEa

The present pper constitutes the second part of study of ideals in C(X)
iavariant under given positive lineur operator. While it will be necessary
to have part I on hand for an uaderstanng of certain details, we shall
briefly recall some basic deflations, notations, and results of part I.
Throughout the paper, T denotes u positive linear operator on the complex

Bnach algebr C(X), where X is compact Hausdo. A T-ideal (Def. 1)
is a closed proper ideal J C(X) such that T(J) J. Every T-ideal J
gives rise to u positive operator T on C(X)/J. In general, C(X)/J is
identified with C(S), where S (called the support of J) is the uque closed
subset of X such that J {f f(S) (0)}. T is called irreducible (Def. 2)
if (0) is the only T-ideal; T-ideal J is maximal if and only if T is irreducible.
T is called ergodic (Def. 3) if for each f e C(X), the convex closure of the
orbit {L Tf, T2f, ...} contains u ed vector of T; if the semigroup {T"} is
bounded, ergodicity of T is equivalent with the strong convergence (for
n of the averuges

M,f n-l(f + Tf + + T"-f) Pf,

P being u positive projection onto the fixed space of T. If M, P norm
converges, T is called uniformly ergodic (Def. 3). If Te e where e(s) 1
for M1 s e X, T is called u Markov operator.

TEORE 1 (2). For each maximal T-ideal J, there exists an eigenvector
(measure) 0 of the adjoint operator T such that

J {/:( If I) 0}.

The correspding eigenvalue p 0 is zero iff is supported by a single poin$
s e X for which Te(s) O.

THEOREM 2 (3). If T is an ergodic Markov operator and denotes the
(weak* compact) set of all positive, normalized T-invariant measures X, the
mapping

is a bijecti of the set A of extreme points of to he set of all maximal T-ideals.
Moreover, every T-ideal I ( e@) is the intersection of all maximal T-ideals
containing it.
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4 (present paper) introduces the radical of a positive operator T, that is,
the intersection of all maximal T-ideals. For ergodic Markov operators, the
radical is characterized by Theorem 4. 5 is concerned with the study of the
peripheral spectrum (Def. 5). In addition to several new results obtained for
the point spectrum, it is shown that the peripheral spectrum of every irreduci-
ble Markov operator is a subgroup of the circle group (Thin. 7). Finally,
6 analyzes the ideal structure of weakly compact positive operators without
radical (Thin. 8).

4. The radical
Ir Theorem 2 we could assert that each T-ideal of the form I is the iter-

section of all maximal T-ideals containing it, but for arbitrary T-ideals the
assertion is, in general, false (Example 1 below). One reason for this situa-
tion is to be found in the fact that, in general, the intersection of all maximal
T-ideals is not the zero ideal. This leads us to the following definition.

DEFINITION 4. For any positive operator T on C(X), the T-radical R is
defined to be the intersection of all maximal T-ideals. In case R (0), T is
said to be radical-free.

Examples. 1. The Volterra operator T, where

Tf(s) Jo f(t) dt

forse[0, 1] X, (2, Example l) has R If:f(0) 0}. However, the
intersection of all T-ideals is (0).

2. The operator Tf(z) f(az), where z runs through the circle group I’,
is radical-free, whatever a e F. Similarly, every permutation matrix P
(Example 3, 2) defines a radical-free operator.

3. Obviously, every irreducible operator (Def. 2) is rdical-free.

It is clear from this definition that the T-radical R is the ideal whose sup-
port is the closure of (J S where I runs through all maximal T-ideals. Thus a
radical-free T is completely determined by the family (T) of its irreducible
restrictions, so that irreducible operators appear as building blocks for radical-
free operators. This is particularly evident when X is finite; in this case,
each radical-free T is u (finite) direc sum of irreducible components (6).

PROIOSITION 8. If R is the radical of T, the operator T, induced by T on
C(X)/R is radical-free.

Proof. In fact, if S is the support of R and q the canonical homomorphism

C(X) --, C(X)/

_
C(S),

then it follows from Proposition 2 that q-l(Rs) R where Rs denotes the
radical of TR. Thus Rs q(R) (0), since q is sur]ective, and hence T
is radical-free.
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This permits us to answer in part the question raised at the beginning of
of this section.

PROPOSITION 9. Suppose that the support of the T-radical R is the union of
the supports of all maximal T-ideals. If J is any T-ideal in C X), then J - R
is the intersection of all maximal T-ideals containing J.

Proof. If I denotes this intersection, it is clear that I J -t- R. Let us
show that I J W R. If again q denotes the canonical map

c(x) c(s),

then q(J + R) is a TR-ideal (note that J + R is closed in C(X)) with sup-
port H c S, say. Now each maximal TR-ideal has its support either con-
tained in H or disjoint from H so that, since Ta is radical-free (Proposition 8),
q(J + R) is the intersection of all maximal Ta-ideals containing it. Thus, by
Proposition 2, q(J -t- R) lq(K), where K runs through all maximal T-
ideals containing J + R. Application of q-1 shows that

K I q-lq(J + R) J W R.
The following result, a direct consequence of Theorem 1, shows radical-free

positive operators to have a property familiar from Hermitian operators in
Hilbert space. (A topological nilpotent in a Banach algebra is an element
with spectral radius 0.)

PoPosTIoN 10. If T >_ 0 is a radical-free topological nilpotent, then T O.
Proof. Since r(T) 0, by Theorem 1 each maximal T-ideal is actually a

maximal ideal in C(X), determined by a point seX such that Te(s) O.
But R (0) means that the set of these s is dense in X. Thus Te 0 and,
since T is positive, T 0.
We now characteri.e the radical of Markov and of ergodic Markov op-

erators. First, a sufficient condition for f e R.

POOSTON 11. If T is a Markov operator and if limn T" f (s) 0 for
each s e X, then f e R.

Proof. Since Te e, by Theorem 1 each maximal ideal is of the form I,
where >_ .0 and Tr . Since T"lf]is bounded, the pointwise conver-
gence to 0 implies that ( ill ) lim, (T" Ill ) 0 for each determining
a maximal T-ideal; hence f e R.

TEoE 4. Let T be a Markov operator with radical R. If T is ergodic,
then f R if and only if lim, M, If] 0. If T is uniformly ergodic, then
] e R if and only if lim T" fl 0.

We note the following corollary.

This is true, e.g., for weakly compact T.
M n-(/-t- T - T-).
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COROLLARY. Let T be an ergodic Marlov operator, and denote by P the pro-
jection which is the strong limit of the averages M,,. Then the radical of T is
identical with the radical of P, and the largest ideal in C(X) contained in the
null space of P.

Proof of Theorem 4. Suppose T is ergodic. The adjoiat P’ of P maps
MR (X) onto the space of real T-invariant measures on X; thus if >_ 0 is
any normalized measure we have, by Theorem 2, P’b contained in the weak
cow,vex closure of the set A each of whose elements determines a maximal
T-ideal. Now iffeRthenlf[eRandhenceP’b(Ifl) b(P f O,
which shows that P lfl 0. Conversely, if P If 0 then ),( If[ ) 0
for each k e A, since P’k k; it follows that Ill e R, hence f e R.
Suppose now that T is uniformly ergodic. We shall show that in these

circumstances, the restriction of T to R has spectral radius r’ < 1. Assuming
this to be true, we conclude that for each f e R the C. Neumann’s series
_,’ k-(+)T]f converges for all k, r’ < , < 1. This implies, clearly,
that lim Tlfi 0. On the other hand, if lim, Tifl 0 then f e R by
Proposition 11. It remains to prove this lemma.

LEMMA. If T is a uniformly ergodic Marlcov operator, then the restriction of
T to the radical R has spectral radius r’ 1.

In fact, suppose that r’ 1. There exists a normalized sequence-(f.) R,
f.

_
0, for which lim f Tf 0. This sequence defines an element

_
0, i] ] 1, of the space C(Y) constructed in the imbedding theorem

(1), and from the preceding it follows that Pf, 0 for all n. On the other
hand, the uniform ergodicity of T is equivalent with the uniform ergodicity
of T (which is clearly a Markov operator on C(Y) ), and it follows now that
P] 0 where P is the uniform limit of the averages of T. Hence from the
first part of Theorem 4 (applied to the operator T) we conclude that ] e-R
(the radical of T) while, evidently, T. Thus we have ] P] 0,
which is contradictory, Q.E.D.

Theorem 4 permits us to establish a simple condition for an ergodic Markov
operator on C(X) to be radical-free.

PROPOSITION 12. Let T be an ergodic Markov operator. For T to be radical-
free, it is sucient (and if X is metrizable, necessary) that there exist a strictly
positive T-invariant measure on X.

Proof. If again Pf lim M,,f(f C(X)), we have P’ for each T-
invariant measure b. Thus if is strictly positive, P is strictly positive,
whence R (0) by the corollary of Theorem 4. Conversely, if X is metriza-
ble, then X (being compact) has a countable base of open sets, and if R (0)
then the union of the supports of all maximal T-ideals is dense in X. So by
Theorem 1 there exists a sequence (.) of normalized positive T-invariant
measures whose supports have a union dense in X. Obviously,
is a T-invariant measure which is strictly positive.
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For ergodic Markov operators, Theorem 4 reduces the characterization of
the radical of T to the corresponding problem for a positive projection P
satisfying Pe e. Let us indicate a result on somewhat more general pro-
jections which is not difficult to prove. (For such projections, see also [13].)

PROPOSITION 13. For a positive projection P of norm 1 on C(X), the follow-
ing are equivalent assertions"

a) P is radical-free;
(b) X is the union of two disjoint, open and closed subsets Xo X such that

Peo 0 and Pe e for the respective characteristic functions, and such that P
is strictly positive on C(X).

5. The peripheral spectrum
Much of the motivatio ad stimulatio for the present study has its origi

in known spectral properties of positive linear operators, el. [6], [8], [9]. The
two first propositions of this section are contained in [9] (see also [10, Appen-
dix]).

PROPOSITION 14. If T is irreducible and r( T) 1, the space F of fixed
vectors of T has dimension at most 1.

Proof. It is sufficient to consider C(X). We note first that F is a vector
sublattice of C,(X). For, by Theorem 1, there exists a T which is
strictly positive; if f e F then Ill -< T Ill but (T Ill Ill 0 implies
If( e F. Now if f e F then f+ e F and f- e F, and since the closed ideals
generated by f+ and f-" are T-ideals and thus either (0) or CR(X), it follows
that at least one of f+, f- is zero. Consequently, F is a totally ordered Archi-
medean vector sublattice of CR(X), and hence of dimension at most 1.

COROLLXRY. If f e C(X) is fixed under T, then f is either strictly positive,
or strictly negative, or identically zero.

The peripheral point spectrum of T is the set of all eigenvalues (if any) con-
rained in IX] r(T).

PaOPOSITION 15. Let T be an irreducible operator satisfying r( T) 1,
and suppose that the peripheral point spectrum F0 of T is O. Then ]7 is a
subgroup of the circle group, and T is similar to an irreducible Markov operator.

Frog. Letaf= Tf, f O, a e Fo Thenifl <_ T f heace f Till
(proof of Proposition 14), and Ill is strictly positive. Clearly, if g is an
eigenfunction of T for another unimodular eigenvalue, then from Proposition
14 we conclude that If] g whenever f g 1. The operator U
on C(X) defined by Uh f I-1T( Ill h) is an irreducible Markov operator
similar to T. Of course, U and T have identical peripheral point spectra,
and the group property of 10 follows now from the lemma on unimodular
eigenfunctions (1).

The assumption r(T) 1 is essentially a normalization (Prop. 10). Moreover, if
0 is irreducible then C(X) is one-dimensional.
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Remark. Clearly, the unimodular eigeunctions of U form a group (under
ordinary multiplication) it can be shown that each unimodular eigeavalue is
simple [10, p. 272 Theorem 3.3]. Moreover, for each a e I’0 a corresponding
eigenfunctiou can be selected so that a -- g, is an isomorphism of F0 into the
group of unimodular functions on X.

DEFINITION 5 ([9], [10]). Let T be positive on C(X) with r(T) 1. The
peripheral spectrum of T is said to be cyclic if it is a union of cyclic subgroups
of the circle group. The peripheral point spectrum is called fully cyclic if,
whenever a(I 1 1) is an eigenvalue with an eigenfunction f If g, then
an fl g T(I f gn) for all integers n.

The notion of cyclic peripheral spectrum is obviously meaningful for opera-
tors on arbitrary (complex) Banach spaces. We point out that H. Lotz [6]
has shown that (the complexification of) each positive operator on a Banach
lattice, such that ( 1) ( T)-1 is uniformly bounded for X > 1 r(T),
has cyclic peripheral spectrum.

THEOREM 5. If T is radical-free and r(T) 1, the peripheral point spectrum
of T is fully cyclic. If, in addition, T is a Markov operator, then the fixed space
of T is a closed subalgebra (hence a sublattice) of C(X).

Proof. Let af Tf, where a 1 and f flg (g uaimodular). If I
is a maximal T-ideal and subscripts 1 denote the restrictions of f, g, to the
support Sr of I, then all Tz fl. Since Tx is irreducible (corollary of Propo-
sition 2), then from Proposition 14 and the lemma on uaimodular eigenfunc-
tions (1) we conclude that alfllg’ V(]flg) for all n eZ. The
first assertion is now an immediate consequence of the fact that T is radical-
free (i.e., the union of the supports of maximal T-ideals is dense in X).

Suppose now, in addition, that Te e. If f C(X) and Tf f, then
Tzf f and it follows from Proposition 14 that f is constant. Thus if f, h
are fixed vectors of T, we have fl hi T(fl hl) for each maximal ideal I and
hence fh T(fh Q.E.D.
The reader will notice from the proof that (for the second assertion) the

assumption Te e can be replaced by the weaker condition that Te assumes
only the values 0 and 1. From this observation and Proposition 13, we ob-
tain this corollary.

COROLLARY. If P is a positive, radical-free projection of norm 1, then the
range of P is a closed subalgebra of C(X).

Examples. 1. A typical example for Theorem 5 is furnished by the operator
T of 2, Example 2. Here the eigenfunctions for a are the functions
f(z) z.

2. Even if X is finite and the resolveat of T has at h r(T) 1 a pole
of order 1, the peripheral point spectrum of T is not necessarily fully cyclic.
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An example is furnished by the matrix

0 1 0 0

0 0
2 1

The radical R of T is the ideal {x xl x2 x3 0}.
3. If X 1, 2}, consider the positive projections P given by

wherea

_
0,

_
0anda-t- 1. Ifa 0and 1, P is not radical-

free. Hence the radical-freeness of P is not a necessary condition for the
range of P to be a subalgebra. (Cf. [4], [13].)

THEOREM 6. If T >_ 0 is a uniformly ergodic operator satisfying I1 T
r( T) 1, then each element of the peripheral spectrum is an eigenvalue of the
second adjoint of T.

Proof. If a e z(T), [hi 1, there exists a normalized sequence (f)
such that lim. af, Tf O. Unless (f,) converges weakly to 0, the
sequence has a weak adherent point h 0 in the bidual C(X)", for which
ah T"h. We shall show that the weak convergence of (f.) to 0 is barred
by our assumptions; for this it will be sufficient, by a well known result of
measure theory, to prove that lim sup ([fl) > 0 for a suitable measure

>_ 0onX.
The proof uses the imbedding theorem (1). The uniform ergodicity of

T is equivalent with the uniform ergodicity of T1, and if P and P1 denote
(as before) the respective limits of averages, then P1 is indeed the operator
induced on C(Y) by P. The above sequence (f.) defines an e C(Y) for
which a] T,, hence ii - T, I] I. By [9, p. 305 Sara 1] there exists
positive measure T 1 such that Ca( ii > 0. From Corollary 2 of
Theorem 2 it follows now that there exists a maximal T,-ideal I c C(Y)
not containing. Also, by Proposition 5 the ideal I C(X) n I is a maximal
T-ideal.
Now denote by J1 the Tl-ideal in C(Y) generated by I; then still I

C(X) n J, since I is maximal. If, for each f e C(X), ] denotes its restric-
tion to the support Sx of I, the elements of C(Y)/J, can be viewed as se-
quences (]) modulo null sequences, and C(X)/I can be canonically imbedded
in C(Y)/J. Now from ] - T ] it follows that - P I] {. Taking
canonical images in C( Y)/JI, we conclude from ] J that

0 < P I]1 I1 , lim sup

But T is irreducible in C(X)/I which implies, by Proposition 14, that P
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is of rank 1, hence of the form (R) k, where k e C(X)/I and is a (T-invari-
ant) positive measure. Therefore, we have Px I]! ( fl I[ k II
and, consequently, lim sup ( Ifl ) > 0, Q.E.D.
Some remarks are in order on the implications of uniform ergodicity.

Via the imbedding theorem (1) it is not very difficult to prove" If T is uni-
formly ergodic, then so is T1 (and conversely) thus r(T) 1. If r(T) 1
(and, as always, T >_ 0), 1 is a simple pole of the resolvent with residue P
lim Mn (cf. introduction). It follows (see remark after Def. 5) that the
peripheral spectrum of T is finite; however, its elements need not be eigen-
values and, in fact, not isolated elements of a(T); thus the assertion of
Theorem 6 is not true in C(X). However, if T is uniformly ergodic and irre-
ducible with r(T) 1, then by a deep result of Niiro and Sawashima [14],
the peripheral spectrum of T consists of all n-th roots of unity for some n >_ 1,
which are all simple poles of the resolvent. In particular, the peripheral
spectrum of such T is a group.
We are now going to show that for any irreducible Markov operator T on

C(X), the peripheral spectrum is a group. It is clear 2, Example 2b) that,
in general, the peripheral spectrum is not pure point spectrum.

THEOREM 7. If T is an irreducible Markov operator, then the peripheral
spectrum of T is a subgroup of the circle group.

Proof. The proof uses the imbedding theorem (1). Indeed, if a, are
umodular numbers in z(T), then a, are eigenvalues of T1 we shall show
that a* e z(T), assuming the existence of normalized eigenfunctions f0,
go" afo Tl fo go T go, and a point y e Y such that fo(y) go(y)
1. Taking this for granted, we observe that

$1 lyeY’ifo(y) 1} and $2 lyeY’l go(y) 1}

are Tl-invariant subsets of Y (that is, support T-invariant ideals); in fact,
since T1 e0 e0 and I! fo II 1, hence If01 <_ e0, an elementary computation
shows that

T(eo If01) e0 If0 I,
which shows the closed ideal generated by e0 f (>-0) to be T-invariant.
Thus $1 n $2 supports a T-ideal, and the restrictions of f0 and go to S S n S
are unimodular eigenfunctions of the Markov operator induced by T on

For the related notions of (weak and strong) almost periodic operators T, see Rosen
blatt [11] and Glicksberg [12], and Wolff [16].

Note that by Proposition 15, the following assertions are equivalent for irreducible
T with r(T) 1: (a) r0 0, (b) T has a fixed vector 0, (c) T is similar to an irreducible
Markov operator.

Since T is a Markov operator on C(Y), the assertion of the lemma would be satisfied
for all y Y if T were irreducible; the difficulty of the proof is thus due to the fact that
irreducibility is lost under the transition T --. T.



C(S); hence by the lemma on uaimodular eigeafunctions (1),
and, therefore, a* e a(T) a(T).
The proof rests oa the following lemma.

LEMMA. If T is an irreducible Marov operator and and are unimodular
eigenvalues of T ( 1, imbedding theorem), there exist respective eigenfunctions
fo, go, fo go 1 of T, such that ifo(y) go(y) 1 for some
yeY.

Proof. (i) For f C(X) ad 0 < < 1, let

M(f; v) It Z" lf() 1- }.

Further let T’e, e, Dirac measure at s), so that Tf(s) f f(t) d,(t),
and denote by Z, X the support of ,. We cluim:

If e > 0, f 1 and [fl T [f + (e/2)e, then s eM(f; e/2) implies

for all integers 1.

Proof. Let
A it" If(t) 1 e}, B X A,

and
x ,(, n M(f; e)).

Suppose s e M(f; e/2). By hypothesis, 1 f f] d,. Oa the other
hand, since ,(X) 1,

f f] d, L f] d,, + L f d,. x+ (1- )(1- x).

Hence i follows thut x > 1 k-.
(ii) We consider arbitrary sequences F (f) on C(X) satisfying (a)

1 for all n, (b) af, Tf, .(f) 0. (Such sequences exist,
since a e (T).) We say the sequence (s) X has property P with respect
to F (briefly, has P(F)), if there exists
such that lim. ](.)(s.) 1.

DTON. Let M M(F) be the set of all s e X having the property"
For each neighborhood U(s) of s, there exists a sequence (s) having P(F)
and such that s. e U(s) true for infinitely muay integers n. (Note thut
P(F) is inherited by arbitrary iaite subsequeaces.)

We claim:

If T is irreducible and Markov, then M(F) X for each sequence F satis-
fying (a) and (b) above.

Proof. Let F be fixed. It is cleur that M is aoaempty and closed. We
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show that M is T-invariant, that is, s e M implies 2;, c M (notation of (i),
above); then M X since T is irreducible.

If not, there exists so e M and to e 2, such that to e M. to e M means there
exists a closed neighborhood V(to) such that for each sequence (s) having
P(F), the relation s, e V(to) takes place only finitely often. By Urysohn’s
theorem, we can determine h e C(X), h >_ 0, having its support in V(to)
and yielding Th(so) 1. Now let

U(so) {s e X’Th(s) > 2-1}.
By the definition above, there exists a sequence (s) having P(F) and such
that s, U(so) for all n; let us fix such a sequence.
With F (f) and (s.) fixed, we can now determine a null sequence of

positive numbers c. and a subsequeace n --/(n) of the positive integers,
such that for all n

hence from (i) we conclude

(.) ,,,(Y,,, n M(f(,,) ;/e)) >_ 1 1-1 (l 1, 2, ...).

Since s e U(s0), hence Th(s) f h d,, > 2-1, it follows that ,. V(t0)) >_ "for all n and some > 0. On the other hand, #,.(X) 1 since T is Markov;
thus in view of (.), V(to) must intersect M(f(,,) ;le,) for every n provided

--1that 1-1 < 5’. Thus, fixing some l0 > , we obtain a sequence

t, e V(to) n M(f(,o ;/0 e.)

that evidently has P(F), contradicting the choice of V(to).
(iii) If W0 denotes the topological direct sum of a countably infinite

number of copies X. of X, W0 @X, and W denotes the Stone-(ech
compactification of W0, then Y W\Wo (see the imbedding theorem, 1).
Let (g) be a normalized sequence for which Tg,, .-> 0; (g) G
defines a bounded continuous function on W0 which has a unique continuous
extension to W, say. The restriction go of to Y WW0 satisfies
fig0 Vlg0 and g01] 1. LetS.= lYeY" Igo(Y) 1}. The final step
in the proof is now to show the existence of a normalized function f0 on Y,
afo TJo, such that fo(Y) 1 for some y e S.

Let U. /x e W" I(x) > 1 n-} (n e.N); then (U.) is a decreasing
sequence of open neighborhoods of S. There exists a sequence n --. (n)
such that, if Y Xi() and mo(n) is suitably chosen, we have U. n Y 0
for all m >_ mo(n). (Since W0 is dense in W, each Us must intersect infinitely
many X, X(,) say (m 1, 2, ...). Because of U.+ U,
(k(m, n -t- p) (m 1, 2, is a subsequeace of/(m, n) for each p e N.
Now let ](m) ](m, m).)
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Inductively define j(m) to be the smallest integer _> 1 for which
> j(m 1) whenever m >__ 2, and for which U n Y+ 0 for all p 0,

1, 2, .... Setting Z Y(), U n Z is an open subset 9 of Z.
Hence by (if) above, for each m there exists f C(Z) of norm 1 satisfying

of,,, Tf Ii < m- and f,,,(s,,,) > 1 m-,
for some suitably chosen s e U n Z.
The sequence F (f) defines a unique continuous function F on W.

We claim that its restriction f0 to Y W\Wo satisfies the requirement of the
]emma. Indeed, the sequence (s) W has a cluster point y e Y, and
fo(y) 1. On the other hand, y e ) for each n, hence y e fo ). It

follows that y e So., Q.E.D.

6. Weakly compact operators
This final section leaves the domain of 1VIarkov operators and attempts an

analysis of the ideal structure of radical-flee positive operators T on C(X).
To make the task less complex we impose, generally, the condition that T be
weakly compact. It is known that this implies the compactness of T2;
what is actually used in the following is the compactness of some power of T.

DEFINITION 6. We say that a number p (>_0) is a distinguished eigen-
value of the adjoint T of T if there exists a positive eigenvector of T for p.

PROPOSITION 16. If T (>__0) is wealcly compact and Te sricly positive,
.the number of maximal T-ideals is finite.

Proof. Let Te(s) >_ > 0 for all s e X; this implies p >_ for each dis-
tinguished eigenvalue of T’. It follows now from Theorem 1 that each maxi-
mal T-ideal is of the form I where p T and p >_ . By Proposition 3
any number of these measures are mutually orthogonal, hence linearly in-
dependent. Thus the weak compactness of T implies that their number is
finite.

PROPOSITIO 17. Suppose T is weakly compact and r(T) > O, and that
the pole of (k T)- at k r(T) is simple. For p r( T) to be the only
distinguished eigenvalue of T’, it is necessary and sucient that there exist a
strictly positive function f satisfying pf Tf.

Proof. The condition is necessary. It is evident from the weak compact-
ness of T and Theorem 1 that T possesses but a finite number of maximal
T-idealsI I (i 1, n), since all these belong to p. Now let S
be the union of their respective supports; then X S u Y where Y (the
complement of S) is an open set on which live the functions f in the T-radical
R. If P is the projection

limp (), p) (), T)-,
P’ implies that there exists an eigenfuaction f >= O, pf Tf, which
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does not vanish on St and hence is strictly positive on St. If f ], j’
is strictly positive on S and satisfies pf T]. It follows that Y0
Is "f(s) 0} is a compact set contained in Y and, in fact, unless Y0 t,
the support of a T-ideal. Thus Y0 0 implies the existence of a maximal
T-ideal not containing R, which is clearly impossible. Therefore, Y0 t
and f is strictly positive.
The condition is sufficient. Clearly, if f is strictly positive and pf Tf,

then rl T’ ( >_ 0) is possible only when p rl, since otherwise we
would have (f) 0.

It is a natural question to ask whether to each distinguished eigenvalue
p of T’, there belongs some eigenvector >_ 0 of T’ such that I is T-maximal.
This is true for p 0 by Theorem 1; for p > 0 it is false as the following
example shows.
For X {1, 2, 3} the matrix

defines a positive operator with (T) /0, 2}. The radical (and only maxi-
mal T-ideal) is the ideal {x x 0} which belongs to p 0. However, we
can assert the following

PROPOSTO 18. If T is weakly compact and radical-free, then to each
distinguished eigenvalue p of T’ there exists an eigenvector >_ 0 such that
maximal.

In fact, this is a consequence of the following stronger

PROPOSTO 19. If T is weakly compact, radical-free, and if
then each maximal T-ideal containing I belongs to p (hence I is the intersection
of these maximal T-ideals).

Proof. Immediate from Theorem 1 when p 0. For the case p > 0,
we shall need the following lemma.

LEMMA. Each distinguished eigenvalue p > 0 such that pb T’b, is a
simple pole of the resolvent of the operator T induced by T on C(X)/I

Since is strictly positive on S, p is the spectral radius of T on C(S)
C(X)/I (cf. proof of Proposition 4). Since T is weakly compact, p is a
pole of the resolvent. Suppose this pole is of order k >_ 2, then

Q limx. (,- p)(),- T)-is a positive operator that leaves each maximal T-ideal I iavariant, hence
induces an operator Q on C(S,)/I. Evidently Q is the coefficient of

A maximal "T-ideal I belongs to p if r(Tz) p.
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( p)- of the Laurent expansion of the resolvent of T.x. On the other
hand, T, is irreducible, and thus either the spectral radius of T, is < p or
else p is a pole of order 1 of the corresponding resolvent ([10], p. 270, Thm.
3.2). In either case, Qx 0. Since T is radical-free (cf. Prop. 9 and foot-
note 3), it follows that Q 0 and the lemma is proved.

Thus, since p is a simple pole of the resolvent of T, the corresponding
residuum is a positive projection P of C(S) onto the eigenspace of T (for
p). Now if Is is any maximal T-ideal containing I, where T’, then
S c S, and < p implies that each function f satisfying pf Tf vanishes
on S. In other words, if S denotes the support of the intersection of all
T-maximal ideals containing I and which belong to p, then for each f e C(S),
Pf vanishes on S\S. On the other hand, we have P’ b, and this now
implies that vanishes oi the open set S\S. Thus (since b is strictly posi-
tive on S) the latter set is empty, and Proposition 19 is proved.
From the lemma used in the proof of Proposition 19, and from Theorem 1

we obtain this corollary.

COROL.RY. If T is weatcly compact and radical-free, then each distinguished
eigenvalue >0 of T’ is a simple pole of the resolvent.

We are now ready to prove the main result of this section.

THEORE 8. Suppose T >_ 0 is weakly compact and radical-free. Then for
each distinguished eigenvalue of Tp, the corresponding real eigenspace is a vector
sublattice of MR(X), and these sublattices are mutually orthogonal. Moreover,
each positive normalized eigenvector of T’ is a unique convex combination (bary-
center) of those (normalized, positive) eigenvectors that belong to the same eigen-
value and determine maximal T-ideals.

Proof. Denote by (p) the (finite or infinite) sequence of distinguished
eigenvalues of T’, letting po 0 if Te(s) 0 for some s e X (Theorem 1).
Denote by J the intersection of all maximal T-ideals originating from p
(Proposition 18), and let S. be the support of J. The assertion concerning
p0 is clear by Theorem 1 and the theorem of Choquet-Bishop-de Leeuw [1].
When n > 0, Proposition 19 implies that each measure >_ 0 such that
p T’, has its support contained in S and that p is the only distinguished
eigenvalue of T’, where T denotes the operator on C(X)/J, induced by T.
Thus, by the lemma contained in the proof of Proposition 19, and by Proposi-
tion 17 it follows that there exists a strictly positive eigenfunction of
T p. f. Tf. Obviously, p-lT,, is similar to a Markov operator, which
is ergodic (Proposition 6). Thus, we can apply Proposition 7 and Theorem 2
and, finally, Proposition 3, Q.E.D.

COROLLARY. Let T (>_0) be any weakly compact operator on C(X). If
>_ 0 is a normalized eigenvector of T vanishing on the radical R of T, then

is a (unique) convex combination of those normalized, positive eigenvectors of T
that belong to the same eigenvalue and that determine maximal T-ideals.
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For the proof, it suffices to apply Theorem 8 to TH (Proposition 9).
We shall say that T is the (finite) direct sum of operators T if there exists

a finite partition of X into open and closed subsets X (i 1, n), such
that the direct sum C(X) @C(X) reduces T (in the usual operator
theoretic sense).

PROPOSITION 20. Suppose T is weakly compact and radical-free. If either
Te is strictly positive or X is finite, T is a (finite) direct sum of irreducible
operators.

Proof. In fact, from Proposition 16 (or by direct verification if X is finite)
we conclude that there exists but a finite number of maximal T-ideals L,
with respective supports X. Clearly, the Xi are disjoint since Is are maxi-
mal T-ideals, and X (JX since T is radical-free. The remainder is clear.
In particular, if C(X) is C" (i.e., if X contains exactly n points), each radi-

cal-free positive operator can be represented by a positive matrix

0
A

A3

A
where each A is a square matrix, and such that possibly A1 0 and all Ak
(k 2, r) are indecomposable (in the sense of Frobenius), or else such
that all Ak are indecomposable.
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