ON POINCARE SERIES WITH APPLICATION TO H^p SPACES ON BORDERED RIEMANN SURFACES¹

BY

C. J. EARLE AND A. MARDEN

Introduction

In this paper, as in [5], we use Poincaré Θ -series to study the Hardy spaces of a compact bordered Riemann surface. Our fundamental tool for projecting theorems from the disk D to the surface R is the conditional expectation operator E of Forelli [6], which we define in §2 by means of Θ -series. Our definition allows us in §3 to interpret E as a map from $C(\partial D)$, the space of continuous functions on ∂D , to $C(\partial R)$. The adjoint map E^* enables us to lift measures from ∂R to ∂D . Using E and E^* , we give easy proofs of the Cauchy-Read theorem and the decomposition of $L^p(\partial R)$ in §2, and of the F. and M. Riesz theorem for R in §3. In addition, we obtain a pair of theorems about Θ -series. The more surprising one, Theorem 4, states that every differential which is analytic in R and continuous in \overline{R} is the Θ -series of a function analytic in D and continuous in \overline{D} .

If $R \neq D$, the real parts of functions continuous in \overline{R} and analytic in R do not generate $C(\partial R)$. There is a complementary subspace of finite but positive dimension (see [1], [3], [6], [7]). Forelli [6] described such a subspace N, the image under E of a certain subspace of $H^{\infty}(D)$. Our definition of E shows that N coincides with the complementary subspace obtained by Heins [7] (see §2.3).

Interference from N makes it hard to obtain satisfactory forms of the invariant subspace theorem or Szegö's theorem on R. We illustrate the difficulties in §3.6 by giving a form of Szegö's theorem. One way around them may be found in [1].

In the final §4 we examine some of our formulas more deeply to find their relation to two classical reproducing formulas on R: the Poisson and Cauchy formulas. Indeed we give explicit representations of the Poisson and Cauchy kernels in terms of Θ -series.

Except in §4.2, all our Θ -series have dimension -2. Since series of that dimension are a bit unfamiliar, we devote §1 to an exposition, based on Tsuji's book [12], of their elementary properties.

1. Poincare series

1.1. We shall consider a compact bordered Riemann surface $\overline{R} = R \cup \partial R$ whose boundary ∂R consists of $n \ge 1$ analytic curves. The universal covering surface of R can be identified with the unit disk $D = \{z \in \mathbb{C} : |z| < 1\}$. Then

Received July 13, 1967.

¹ This research was supported by the National Science Foundation.

the group G of cover transformations is a free group of Möbius transformations, and R can be identified with the orbit space D/G so that the natural map $\pi : D \to D/G$ is holomorphic. G acts in the extended plane; the set of limit points L(G) is a closed subset of ∂D . If we set $\hat{D} = \mathbb{C} \cup \{\infty\} - L(G)$, \hat{D}/G can be identified with the double \hat{R} of R, and the extended map $\pi :$ $\hat{D} \to \hat{D}/G = \hat{R}$ is holomorphic. Note that $\pi^{-1}(\partial R) = \partial D - L(G)$. We can choose (in many ways) a relatively compact set \mathfrak{s} in $\partial D - L(G)$, consisting of n half-open intervals, so that π maps each interval 1-1 onto a component of ∂R , different intervals corresponding to different components. Then

(1.1) $A(\mathfrak{G}) \cap B(\mathfrak{G}) = \emptyset$, if $A \neq B, A, B \in G$,

(1.2)
$$G(\mathfrak{I}) = \partial D - L(G).$$

Using π , we will identify functions f and differentials of the form g(z) dz on R or \hat{R} with functions in D or \hat{D} which satisfy, respectively,

(1.3) f(Az) = f(z) for all $A \in G$

(1.4)
$$g(Az)A'(z) = g(z)$$
 for all $A \in G$.

A function satisfying (1.3) is said to be *automorphic*.

1.2. We will call g(z) dz a meromorphic differential on R or \hat{R} if g(z) is a meromorphic function in D or \hat{D} satisfying (1.4). If g(z) has no poles and has at least a double zero at ∞ , we call g(z) dz an analytic differential. The condition at ∞ expresses the regularity of g(z) dz in terms of the local parameter $\zeta = 1/z$. It is fulfilled automatically if g(z) satisfies (1.4) and is regular at $A(\infty)$ for some $A \in G$.

The anti-conformal involution $j(z) = 1/\overline{z}$ induces an involution of \hat{R} and an involution $f \to \tilde{f} \circ j$ of meromorphic functions on \hat{R} . A meromorphic function f(z) on \hat{R} is symmetric if $f(z) = \tilde{f}(1/\overline{z})$ for all $z \in \hat{D}$, or equivalently, if f(z) is real on \mathfrak{S} . j also induces an involution j^* of meromorphic differentials $\beta = g(z) dz$ on \hat{R} by

(1.5)
$$j^*(g(z) dz) = -z^{-2}\bar{g}(1/\bar{z}) dz = \bar{g}(jz) d(1/z).$$

 β is symmetric if $j^*(\beta) = \beta$. If $g_1(z) = izg(z)$, that is described by the condition $g_1(z) = \bar{g}_1(1/\bar{z})$ for all $z \in \hat{D}$; equivalently

(1.6)
$$g(z) dz = izg(z) | dz |, z \in \mathcal{G}, \text{ is real.}$$

Every differential β can be written in the form $\beta = \beta_1 + i\beta_2$, where β_1 and β_2 are symmetric. Simply put

$$\beta_1 = \frac{1}{2}(\beta + j^*(\beta)), \qquad \beta_2 = (1/2i)(\beta - j^*(\beta)).$$

1.3. Let *m* be the linear measure on ∂D : $m(S) = \int_{S} |dz|, S \subset \partial D$ a Baire set.

C. J. EARLE AND A. MARDEN

(1.7)
$$m(L(G)) = 0.$$

In fact, let $\varphi(z)$ be the characteristic function of L(G). The Poisson integral of φ is a harmonic function u(z) on D which vanishes on $\partial D - L(G)$. Since L(G) is a G-invariant set, $\varphi(z)$ and hence u(z) satisfy (1.3). In other words u(z) is a harmonic function on R which vanishes on ∂R . By the maximum principle $u \equiv 0$ and hence $\varphi = 0$ a.e., proving (1.7).

If f(z) is integrable on ∂D we obtain from (1.1), (1.2) and (1.7) that

(1.8)
$$\int_{\partial D} f(z) \mid dz \mid = \sum_{A \in G} \int_{A(g)} f(z) \mid dz \mid$$
$$= \int_{g} \left(\sum_{A \in G} f(A\zeta) \mid A'(\zeta) \mid \right) \mid d\zeta \mid$$

If in addition f satisfies (1.3) on ∂D , so that f is a function on ∂R , (1.8) simplifies to

$$\int_{\partial D} f(z) \mid dz \mid = \int_{\mathfrak{g}} f(z) \left(\sum_{A \in \mathcal{G}} \mid A'(z) \mid \right) \mid dz \mid .$$

We introduce the function

(1.9)
$$\rho(z) = \sum_{A \in G} |A'(z)|$$

so that our formula becomes

PROPOSITION 1. For every integrable function f(z) on ∂R ,

(1.10)
$$\int_{\partial D} f(z) \mid dz \mid = \int_{\mathcal{J}} f(z) \rho(z) \mid dz \mid .$$

1.4. Applying (1.10) with f(z) = 1 we obtain

$$\int_{\mathcal{J}} \rho(z) \mid dz \mid = 2\pi,$$

from which we conclude $\rho(z) < \infty$ a.e. in \mathfrak{I} . Much more is true:

PROPOSITION 2. The series (1.9) converges uniformly on every compact subset of \hat{D} which does not intersect $G(\infty) = \{A(\infty) : A \in G\}$.

Proof. Let $\{A_n\}$ be an enumeration of G with $A_1 = I$. Each A_n is of the form

$$A_n(z) = (a_n z + b_n)/(\bar{b}_n z + \bar{a}_n), |a_n|^2 - |b_n|^2 = 1.$$

Since no element of G has a fixed point in \hat{D} , $b_n \neq 0$ for $n \neq 1$. For $z \in \mathcal{I}$,

$$|A'_{n}(z)| = |\bar{b}_{n} z + \bar{a}_{n}|^{-2} \ge (|b_{n}| + |a_{n}|)^{-2} \ge (2|a_{n}|)^{-2}$$

204

Since $\rho(z)$ is finite for some $z \in \mathcal{I}$, we have

and since $|a_n|^2 - |b_n|^2 = 1$, (1.11) $\sum_{n=1}^{\infty} |b_n|^{-2} < \infty$.

Now let K be a compact set in \hat{D} disjoint from $G(\infty)$, and let $\delta > 0$ be the distance of the closure $G(\infty) \cup L(G)$ of $G(\infty)$ from K. For $z \in K$ and n > 1,

(1.12)
$$|A'_{n}(z)| = |b_{n}|^{-2} |z + \bar{a}_{n} \bar{b}_{n}^{-1}|^{-2}$$
$$= |b_{n}|^{-2} |z - A_{n}^{-1}(\infty)|^{-2} \le \delta^{-2} |b_{n}|^{-2},$$

and Proposition 2 immediately follows. Note that each point of $G(\infty)$ interferes with only one term of (1.9).

COROLLARY. $\rho(z)$ is a bounded continuous function on \mathscr{G} .

1.5. One way to obtain a meromorphic differential on R or \hat{R} is to start with an arbitrary meromorphic function F(z) in D or \hat{D} and form the *Poincaré* series

(1.13)
$$(\Theta F)(z) = \sum_{A \in G} F(Az)A'(z).$$

If the series (1.13) converges uniformly on compact subsets of D or \hat{D} , $(\Theta F)(z) dz$ will be a meromorphic differential on R or \hat{R} . Proposition 2 implies the convergence of (1.13) for many functions F(z). For instance

PROPOSITION 3. Let r(z) be a rational function with no poles in L(G). Then $(\Theta r)(z) dz$ is a meromorphic differential on \hat{R} .

Proof. If K is a relatively compact subregion of \hat{D} then $A(K) \cap K \neq \emptyset$ for only a finite number of $A \in G$. Hence if K contains the poles of r(z) and $M = \sup_{z \in K} |r(z)|$, then $|r(Az)| \leq M$ for all $A \in G$, with a finite number of exceptions.

1.6. As an example consider our basic meromorphic differential

(1.14)
$$\alpha = \Theta(1/z) dz = \sum_{A \in G} \left(A'(z)/A(z) \right) dz, \qquad z \in \hat{D}.$$

 α is analytic in \hat{R} except for simple poles at $\pi(0)$, $\pi(\infty)$ (of residue +1, -1 respectively). Hence by the Riemann-Roch theorem, α has 2 \hat{g} zeros in \hat{R} , where \hat{g} is the genus of \hat{R} .

The formula |A'(z)| = zA'(z)/A(z) for $z \in \partial D$ and $A \in G$, with (1.9) and (1.14), yields

(1.15)
$$\alpha = z^{-1}\rho(z) dz = i\rho(z) |dz|, \qquad z \in \mathcal{G}.$$

Comparing (1.15) with (1.6), we find that $i\alpha$ is symmetric on \hat{R} and, by (1.5), has symmetric zeros. Since $\rho(z) \geq 1$ for all z, no zero appears on ∂R . Thus, α has exactly \hat{g} zeros in R.

It will turn out (§§2, 3) that α has fundamental importance on R. But this is hardly surprising, because α is closely related to Green's function g(z) on R with pole at $\pi(0)$. Indeed, since

$$g(z) = \sum_{A \in G} \log |A(z)|, \qquad \alpha = dg + i \cdot dg.$$

Because dg = 0 along ∂R , (1.15) gives

$$i
ho(z) \mid dz \mid = lpha = i(\partial g/\partial n) \mid dz \mid \text{ on } \partial R,$$

so that we can write (1.10) in the form

$$\int_{\partial D} f(z) \mid dz \mid = \int_{\mathcal{J}} f(z) \frac{\partial g}{\partial n} \mid dz \mid .$$

2. The conditional expectation

2.1. For f(z) defined in D, \hat{D} , or ∂D , set

(2.1)
$$(Ef)(z) = \sum_{A \in G} \frac{f(Az)A'(z)}{A(z)} \Big/ \sum_{A \in G} \frac{A'(z)}{A(z)} = \Theta(f/z)/\Theta(1/z).$$

Obviously, Ef is an automorphic function whenever it exists. Its existence for suitable functions f is guaranteed by Propositions 2 and 3. For example, Ef is a meromorphic function on \hat{R} whenever f is rational with no poles in L(G). If f is a bounded analytic function in D, then Ef is meromorphic in R with poles only at the zeros of the differential α defined in §1.6. If f itself is automorphic, then Ef = f.

2.2. G is a free group of rank \hat{g} , where \hat{g} is the genus of \hat{R} . Choose a set of generaters $\{A_j\}, 1 \leq j \leq \hat{g}$, and define

(2.2)
$$h_j(z) = z\xi_j/(1-\xi_j z), \quad \zeta_j = A_j(0), \quad 1 \leq j \leq \emptyset$$

LEMMA 1. $(Eh_j)\alpha$ is an analytic differential on \hat{R} .

Proof. From the definitions we have

(2.3)
$$(Eh_j)\alpha = \Theta\left(\frac{\bar{\zeta}_j}{1-\bar{\zeta}_j z}\right) dz.$$

Thus $(Eh_j)\alpha$ is a meromorphic differential on \hat{R} . Since $A_j(\infty) = 1/\xi_j$, $(Eh_j)\alpha$ can have a pole only at $\pi(\infty) (= \pi(1/\xi_j))$. But

$$\Theta\left(\frac{\bar{\zeta}_{j}}{1-\bar{\zeta}_{j}z}\right) = \bar{\zeta}_{j}\left\{\frac{1}{1-\bar{\zeta}_{j}z} + \frac{(A_{j}^{-1})'(z)}{1-\bar{\zeta}_{j}(A_{j}^{-1})(z)}\right\} + f(z)$$

where f(z) is analytic in a neighborhood of $1/\xi_j$. Elementary calculation shows that the bracketed expression is regular at $1/\xi_j$. That proves the lemma.

2.3. Let $\alpha(R)$ be the (complex) vector space of analytic differentials on R which are continuous in \overline{R} . The Dirichlet integral [2] defines an inner product

$$(\beta_1, \beta_2) = \iint_R \beta_1 \wedge \overline{*\beta_2} = i \iint_R \beta_1 \wedge \overline{\beta_2}$$

on $\mathfrak{A}(R)$. Let Γ_j be the closed curve in R covered by the line segment in D joining 0 to $\zeta_j = A_j(0)$. It is well known [2] that there is an analytic differential $\psi(\Gamma_j)$ on R such that

$$2\pi \int_{\Gamma_j} eta \,=\, (eta, \psi(\Gamma_j)) \quad ext{for all } eta \,\epsilon \, \mathfrak{A}(R).$$

LEMMA 2. $\psi(\Gamma_j) = (Eh_j)\alpha$.

Proof. Set $\beta = f(z) dz$. Then f is integrable in D, for if R is a fundamental polygon for G in D we compute

$$\begin{split} \iint_{D} |f(\zeta)| d\xi d\eta &= \sum_{A \in G} \iint_{A(\mathfrak{K})} |f(\zeta)| d\xi d\eta \\ &= \sum_{A \in G} \iint_{\mathfrak{K}} |f(Az)| |A'(z)|^2 dx dy \\ &= \iint_{\mathfrak{K}} |f(z)| \rho(z) dx dy, \end{split}$$

where of course $\rho(z)$ is defined by (1.9). But $\rho(z) | f(z) |$ is continuous, hence bounded, in the closure of \mathfrak{R} .

Since f is integrable in D, it satisfies

$$\pi f(z) = \iint_D f(\zeta) (1 - \bar{\zeta} z)^{-2} d\xi d\eta, \qquad z \in D.$$

Integrating from 0 to ζ_j we obtain

$$\pi \int_{0}^{\zeta_{j}} f(z) dz = \iint_{D} f(\zeta) \zeta_{j} (1 - \overline{\zeta} \zeta_{j})^{-1} d\xi d\eta$$

$$= \sum_{A \in \mathcal{G}} \iint_{A(\mathfrak{R})} f(\zeta) \zeta_{j} (1 - \overline{\zeta} \zeta_{j})^{-1} d\xi d\eta$$

$$= \sum_{A \in \mathcal{G}} \iint_{\mathfrak{R}} f(Az) \zeta_{j} (1 - \zeta_{j} \overline{A(z)})^{-1} A'(z) \overline{A'(z)} dx dy$$

$$= \iint_{\mathfrak{R}} f(z) \overline{\Theta} (\overline{\zeta}_{j} (1 - \overline{\zeta}_{j} z)^{-1}) (z) dx dy.$$

In view of (2.3), that proves Lemma 2.

DEFINITION. N is the vector space spanned by the functions $\{Eh_j\}$, $1 \leq j \leq g$.

COROLLARY 1. (i) N has dimension \hat{g} .

(ii) N consists of the meromorphic functions f(z) on \hat{R} such that $f\alpha$ is an analytic differential on \hat{R} .

(iii) N has a basis consisting of functions real on ∂R .

Proof. (i) The vector space of analytic differentials on \hat{R} has dimension \hat{g} . If the differentials $\psi(\Gamma_j) = (Eh_j)\alpha$ were not independent, there would be a non-zero analytic differential on \hat{R} which was exact in R. That is impossible [2, p. 296].

(ii) Lemma 1 asserts that N is a linear subspace of the vector space $M(-(\alpha))$ of functions f such that $f\alpha$ is analytic in \hat{R} . But $M(-(\alpha))$ has dimension \hat{g} , for every analytic differential β on \hat{R} can be written $\beta = (\beta/\alpha)\alpha$, and $\beta/\alpha \in M(-(\alpha))$. By (i), $N = M(-(\alpha))$.

(iii) Choose a basis $\{\beta_j\}, 1 \leq j \leq g$, for the analytic differentials on \hat{R} such that each β_j is symmetric (see §1.2). Since $i\alpha$ is a symmetric differential, the functions $i\beta_j/\alpha$ form a symmetric basis for N. In particular, they are real on ∂R . (A closer examination of the differentials $\psi(\Gamma_j)$ would reveal them to be symmetric.)

COROLLARY 2. (Heins [7]). If $f \in N$ and is analytic in R, then $f \equiv 0$.

Proof. Let $f = \sum C_j(Eh_j)$. If f is analytic in R, then $df \in \mathfrak{A}(R)$, and Lemma 2 gives

$$0 = 2\pi \sum \bar{C}_j \int_{\Gamma_j} df = (df, f\alpha) = i \iint_{\mathcal{R}} df \wedge \overline{f\alpha} = i \int_{\partial \mathcal{R}} |f|^2 \bar{\alpha},$$

where the last equality is Stokes' theorem. Equation (1.15) shows that the differential $i\bar{\alpha}$ is positive along ∂R . Therefore f vanishes on ∂R , hence everywhere.

THEOREM 1. If f is meromorphic in R and $f\alpha$ is regular in R, there is a unique $h \in N$ such that f - h is analytic in R.

Proof. The space P of principal parts of such functions f is a vector space of dimension \hat{g} , for α has \hat{g} zeros in R. Corollaries 1 and 2 imply that the map from N to P which sends each function to its principal parts is a vector space isomorphism.

2.4. Since |A'(z)| = zA'(z)/A(z) for $z \in \partial D$, we can write (2.1) in the form

(2.4)
$$(Ef)(z) = \sum_{A \in G} f(Az) |A'(z)| / \rho(z), \qquad z \in \partial D,$$

208

where $\rho(z)$ is given by (1.9). Set $L^p = L^p(dm)$, $1 \leq p \leq \infty$, where *m* is the linear measure on ∂D , and let $L^p | G$ be the subspace of automorphic functions. We claim that $E: L^p \to L^p | G$ is a projection of norm one; in other words

(2.5)
$$\| Ef \|_p \leq \| f \|_p, \qquad 1 \leq p \leq \infty.$$

That is clear if $p = \infty$ because the series (1.9) converges almost everywhere on ∂D . For $p < \infty$ Hölder's inequality and (1.9) give

$$\begin{split} \rho(z)^{p} \mid Ef(z) \mid^{p} &\leq \left(\sum_{A \in G} \left| f(Az) \mid | A'(z) \mid \right) \right. \\ &\leq \left(\sum_{A \in G} \left| f(Az) \mid^{p} | A'(z) \mid \right) \rho(z)^{p-1}, \end{split}$$

or

(2.6)
$$|Ef|^{p} \leq E(|f|^{p}), \qquad 1 \leq p < \infty.$$

For any $g \in L^1$, (1.8), (1.10), and (2.4) yield

(2.7)
$$\int_{\partial D} g \mid dz \mid = \int_{\mathfrak{s}} (Eg)\rho \mid dz \mid = \int_{\partial D} (Eg) \mid dz \mid.$$

From (2.6) and (2.7) we obtain

$$\| Ef \|_{p}^{p} = \int_{\partial D} | Ef |^{p} | dz | \leq \int_{\partial D} E(|f|^{p}) | dz | = \int_{\partial D} |f|^{p} | dz | = \| f \|_{p}^{p},$$

proving (2.5).

We should also note the obvious facts that Ef = f for all $f \in L^p \mid G$ and that $E\overline{f} = \overline{Ef}$ for all $f \in L^p$.

Remark. The identity

$$E(fg) = fEg, \qquad \qquad f \in L^p \mid G, \ g \in L^q$$

is immediate from (2.4). With (2.7) it implies that

(2.8)
$$\int_{\partial D} fg \mid dz \mid = \int_{\partial D} f(Eg) \mid dz \mid, \qquad f \in L^p \mid G, g \in L^q,$$

whence

$$\int_{\partial D} f(Eg) \mid dz \mid = \int_{\partial D} (Ef)g \mid dz \mid, \qquad f \in L^p, g \in L^q.$$

Thus *E* is the *conditional expectation* operator considered by Forelli [6]. (Of course the numbers *p* and *q* above satisfy $p^{-1} + q^{-1} = 1$.)

2.5. The Hardy space $H^p(D)$, $1 \leq p \leq \infty$, is the Banach space of analytic functions in D which satisfy the equivalent conditions

(i)
$$\|f\|_{p}^{p} = \lim_{r \to 1} \int_{|z|=r} |f|^{p} |dz|/|z| < \infty$$
 $(p < \infty)$
 $\|f\|_{\infty} = \lim_{r \to 1} \max \{|f(z)|: |z| = r\} < \infty,$

(ii) $|f|^p$ has a harmonic majorant in D $(p < \infty)$.

For each $f \in H^p(D)$, $f(e^{i\theta}) = \lim_{r \to 1} f(re^{i\theta})$ exists a.e. on ∂D and is in L^p . Furthermore, its L^p norm equals the norm given by (i), and f is equal to the Poisson integral of its boundary values [8]. We may therefore identify $H^p(D)$ with a subspace of L^p .

The Hardy space $H^{p}(R)$, $1 \leq p \leq \infty$ is the Banach space of analytic functions in R satisfying the equivalent conditions (see [11]):

(i)
$$\|f\|_{p}^{\prime p} = \lim_{r \to 1} \int_{l_{r}} |f|^{p} (\partial g/\partial n) \, ds < \infty \qquad (p < \infty)$$
$$\|f\|_{\infty}^{\prime} = \lim_{r \to 1} \max \{|f(z)| : z \in l_{r}\} < \infty,$$

- (ii) $|f|^p$ has a harmonic majorant in $R (p < \infty)$,
- (iii) $f \epsilon H^p(D)$ and f is automorphic.

Here g is Green's function on R with pole at $\pi(0)$, and

$$l_r = \{z \in R : g(z) = 1 - r\}.$$

Furthermore $||f||'_p = ||f||_p$. Using (iii) we shall identify $H^p(R)$ with a subspace of L^p ; in fact $H^p(R) = L^p | G \cap H^p(D)$.

Finally, $H_0^p(D)$ is the set of $f \in H^p(D)$ satisfying the equivalent conditions f(0) = 0 and

$$\int_{\partial D} f |dz| = 0;$$

set $H_0^p(R) = H_0^p(D) \cap H^p(R)$.

2.6. The operator E is a powerful tool for the study of $H^{p}(R)$, as Forelli has shown in [6]. The basic fact is

PROPOSITION 4 ([6]).
$$EH^{p}(D) = H^{p}(R) \oplus N, 1 \leq p \leq \infty$$
.

Proof. The inclusion $H^{p}(R) \subset EH^{p}(D)$ is obvious because E leaves $H^{p}(R)$ fixed. Since the functions h_{j} belong to $H^{p}(D)$ for all $p \geq 1$, we also have $N \subset EH^{p}(D)$. Corollary 2, §2.3, implies that $H^{p}(R) \cap N = \{0\}$. Moreover, $H^{p}(R) \oplus N$ is closed in L^{p}/G , and the natural projection from $H^{p}(R) \oplus N$ to $H^{p}(R)$ is continuous, because N is finite dimensional. (That justifies the direct sum notation.) We have proved that

$$H^p(R) \oplus N \subset EH^p(D).$$

Suppose now that $f \in H^{\infty}(D)$. As we observed in §2.1, Ef is meromorphic in R with poles only at the zeros of α . By Theorem 1, there exists $h \in N$ such that $Ef - h \in H^{\infty}(R)$. Thus, $EH^{\infty}(D) \subset H^{\infty}(R) \oplus N$.

If $f \in H^p(D)$, $p < \infty$, and $f_r(z) = f(rz)$, r < 1, then $f_r \to f$ in L^p as $r \to 1$ (see [8]). From (2.5) it follows that $Ef_r \to Ef$ in $L^p \mid G$. But

$$Ef_r \in H^{\infty}(R) \oplus N \subset H^p(R) \oplus N.$$

Since $H^{p}(R) \oplus N$ is closed, we conclude that $EH^{p}(D) \subset H^{p}(R) \oplus N$ for all $p \geq 1$.

Proposition 5 ([6], [7]). For 1 , $<math>L^p \mid G = H^p_0(R) \oplus H^p(R) \oplus N.$

Proof. It is classical (see [8]) that $L^p = H_0^p(D) \oplus \overline{H^p(D)}$ if 1 . $Writing <math>f \in L^p | G$ in the form $f = g + \overline{h}$, with g and h $\in H^p(D)$, and applying E, we obtain

$$f = Ef = Eg + \overline{Eh}.$$

To complete the proof we apply Proposition 4 and observe that $N = \overline{N}$ because of Corollary 1, §2.3.

PROPOSITION 6. [3], [7], [9], [10]. $f \in L^1 | G$ is in $H^1(R)$ if and only if

(2.9)
$$\int_{\partial R} f\beta = 0 \quad \text{for all } \beta \in \mathfrak{A}(R).$$

Proof. If $f \in H^1(R)$ is continuous in \overline{R} , (2.9) follows immediately from Stokes' theorem. For any $f \in H^1(R)$, Ef_r is continuous on ∂R , r < 1. If Qis the (continuous) projection from $H^1(R) \oplus N$ to $H^1(R)$, then QEf_r belongs to $H^1(R)$ and is continuous in \overline{R} . Since $QEf_r \to QEf = f$ as $r \to 1$, (2.9) holds for all $f \in H^1(R)$.

Conversely, let $f \in L^1 | G$ satisfy (2.9). Then, for all $n \ge 0$,

$$0 = \int_{\partial R} f(z)\Theta(z^{n}) dz = \int_{\partial R} f(z)E(z^{n+1})\alpha$$
$$= i \int_{\mathcal{S}} f(z)E(z^{n+1})\rho(z) | dz | = i \int_{\partial D} f(z)z^{n+1} | dz |,$$

by (2.1), (1.15) and (2.7). A classical theorem implies that $f \in H^1(D)$. Thus, $f \in H^1(D) \cap L^1 | G = H^1(R)$.

Remark. Proposition 6 is a weak form of the Cauchy-Read theorem [9], [10]. We shall obtain the strong form in §3.2 as a consequence of the F. and M. Riesz theorem.

2.7. Remark. Let g be any meromorphic function on \hat{R} having the same zeros as α , with no other zeros or poles in \bar{R} . Then, it is clear that

$$E(gH^{\infty}(D)) = g(H^{\infty}(R) \oplus N) = H^{\infty}(R).$$

For on the one hand $g(H^{\infty}(R) \oplus N)$ is obviously contained in $H^{\infty}(R)$, and on the other hand Theorem 1 implies that $f/g \in H^{\infty}(R) \oplus N$ whenever $f \in H^{\infty}(R)$.

As Forelli showed in [6], the corona conjecture for $H^{\infty}(R)$ can be proved

in a few lines as soon as $g \in H^{\infty}(D)$ with $E(gH^{\infty}(D)) = H^{\infty}(R)$ is found. He found such a g by methods quite different from ours.

3. Functions with continuous boundary values

3.1. Let $C(\partial D)$ and $C(\partial R)$ be the Banach spaces of continuous complexvalued functions on ∂D and ∂R , respectively. Proposition 2 and the formula (2.4) show that E maps $C(\partial D)$ into $C(\partial R)$. Formula (2.5) shows that $E: C(\partial D) \rightarrow C(\partial R)$ has norm one. We shall calculate the adjoint map $E^*: C(\partial R)^* \to C(\partial D)^*$. In addition, we shall use a map

$$\pi_*: C(\partial D)^* \to C(\partial R)^*$$

induced by the natural map $\pi : \hat{D} \to \hat{R}$.

By the Riesz representation theorem, $C(\partial D)^*$ is the space of finite complex Baire measures on ∂D , and $C(\partial R)^*$ is the space of finite complex Baire measures on ∂R , or equivalently, on $\mathscr{I} \subset \partial D$.

LEMMA 3. For each $\mu \in C(\partial R)^*$ and each Baire set $S \subset \partial D$,

(3.1)
$$(E^*\mu)(S) = \sum_{A \in G} \int_{A^{-1}(S) \cap S} |A'(z)| \rho(z)^{-1} d\mu(z).$$

Proof. Let $\mu^*(S)$ denote the right side of (3.1). It is clear that μ^* is a finite complex Baire measure on ∂D . We will show that it has the properties

(3.2)
$$\mu^*(L(G)) = 0$$

(3.3)
$$\mu^*(B(S)) = \int_S |B'(z)| d\mu^*(z), \qquad B \in G$$

(3.4)
$$\int_{\partial D} f(z) \ d\mu^*(z) = \int_{\mathscr{I}} (Ef)(z) \ d\mu(z), \qquad f \ \epsilon \ C(\partial D).$$

The truth of (3.2) is clear. (3.4) implies that $\mu^* = E^* \mu$. By a change of variable w = B(z), $B \in G$, in (3.1) we find that $\mu^*(S)$ is equal to the series in (3.1) with \mathscr{I} replaced by $B(\mathscr{I})$. Hence $d\mu^*(B(z)) = \rho(w)^{-1} d\mu(w) =$ $|B'(z)|\rho(z)^{-1}d\mu(z) = |B'(z)|d\mu^*(z)$, first for $z \in \mathcal{I}$ and then for arbitrary $z \in \partial D - L(G)$. This is the differentiated form of (3.3). To prove (3.4):

$$\int_{\mathfrak{s}} Ef(z) \ d\mu(z) = \sum_{A \in G} \int_{\mathfrak{s}} f(Az) \mid A'(z) \mid \rho(z)^{-1} \ d\mu(z)$$
$$= \sum_{A \in G} \int_{\mathfrak{s}} f(Az) \mid A'(z) \mid d\mu^{*}(z)$$
$$= \sum_{A \in G} \int_{\mathfrak{s}} f(Az) \ d\mu^{*}(Az) = \int_{\partial D} f \ d\mu^{*}.$$
LEMMA 4. Define $\pi_{*} : C(\partial D)^{*} \to C(\partial R)^{*} \ by$ 8.5) $(\pi_{*} \mu)(S) = \mu(G(S)) = \sum_{A \in G} \mu(A(S))$

(3.5)

for each $\mu \in C(\partial D)^*$ and each Baire set $S \subset \partial R$. π_* is linear of norm one. Moreover, $\pi_* \circ E^*$ is the identity on $C(\partial R)^*$, and $P = E^* \circ \pi_*$ is a projection of norm one from $C(\partial D)^*$ onto the closed subspace of measures which satisfy (3.2) and (3.3).

Proof. Let
$$\mu_* = \pi_* \mu$$
, $\mu \in C(\partial D)^*$. Then $d\mu_*(z) = \sum d\mu(Az)$, and
$$\int_{\partial D - L(G)} f \, d\mu = \sum \int_{\mathcal{S}} f(w) \, d\mu(Aw) = \int_{\mathcal{S}} f \, d\mu_*$$

for all $f \in C(\partial R)$. Thus π_* has norm one. Let $\mu \in C(\partial R)^*$ and suppose $S \subset \mathcal{S}$ is a Baire set. Setting $\mu^* = E^* \mu \in C(\partial D)^*$ we obtain

$$(\pi_*\mu^*)(S) = \sum_{A \in G} \mu^*(A(S)) = \sum_{A \in G} \int_S |A'(z)| d\mu^*(z)$$
$$= \int_S \rho(z) d\mu^*(z) = \int_S d\mu(z) = \mu(S),$$

proving that $\pi_* \circ E^*$ is the identity.

Finally, each $\mu^* \epsilon C(\partial D)^*$ which satisfies (3.2) and (3.3) is in the range of E^* ; in fact, $\mu^* = P\mu^* = E^*\mu$, where $\mu = \pi_* \mu^*$. For by (3.3),

$$\mu(S) = \int_{S} \rho(z) \ d\mu^{*}(z) \quad \text{if } S \subset \mathfrak{I}.$$

Hence for any Baire set $T \subset \partial D$

$$(E^*\mu)(T) = \sum_{A \in G} \int_{A^{-1}(T) \cap g} |A'(z)| d\mu^*(z)$$
$$= \sum_{A \in G} \int_{T \cap A(g)} d\mu^*(Az) = \mu^*(T),$$

by (3.2) and (3.3).

Remark. We map L^1 into $C(\partial D)^*$ by identifying each $f \in L^1$ with the measure $d\mu = f(z) | dz |$ on ∂D . Each subspace of L^1 will be identified with its image in $C(\partial D)^*$. The restriction of P to L^1 is simply E. In particular, $P(H^1(D)) = H^1(R) \oplus N$.

3.2. Our work in §3.1 has two immediate applications.

THEOREM 2. E maps $C(\partial D)$ onto $C(\partial R)$.

Proof. A standard result in functional analysis [4, p. 488] says that E has dense range if and only if E^* is one-to-one and E has closed range if and only if E^* does. Therefore Theorem 2 is equivalent to the assertion that E^* is one-to-one and has closed range. These properties of E^* are immediate consequences of Lemma 4, specifically of the fact that E^* has a left inverse.

We will now introduce the two Banach spaces

$$A_0(D) = \{f \in H_0^{\infty}(D) : f \text{ is continuous in } \bar{D}\}$$
$$A_0(R) = \{f \in H_0^{\infty}(R) : f \text{ is continuous in } \bar{R}\}.$$

The functions z^n , $n \ge 1$, are dense in $A_0(D)$. We have by uniform convergence that Ef is meromorphic in R, continuous on ∂R , and vanishes at $\pi(0)$. Hence as in §2.6,

$$(3.6) E(A_0(D)) \subset A_0(R) \oplus N$$

but the opposite inclusion is not obvious.

LEMMA 5 (F. and M. Riesz) [3], [7], [10]. Let μ be a finite complex Baire measure on ∂R such that

$$\int_{\partial R} f \, d\mu = 0, \quad all \, f \, \epsilon \, E(A_0(D)).$$

Then $d\mu = h(z)\rho(z) | dz |$ for some $h \in H^1(R)$.

Proof. Set $\mu^* = E^*\mu$. (3.4) implies that $\int_{\partial D} z^n d\mu^* = 0$ for all $n \ge 1$, and hence the classical result in D implies that $d\mu^* = h(z) | dz |$ for some $h_{-\epsilon}^* H^1(D)$. But (3.3) implies that

$$h(B(z)) | B'(z) | | dz | = | B'(z) | h(z) | dz |$$

so that h(B(z)) = h(z) for all $z \in \partial D$ and $B \in G$. Hence $h \in H^1(R)$.

Corollary 1 ([9], [10]). $[A_0(R) \oplus N]^{\perp} = \pi_*(H^1(R)).$

Proof. Since $\pi_*(H^1(R))$ consists of the measures on ∂R of the form $d\mu = h(z)\rho(z) | dz |$, $h \in H^1(R)$, (3.6) and Lemma 5 imply that

$$(3.7) [A_0(R) \oplus N]^{\perp} \subset [E(A_0(D))]^{\perp} \subset \pi_*(H^1(R)).$$

Conversely, if $f \in A_0(R) \oplus N$ and $\mu \in \pi_*(H^1(R))$, then

$$i\int_{\mathfrak{s}}f\,d\mu = i\int_{\mathfrak{s}}f(z)h(z)\rho(z)\mid dz\mid = \int_{\partial R}hf\alpha = 0,$$

by (1.15) and Proposition 6, since $f\alpha \in \mathfrak{A}(R)$ when $f \in A_0(R) \oplus N$.

COROLLARY 2. $E(A_0(D))$ is dense in $A_0(R) \oplus N$.

In fact, Corollary 1 and (3.7) imply that every linear functional which vanishes on $E(A_0(D))$ vanishes on $A_0(R) \oplus N$.

Remark. Corollary 1 is the strong form of the Cauchy-Read theorem which we promised in §2.6. It corresponds to the classical theorem that

$$A_0(D)^{\perp} = H^1(D).$$

3.3. We are now ready to prove the main result of this chapter.

THEOREM 3. $E(A_0(D)) = A_0(R) \oplus N$.

Proof. By Corollary 2 of Lemma 5, we need to prove only that

$$E: A_0(D) \to A_0(R) \oplus N$$

has closed range. As in Theorem 2, we shall prove instead that E^* has closed range. Corollary 1 of Lemma 5 allows us to interpret E^* as a map from the coset space $C(\partial R)^*/\pi_*(H^1(R))$ into $C(\partial D)^*/H^1(D)$. The image of E^* is therefore

$$E^*(C(\partial R)^*)/H^1(D) = P(C(\partial D)^*)/H^1(D),$$

where $P: C(\partial D)^* \to C(\partial D)^*$ is the projection defined in Lemma 4. It is not obvious that $P(C(\partial D)^*)/H^1(D)$ is closed. The difficulty is that P does not preserve $H^1(D)$. To compensate for that we use the projection

 $Q: H^1(D) \oplus N \to H^1(D)$

with kernel N. Here we interpret $H^1(D)$ and N as closed subspaces of $C(\partial D)^*$. The subspace $H^1(D) \oplus N$ is closed, and Q is continuous, because N has finite dimension.

Let $\{\mu_n\} \subset P(C(\partial D)^*)$ and $\{\nu_n\} \subset H^1(D)$ be sequences such that

$$\mu_n + \nu_n \to \lambda \ \epsilon \ C(\partial D)^*.$$

We must find $\sigma \epsilon H^1(D)$ such that $\sigma + \lambda = P(\sigma + \lambda)$. We assert that

$$\sigma = Q(P\lambda - \lambda) = \lim (QP\nu_n - \nu_n), \qquad n \to \infty,$$

suffices. First we verify that σ exists. Since $\mu_n + \nu_n \rightarrow \lambda$,

$$P(\mu_n + \nu_n) = \mu_n + P\nu_n \rightarrow P\lambda.$$

Therefore $P\lambda - \lambda = \lim (P\nu_n - \nu_n) \epsilon H^1(D) \oplus N$, and σ exists, because $P\nu_n \epsilon PH^1(D) = H^1(R) \oplus N \subset H^1(D) \oplus N$,

a closed subspace. Since $QP\nu_n \epsilon H^1(R)$, it is fixed by P, and we find that

$$P(\sigma + \lambda) = \lim (PQP\nu_n - P\nu_n + P\nu_n + \mu_n)$$

=
$$\lim (QP\nu_n - \nu_n + \nu_n + \mu_n) = \sigma + \lambda,$$

completing the proof.

3.4. Theorem 3 has an interesting application to Poincaré series Set $A(D) = A_0(D) \oplus C$; A(D) is the closure in $C(\partial D)$ of the polynomials.

THEOREM 4. The Poincaré series (1.13), maps A(D) onto $\alpha(R)$.

Proof. The map $f(z) \to f_0(z) = zf(z)$ carries A(D) onto $A_0(D)$. Com-

paring (1.13), (1.14) and (2.1) we find that

$$(\Theta f)(z) dz = (Ef_0)(z)\alpha.$$

By Theorem 3, the range of Θ is the set of all differentials $f\alpha$, $f \in A_0(R) \oplus N$. But the mapping $\beta \to \beta/\alpha$ is a one-to-one correspondence between $\alpha(R)$ and $A_0(R) \oplus N$, by Theorem 1.

Remark. Since polynomials are dense in A(D), the Poincaré series of polynomials are dense in $\alpha(R)$. Thus each differential in $\alpha(R)$ can be uniformly approximated in \overline{R} by meromorphic differentials in \hat{R} which have poles only at $\pi(\infty)$.

3.5. The meromorphic differentials on \hat{R} can also be described easily by Poincaré series. In fact, Proposition 3 has the following converse.

THEOREM 5. Every meromorphic differential on \hat{R} has the form $(\Theta r)(z) dz$, where r(z) is rational with no poles in L(G).

Proof. Put $r_n(z) = (z - \zeta)^n$. If $\zeta \in \hat{D} - G(\infty)$, then $(\Theta r_n)(z) dz$ has a pole of order -n at $\pi(\zeta)$ for n < 0, a pole of order n + 2 at $\pi(\infty)$ for n > -2, and no other poles in \hat{R} . Therefore, every meromorphic differential on \hat{R} is the sum of an analytic differential and a linear combination of the differentials $(\Theta r_n)(z) dz$. From (2.3), Lemma 1, and Corollary 1 of Lemma 2, we conclude that every analytic differential on \hat{R} is the Θ -series of a rational function with poles only in $G(\infty)$. That proves Theorem 5.

3.6. To illustrate some of the difficulties that can arise upon projecting a theorem on $H^{p}(D)$ we will present the theorem of Szegö and Kolmogoroff-Krein as presented in [8] (cf. [1, §5]).

Let μ be a finite positive Baire measure on ∂R with

$$d\mu = (1/2\pi)h(z)\rho(z) | dz | + d\mu_s$$
,

 μ_s singular. Then for

$$D(f) = \int_{\partial R} |1 - f|^2 d\mu_f$$

 $\inf_{f \in E(A_0(D))} D(f) \leq \exp (1/2\pi) \int_{\partial R} (\log h) \rho(z) |dz| \leq \inf_{f \in A_0(R)} D(f).$

There is equality on both sides if $N \perp A(R)$ with respect to $d\mu$.

Proof. The corresponding theorem in D applied to $E^*\mu$ implies that

$$\inf_{g \in A_0(D)} \int_{\partial R} E(|1 - g|^2) \ d\mu = \exp((1/2\pi) \int_{\partial R} (\log h) \rho(z) \ |dz|.$$

On the one hand from (2.6) we have

$$E(|1-g|^2) \ge |E(1-g)|^2 = |1-E(g)|^2.$$

216

On the other hand if $f \in A_0(R)$ then $f_r(z) = f(rz) \in A_0(D)$ and it is not hard to show that

$$\lim E(|1 - f_r|^2) = E(|1 - f|^2) = |1 - f|^2$$

uniformly on \mathscr{G} . Finally if $N \perp A(R)$ with respect to $d\mu$ then writing $f \in E(A_0(D))$ as $f = f_1 + f_2$, $f_1 \in A_0(R)$, $f_2 \in N$, we have

$$\int_{\partial R} |1 - f|^2 d\mu = \int_{\partial R} |1 - f_1|^2 d\mu + \int_{\partial R} |f_2|^2 d\mu.$$

4. Reproducing kernels on R

4.1. We will first construct the Poisson kernel for R. We recall that $P_{\zeta}(z) = (1 - |\zeta|^2)/|z - \zeta|^2, \qquad z \in \partial D, \quad \zeta \in D$

is the Poisson kernel for
$$D$$
. Noting that

$$P_{A\zeta}(Az) = \frac{1 - |A\zeta|^2}{|Az - A\zeta|^2} = \frac{(1 - |\zeta|^2) |A'(\zeta)|}{|z - \zeta|^2 |A'(z)| |A'(\zeta)|} = P_{\zeta}(z) |A'(z)|^{-1}$$

for all $A \in G$, we find that

$$E(P_{A\zeta})(z) = E(P_{\zeta})(z),$$
 all $A \in G$ and $z \in \partial D - L(G)$

Thus $(EP_{A\zeta})(B(z)) = (EP_{\zeta})(z)$ for all $z \in \partial D - L(G)$, $\zeta \in D$ and $A, B \in G$, so that $(EP_{\zeta})(z)$ is a function on $\partial R \times R$. Furthermore if $f(\zeta)$ is any harmonic function in R, continuous on ∂R , we have, using (2.8),

$$2\pi f(\zeta) = \int_{\partial D} f(z) P_{\zeta}(z) \mid dz \mid = \int_{\partial R} f(z) (EP_{\zeta})(z) \rho(z) \mid dz \mid.$$

Therefore $(EP_{\xi})(z)$ is the Poisson kernel for R.

4.2. We call the function $C(z, \zeta)$ a Cauchy kernel in R if for fixed $z \in \overline{D} - L(G)$, $C(z, \zeta) d\zeta$ is a meromorphic differential in \overline{R} having one simple pole of residue one at $\pi(z)$, and for fixed ζ , $C(z, \zeta)$ is a meromorphic function in \overline{R} having one simple pole of residue -1 at $\pi(\zeta)$. Thus $C(z, \zeta)$ must satisfy

$$C(Az, B\zeta)B'(\zeta) = C(z, \zeta), \qquad z, \ \zeta \in D; \ A, \ B \in G.$$

By analogy with §4.1 define

$$C_1(z,\zeta) = \sum_{A \in G} \frac{A'(\zeta)}{A(\zeta) - z} = E_{\zeta} \left(\frac{\zeta}{\zeta - z} \right) \alpha,$$

where the subscript ζ indicates that $\zeta(\zeta - z)^{-1}$ is interpreted as a function of ζ . For f(z) analytic in R and continuous in \overline{R} we find

(4.1)
$$2\pi f(z) = \int_{\partial D} \frac{\zeta f(\zeta)}{\zeta - z} |d\zeta| = \int_{\partial R} f(\zeta) E_{\zeta} (\zeta(\zeta - z)^{-1}) (\zeta) \rho(\zeta) |d\zeta|$$
$$= -i \int_{\partial R} f(\zeta) C_1(z,\zeta) d\zeta.$$

Furthermore, $C_1(z, \zeta) d\zeta$ is a differential on R for each $z \in D$. However $C_1(z, \zeta)$, for fixed ζ , is not a function on R. To rectify this problem we will use a projection P that we constructed in [5]. Consider the Poincaré series

$$\Phi h = \sum_{A \in G} h(A(z)) A'(z)^2.$$

We choose a polynomial F so that ΦF is non-zero in \overline{R} (see [5]), and we define

$$(Pf)(z) = (\Phi fF)(z)/(\Phi F)(z).$$

If f is analytic in \overline{D} , Pf is an analytic function in \overline{R} . If f is meromorphic in \overline{D} with a simple pole of residue c at $z = \zeta$, then Pf is meromorphic in \overline{R} with a simple pole of residue $cF(\zeta)/(\Phi F)(\zeta)$ at $\pi(\zeta)$.

Now we claim that

(4.2)
$$C(z,\zeta) = P_z C_1(z,\zeta)$$

where the subscript z indicates that $C_1(z, \zeta)$ is to be considered as a function of z, is the required Cauchy kernel. Explicitly

$$(4.2)^* \quad C(z,\zeta) = \sum_{A,B\in G} \frac{F(Bz)A'(\zeta)B'(z)^2}{(A\zeta - Bz)\varphi(z)} = \sum \frac{F(Bz)A'(\zeta)}{\varphi(Bz)(A\zeta - Bz)}$$

where $\varphi(z) = (\Phi F)(z)$.

To prove that the double series involved in (4.2) converges, we need the identity

 $|B(A\zeta) - B(z)| = |A(\zeta) - z| |B'(A\zeta)|^{1/2} |B'(z)|^{1/2}$

and the inequalities

$$|B'(z)| \leq (|a| - |b|)^{-2} = (|a| + |b|)^{2}, \qquad z \in D,$$

$$|B'(z)| \leq \sigma^{-2} |b|^{-2}, \qquad z \in \mathfrak{R}.$$

Here $B(z) = (az + b)/(\bar{b}z + \bar{a})$, $|a|^2 - |b|^2 = 1$, \mathfrak{R} is a fundamental region for G in D, and σ is the distance from \mathfrak{R} to the closed set $G(\infty) \cup L(G)$ (cf. (1.12)). Setting

$$M = \sup \{ | F(z) | : z \in D \} \text{ and } m = \inf \{ | (\Phi F)(z) : z \in \mathbb{R} \},\$$

we obtain, for $z, \zeta \in \mathbb{R}$,

$$|P_{z}C_{1}(z,\zeta)| \leq \frac{M}{m} \sum_{B} \sum_{A} \frac{|B'(z)|^{2} |(BA)'(\zeta)|}{|(BA)(\zeta) - B(z)|}$$

= $\frac{M}{m} \sum_{B} \sum_{A} \frac{|B'(z)|^{3/2} |B'(A\zeta)|^{1/2} |A'(\zeta)|}{|A(\zeta) - z|}$
$$\leq \frac{M}{m\delta^{3}} \left(\sum_{A} \frac{|A'(\zeta)|}{|A(\zeta) - z|} \right) \left(1 + \sum_{B}' \frac{|b| + |a|}{|b|^{3}} \right)$$

where \sum' denotes summation over all $B \neq I$. By (1.11), $\sum' |b|^{-2}$ converges. Since $|a/b| = |B^{-1}(\infty)|$, the terms |a/b| are uniformly bounded,

and the second series in parenthesis converges. The first converges uniformly for $z \in \mathbb{R}$, provided the term A = I is omitted.

Finally we note that the residue at $\pi(\zeta)$ for fixed ζ of $P_z C_1(z, \zeta) d\zeta$ is

$$-\sum F(A\zeta)/(\Theta F)(A\zeta) = -1$$

and similarly we see that $C(z, \zeta) d\zeta$ for fixed z is a meromorphic differential in ζ with simple pole at $\zeta = z$. Since Pf = f for G-invariant functions f, the fact that C is a Cauchy kernel now follows from (4.1).

Remark. The essential part of our proof is the construction of C_1 . At that point there is considerable freedom in choosing a projection P. Our construction of a Cauchy kernel appears to be simpler and, in a sense, more natural than the classical one.

References

- P. R. AHERN AND D. SARASON, The H^p spaces of a class of function algebras, Acta Math., vol. 117 (1967), pp. 123-163.
- 2. L. V. AHLFORS AND L. SARIO, *Riemann surfaces*, Princeton University Press, Princeton, 1960.
- 3. N. ALLING, Extension of meromorphic function rings over non-compact Riemann surfaces II, Math. Zeit., vol. 93 (1966), pp. 345–394.
- 4. N. DUNFORD AND J. T. SCHWARTZ, *Linear operators I*, Interscience, New York, 1958.
- C. J. EARLE AND A. MARDEN, Projections to automorphic functions, Proc. Amer. Math. Soc., vol. 19 (1968), pp. 274-278.
- F. FORELLI, Bounded holomorphic functions and projections, Illinois J. Math., vol. 10 (1966), pp. 367-380.
- M. HEINS, Symmetric Riemann surfaces and boundary problems, Proc. London Math. Soc., vol. 14A (1965), pp. 129-143.
- 8. K. HOFFMAN, Banach spaces of analytic functions, Prentice Hall, Englewood Cliffs, New Jersey, 1962.
- 9. A. H. READ, A converse of Cauchy's theorem and applications to extremal problems, Acta Math., vol. 100 (1958), pp. 1-22.
- 10. H. L. ROYDEN, The boundary values of analytic functions, Math. Zeit., vol. 78 (1962), pp. 1–24.
- W. RUDIN, Analytic functions of class H^p, Trans. Amer. Math. Soc., vol. 78 (1955), pp. 46-66.
- 12. M. TSUJI, Potential theory in modern function theory, Maruzen Co., Ltd., Tokyo, 1959.

Cornell University Ithaca, New York University of Warwick Coventry, England University of Minnesota Minneapolis, Minnesota Cornell University