ON POINCARE SERIES WITH APPLICATION TO H^{p} SPACES ON BORDERED RIEMANN SURFACES ${ }^{1}$

BY
C. J. Earle and A. Marden
Introduction

In this paper, as in [5], we use Poincaré Θ-series to study the Hardy spaces of a compact bordered Riemann surface. Our fundamental tool for projecting theorems from the disk D to the surface R is the conditional expectation operator E of Forelli [6], which we define in $\S 2$ by means of Θ-series. Our definition allows us in $\S 3$ to interpret E as a map from $C(\partial D)$, the space of continuous functions on ∂D, to $C(\partial R)$. The adjoint map E^{*} enables us to lift measures from ∂R to ∂D. Using E and E^{*}, we give easy proofs of the Cauchy-Read theorem and the decomposition of $L^{p}(\partial R)$ in §2, and of the F. and M. Riesz theorem for R in §3. In addition, we obtain a pair of theorems about Θ-series. The more surprising one, Theorem 4 , states that every differential which is analytic in R and continuous in \bar{R} is the Θ-series of a function analytic in D and continuous in \bar{D}.

If $R \neq D$, the real parts of functions continuous in \bar{R} and analytic in R do not generate $C(\partial R)$. There is a complementary subspace of finite but positive dimension (see [1], [3], [6], [7]). Forelli [6] described such a subspace N, the image under E of a certain subspace of $H^{\infty}(D)$. Our definition of E shows that N coincides with the complementary subspace obtained by Heins [7] (see §2.3).

Interference from N makes it hard to obtain satisfactory forms of the invariant subspace theorem or Szegö's theorem on R. We illustrate the difficulties in $\S 3.6$ by giving a form of Szegö's theorem. One way around them may be found in [1].

In the final $\S 4$ we examine some of our formulas more deeply to find their relation to two classical reproducing formulas on R : the Poisson and Cauchy formulas. Indeed we give explicit representations of the Poisson and Cauchy kernels in terms of Θ-series.

Except in $\S 4.2$, all our Θ-series have dimension -2 . Since series of that dimension are a bit unfamiliar, we devote $\S 1$ to an exposition, based on Tsuji's book [12], of their elementary properties.

1. Poincare series

1.1. We shall consider a compact bordered Riemann surface $\bar{R}=R$ u ∂R whose boundary ∂R consists of $n \geqq 1$ analytic curves. The universal covering surface of R can be identified with the unit disk $D=\{z \in \mathbf{C}:|z|<1\}$. Then

Received July 13, 1967.
${ }^{1}$ This research was supported by the National Science Foundation.
the group G of cover transformations is a free group of Möbius transformations, and R can be identified with the orbit space D / G so that the natural $\operatorname{map} \pi: D \rightarrow D / G$ is holomorphic. G acts in the extended plane; the set of limit points $L(G)$ is a closed subset of ∂D. If we set $\hat{D}=\mathbf{C u}\{\infty\}-L(G)$, \hat{D} / G can be identified with the double \hat{R} of R, and the extended map π : $\hat{D} \rightarrow \hat{D} / G=\hat{R}$ is holomorphic. Note that $\pi^{-1}(\partial R)=\partial D-L(G)$. We can choose (in many ways) a relatively compact set g in $\partial D-L(G)$, consisting of n half-open intervals, so that π maps each interval 1-1 onto a component of ∂R, different intervals corresponding to different components. Then

$$
\begin{gather*}
A(\mathfrak{g}) \cap B(\mathfrak{g})=\emptyset, \quad \text { if } \quad A \neq B, A, B \in G \tag{1.1}\\
G(\mathfrak{g})=\partial D-L(G) \tag{1.2}
\end{gather*}
$$

Using π, we will identify functions f and differentials of the form $g(z) d z$ on R or \hat{R} with functions in D or \hat{D} which satisfy, respectively,

$$
\begin{gather*}
f(A z)=f(z) \text { for all } A \epsilon G \tag{1.3}\\
g(A z) A^{\prime}(z)=g(z) \text { for all } A \epsilon G \tag{1.4}
\end{gather*}
$$

A function satisfying (1.3) is said to be automorphic.
1.2. We will call $g(z) d z$ a meromorphic differential on R or \hat{R} if $g(z)$ is a meromorphic function in D or \hat{D} satisfying (1.4). If $g(z)$ has no poles and has at least a double zero at ∞, we call $g(z) d z$ an analytic differential. The condition at ∞ expresses the regularity of $g(z) d z$ in terms of the local parameter $\zeta=1 / z$. It is fulfilled automatically if $g(z)$ satisfies (1.4) and is regular at $A(\infty)$ for some $A \in G$.

The anti-conformal involution $j(z)=1 / \bar{z}$ induces an involution of \hat{R} and an involution $f \rightarrow \bar{f} \circ j$ of meromorphic functions on \hat{R}. A meromorphic function $f(z)$ on \hat{R} is symmetric if $f(z)=\bar{f}(1 / \bar{z})$ for all $z \epsilon \hat{D}$, or equivalently, if $f(z)$ is real on \mathfrak{g}. j also induces an involution j^{*} of meromorphic differentials $\beta=g(z) d z$ on \hat{R} by

$$
\begin{equation*}
j^{*}(g(z) d z)=-z^{-2} \bar{g}(1 / \bar{z}) d z=\bar{g}(j z) d(1 / z) \tag{1.5}
\end{equation*}
$$

β is symmetric if $j^{*}(\beta)=\beta$. If $g_{1}(z)=i z g(z)$, that is described by the condition $g_{1}(z)=\bar{g}_{1}(1 / \bar{z})$ for all $z \epsilon \hat{D}$; equivalently

$$
\begin{equation*}
g(z) d z=i z g(z)|d z|, z \in \mathscr{I}, \quad \text { is real. } \tag{1.6}
\end{equation*}
$$

Every differential β can be written in the form $\beta=\beta_{1}+i \beta_{2}$, where β_{1} and β_{2} are symmetric. Simply put

$$
\beta_{1}=\frac{1}{2}\left(\beta+j^{*}(\beta)\right), \quad \beta_{2}=(1 / 2 i)\left(\beta-j^{*}(\beta)\right)
$$

1.3. Let m be the linear measure on $\partial D: m(S)=\int_{s}|d z|, S \subset \partial D$ a Baire set.

$$
\begin{equation*}
m(L(G))=0 \tag{1.7}
\end{equation*}
$$

In fact, let $\varphi(z)$ be the characteristic function of $L(G)$. The Poisson integral of φ is a harmonic function $u(z)$ on D which vanishes on $\partial D-L(G)$. Since $L(G)$ is a G-invariant set, $\varphi(z)$ and hence $u(z)$ satisfy (1.3). In other words $u(z)$ is a harmonic function on R which vanishes on ∂R. By the maximum principle $u \equiv 0$ and hence $\varphi=0$ a.e., proving (1.7).

If $f(z)$ is integrable on ∂D we obtain from (1.1), (1.2) and (1.7) that

$$
\begin{align*}
\int_{\partial D} f(z)|d z| & =\sum_{A \in G} \int_{A(g)} f(z)|d z| \tag{1.8}\\
& =\int_{J}\left(\sum_{A \in G} f(A \zeta)\left|A^{\prime}(\zeta)\right|\right)|d \zeta|
\end{align*}
$$

If in addition f satisfies (1.3) on ∂D, so that f is a function on $\partial R,(1.8)$ simplifies to

$$
\int_{\partial D} f(z)|d z|=\int_{\mathscr{J}} f(z)\left(\sum_{A \in G}\left|A^{\prime}(z)\right|\right)|d z|
$$

We introduce the function

$$
\begin{equation*}
\rho(z)=\sum_{A \in G}\left|A^{\prime}(z)\right| \tag{1.9}
\end{equation*}
$$

so that our formula becomes
Proposition 1. For every integrable function $f(z)$ on ∂R,

$$
\begin{equation*}
\int_{\partial D} f(z)|d z|=\int_{\mathcal{O}} f(z) \rho(z)|d z| \tag{1.10}
\end{equation*}
$$

1.4. Applying (1.10) with $f(z)=1$ we obtain

$$
\int_{\mathscr{J}} \rho(z)|d z|=2 \pi
$$

from which we conclude $\rho(z)<\infty$ a.e. in \mathscr{G}. Much more is true:
Proposition 2. The series (1.9) converges uniformly on every compact subset of \hat{D} which does not intersect $G(\infty)=\{A(\infty): A \in G\}$.

Proof. Let $\left\{A_{n}\right\}$ be an enumeration of G with $A_{1}=I$. Each A_{n} is of the form

$$
A_{n}(z)=\left(a_{n} z+b_{n}\right) /\left(\bar{b}_{n} z+\bar{a}_{n}\right), \quad\left|a_{n}\right|^{2}-\left|b_{n}\right|^{2}=1
$$

Since no element of G has a fixed point in $\hat{D}, b_{n} \neq 0$ for $n \neq 1$. For $z \in \mathscr{G}$,

$$
\left|A_{n}^{\prime}(z)\right|=\left|\bar{b}_{n} z+\bar{a}_{n}\right|^{-2} \geqq\left(\left|b_{n}\right|+\left|a_{n}\right|\right)^{-2} \geqq\left(2\left|a_{n}\right|\right)^{-2} .
$$

Since $\rho(z)$ is finite for some $z \in \mathfrak{G}$, we have

$$
\sum\left|a_{n}\right|^{-2}<\infty
$$

and since $\left|a_{n}\right|^{2}-\left|b_{n}\right|^{2}=1$,

$$
\begin{equation*}
\sum_{2}^{\infty}\left|b_{n}\right|^{-2}<\infty \tag{1.11}
\end{equation*}
$$

Now let K be a compact set in \hat{D} disjoint from $G(\infty)$, and let $\delta>0$ be the distance of the closure $G(\infty) \cup L(G)$ of $G(\infty)$ from K. For $z \epsilon K$ and $n>1$,

$$
\begin{align*}
\left|A_{n}^{\prime}(z)\right| & =\left|b_{n}\right|^{-2}\left|z+\bar{a}_{n} \bar{b}_{n}^{-1}\right|^{-2} \\
& =\left|b_{n}\right|^{-2}\left|z-A_{n}^{-1}(\infty)\right|^{-2} \leqq \delta^{-2}\left|b_{n}\right|^{-2} \tag{1.12}
\end{align*}
$$

and Proposition 2 immediately follows. Note that each point of $G(\infty)$ interferes with only one term of (1.9).

Corollary. $\rho(z)$ is a bounded continuous function on \mathscr{g}.
1.5. One way to obtain a meromorphic differential on R or \hat{R} is to start with an arbitrary meromorphic function $F(z)$ in D or \hat{D} and form the Poincare series

$$
\begin{equation*}
(\Theta F)(z)=\sum_{A \in G} F(A z) A^{\prime}(z) \tag{1.13}
\end{equation*}
$$

If the series (1.13) converges uniformly on compact subsets of D or $\hat{D},(\Theta F)(z) d z$ will be a meromorphic differential on R or \hat{R}. Proposition 2 implies the convergence of (1.13) for many functions $F(z)$. For instance

Proposition 3. Let $r(z)$ be a rational function with no poles in $L(G)$. Then $(\Theta r)(z) d z$ is a meromorphic differential on \hat{R}.

Proof. If K is a relatively compact subregion of \hat{D} then $A(K) \cap K \neq \emptyset$ for only a finite number of $A \epsilon G$. Hence if K contains the poles of $r(z)$ and $M=\sup _{z \epsilon K}|r(z)|$, then $|r(A z)| \leqq M$ for all $A \epsilon G$, with a finite number of exceptions.
1.6. As an example consider our basic meromorphic differential

$$
\begin{equation*}
\alpha=\Theta(1 / z) d z=\sum_{A \in G}\left(A^{\prime}(z) / A(z)\right) d z, \quad z \in \hat{D} \tag{1.14}
\end{equation*}
$$

α is analytic in \hat{R} except for simple poles at $\pi(0), \pi(\infty)$ (of residue $+1,-1$ respectively). Hence by the Riemann-Roch theorem, α has $2 \hat{g}$ zeros in \hat{R}, where \hat{g} is the genus of \hat{R}.

The formula $\left|A^{\prime}(z)\right|=z A^{\prime}(z) / A(z)$ for $z \epsilon \partial D$ and $A \epsilon G$, with (1.9) and (1.14), yields

$$
\begin{equation*}
\alpha=z^{-1} \rho(z) d z=i \rho(z)|d z|, \quad z \in \mathfrak{g} \tag{1.15}
\end{equation*}
$$

Comparing (1.15) with (1.6), we find that $i \alpha$ is symmetric on \hat{R} and, by (1.5), has symmetric zeros. Since $\rho(z) \geqq 1$ for all z, no zero appears on ∂R. Thus, α has exactly g zeros in R.

It will turn out ($\S \S 2,3$) that α has fundamental importance on R. But this is hardly surprising, because α is closely related to Green's function $g(z)$ on R with pole at $\pi(0)$. Indeed, since

$$
g(z)=\sum_{A \in G} \log |A(z)|, \quad \alpha=d g+i * d g
$$

Because $d g=0$ along ∂R, (1.15) gives

$$
i \rho(z)|d z|=\alpha=i(\partial g / \partial n)|d z| \quad \text { on } \partial R,
$$

so that we can write (1.10) in the form

$$
\int_{\partial D} f(z)|d z|=\int_{g} f(z) \frac{\partial g}{\partial n}|d z|
$$

2. The conditional expectation

2.1. For $f(z)$ defined in D, \hat{D}, or ∂D, set

$$
\begin{align*}
(E f)(z) & =\sum_{A \in G} \frac{f(A z) A^{\prime}(z)}{A(z)} / \sum_{A \in G} \frac{A^{\prime}(z)}{A(z)} \tag{2.1}\\
& =\Theta(f / z) / \Theta(1 / z)
\end{align*}
$$

Obviously, $E f$ is an automorphic function whenever it exists. Its existence for suitable functions f is guaranteed by Propositions 2 and 3. For example, $E f$ is a meromorphic function on \hat{R} whenever f is rational with no poles in $L(G)$. If f is a bounded analytic function in D, then $E f$ is meromorphic in R with poles only at the zeros of the differential α defined in §1.6. If f itself is automorphic, then $E f=f$.
2.2. G is a free group of rank \hat{g}, where \hat{g} is the genus of \hat{R}. Choose a set of generaters $\left\{A_{j}\right\}, 1 \leqq j \leqq g$, and define

$$
\begin{equation*}
h_{j}(z)=z \bar{\zeta}_{j} /\left(1-\bar{\zeta}_{j} z\right), \quad \zeta_{j}=A_{j}(0), \quad 1 \leqq j \leqq g \tag{2.2}
\end{equation*}
$$

Lemma 1. $\left(E h_{j}\right) \alpha$ is an analytic differential on \hat{R}.
Proof. From the definitions we have

$$
\begin{equation*}
\left(E h_{j}\right) \alpha=\Theta\left(\frac{\bar{\zeta}_{j}}{1-\bar{\zeta}_{j} z}\right) d z \tag{2.3}
\end{equation*}
$$

Thus $\left(E h_{j}\right) \alpha$ is a meromorphic differential on \hat{R}. Since $A_{j}(\infty)=1 / \xi_{j}$, $\left(E h_{j}\right) \alpha$ can have a pole only at $\pi(\infty)\left(=\pi\left(1 / \xi_{j}\right)\right)$. But

$$
\Theta\left(\frac{\bar{\zeta}_{j}}{1-\bar{\zeta}_{j} z}\right)=\bar{\zeta}_{j}\left\{\frac{1}{1-\bar{\zeta}_{j} z}+\frac{\left(A_{j}^{-1}\right)^{\prime}(z)}{1-\bar{\zeta}_{j}\left(A_{j}^{-1}\right)(z)}\right\}+f(z)
$$

where $f(z)$ is analytic in a neighborhood of $1 / \xi_{j}$. Elementary calculation shows that the bracketed expression is regular at $1 / \xi_{j}$. That proves the lemma.
2.3. Let $\mathbb{Q}(R)$ be the (complex) vector space of analytic differentials on R which are continuous in \bar{R}. The Dirichlet integral [2] defines an inner product

$$
\left(\beta_{1}, \beta_{2}\right)=\iint_{R} \beta_{1} \wedge \overline{* \beta_{2}}=i \iint_{R} \beta_{1} \wedge \bar{\beta}_{2}
$$

on $\mathbb{Q}(R)$. Let Γ_{j} be the closed curve in R covered by the line segment in D joining 0 to $\zeta_{j}=A_{j}(0)$. It is well known [2] that there is an analytic differential $\psi\left(\Gamma_{j}\right)$ on R such that

$$
2 \pi \int_{\Gamma_{j}} \beta=\left(\beta, \psi\left(\Gamma_{j}\right)\right) \quad \text { for all } \beta \in \mathbb{Q}(R)
$$

Lemma 2. $\psi\left(\Gamma_{j}\right)=\left(E h_{j}\right) \alpha$.
Proof. Set $\beta=f(z) d z$. Then f is integrable in D, for if Ω is a fundamental polygon for G in D we compute

$$
\begin{aligned}
\iint_{D}|f(\zeta)| d \xi d \eta & =\sum_{A \in G} \iint_{A(\mathcal{R})}|f(\zeta)| d \xi d \eta \\
& =\sum_{A \in G} \iint_{\mathbb{R}}|f(A z)|\left|A^{\prime}(z)\right|^{2} d x d y \\
& =\iint_{\mathbb{R}}|f(z)| \rho(z) d x d y
\end{aligned}
$$

where of course $\rho(z)$ is defined by (1.9). But $\rho(z)|f(z)|$ is continuous, hence bounded, in the closure of R.

Since f is integrable in D, it satisfies

$$
\pi f(z)=\iint_{D} f(\zeta)(1-\bar{\zeta} z)^{-2} d \xi d \eta, \quad z \in D
$$

Integrating from 0 to ζ_{j} we obtain

$$
\begin{aligned}
\pi \int_{0}^{\zeta_{j}} f(z) d z & =\iint_{D} f(\zeta) \zeta_{j}\left(1-\bar{\zeta} \zeta_{j}\right)^{-1} d \xi d \eta \\
& =\sum_{A \in G} \iint_{A(\Omega)} f(\zeta) \zeta_{j}\left(1-\bar{\zeta}_{j}\right)^{-1} d \xi d \eta \\
& =\sum_{A \in G} \iint_{\Omega} f(A z) \zeta_{j}\left(1-\zeta_{j} \overline{A(z)}\right)^{-1} A^{\prime}(z) \overline{A^{\prime}(z)} d x d y \\
& =\iint_{\Omega} f(z) \Theta\left(\bar{\zeta}_{j}\left(1-\bar{\zeta}_{j} z\right)^{-1}\right)(z) d x d y
\end{aligned}
$$

In view of (2.3), that proves Lemma 2.
Definition. N is the vector space spanned by the functions $\left\{E h_{j}\right\}$, $1 \leqq j \leqq g$.

Corollary 1. (i) N has dimension g.
(ii) N consists of the meromorphic functions $f(z)$ on \hat{R} such that f_{α} is an analytic differential on \hat{R}.
(iii) N has a basis consisting of functions real on ∂R.

Proof. (i) The vector space of analytic differentials on \hat{R} has dimension \hat{g}. If the differentials $\psi\left(\Gamma_{j}\right)=\left(E h_{j}\right) \alpha$ were not independent, there would be a non-zero analytic differential on \hat{R} which was exact in R. That is impossible [2, p. 296].
(ii) Lemma 1 asserts that N is a linear subspace of the vector space $M(-(\alpha))$ of functions f such that $f \alpha$ is analytic in \hat{R}. But $M(-(\alpha))$ has dimension g, for every analytic differential β on \hat{R} can be written $\beta=(\beta / \alpha) \alpha$, and $\beta / \alpha \in M(-(\alpha))$. By (i), $N=M(-(\alpha))$.
(iii) Choose a basis $\left\{\beta_{j}\right\}, 1 \leqq j \leqq \hat{g}$, for the analytic differentials on \hat{R} such that each β_{j} is symmetric (see §1.2). Since $i \alpha$ is a symmetric differential, the functions $i \beta_{j} / \alpha$ form a symmetric basis for N. In particular, they are real on ∂R. (A closer examination of the differentials $\psi\left(\Gamma_{j}\right)$ would reveal them to be symmetric.)

Corollary 2. (Heins [7]). If $f \in N$ and is analytic in R, then $f \equiv 0$.
Proof. Let $f=\sum C_{j}\left(E h_{j}\right)$. If f is analytic in R, then $d f \in \mathbb{Q}(R)$, and Lemma 2 gives

$$
0=2 \pi \sum \bar{C}_{j} \int_{\Gamma_{j}} d f=(d f, f \alpha)=i \iint_{R} d f \wedge \overline{f \alpha}=i \int_{\partial R}|f|^{2} \bar{\alpha}
$$

where the last equality is Stokes' theorem. Equation (1.15) shows that the differential $i \bar{\alpha}$ is positive along ∂R. Therefore f vanishes on ∂R, hence everywhere.

Theorem 1. If f is meromorphic in R and $f \alpha$ is regular in R, there is a unique $h \epsilon N$ such that $f-h$ is analytic in R.

Proof. The space P of principal parts of such functions f is a vector space of dimension \hat{g}, for α has \hat{g} zeros in R. Corollaries 1 and 2 imply that the map from N to P which sends each function to its principal parts is a vector space isomorphism.
2.4. Since $\left|A^{\prime}(z)\right|=z A^{\prime}(z) / A(z)$ for $z \epsilon \partial D$, we can write (2.1) in the form

$$
\begin{equation*}
(E f)(z)=\sum_{A \in G} f(A z)\left|A^{\prime}(z)\right| / \rho(z), \quad z \in \partial D \tag{2.4}
\end{equation*}
$$

where $\rho(z)$ is given by (1.9). Set $L^{p}=L^{p}(d m), 1 \leqq p \leqq \infty$, where m is the linear measure on ∂D, and let $L^{p} \mid G$ be the subspace of automorphic functions. We claim that $E: L^{p} \rightarrow L^{p} \mid G$ is a projection of norm one; in other words

$$
\begin{equation*}
\|E f\|_{p} \leqq\|f\|_{p}, \quad 1 \leqq p \leqq \infty \tag{2.5}
\end{equation*}
$$

That is clear if $p=\infty$ because the series (1.9) converges almost everywhere on ∂D. For $p<\infty$ Hölder's inequality and (1.9) give

$$
\begin{aligned}
\rho(z)^{p}|E f(z)|^{p} & \leqq\left(\sum_{A \epsilon G}|f(A z)|\left|A^{\prime}(z)\right|\right) \\
& \leqq\left(\sum_{A \epsilon G}|f(A z)|^{p}\left|A^{\prime}(z)\right|\right) \rho(z)^{p-1}
\end{aligned}
$$

or

$$
\begin{equation*}
|E f|^{p} \leqq E\left(|f|^{p}\right), \quad 1 \leqq p<\infty \tag{2.6}
\end{equation*}
$$

For any $g \epsilon L^{1}$, (1.8), (1.10), and (2.4) yield

$$
\begin{equation*}
\int_{\partial D} g|d z|=\int_{\mathcal{J}}(E g)_{\rho}|d z|=\int_{\partial D}(E g)|d z| \tag{2.7}
\end{equation*}
$$

From (2.6) and (2.7) we obtain

$$
\|E f\|_{p}^{p}=\int_{\partial D}|E f|^{p}|d z| \leqq \int_{\partial D} E\left(|f|^{p}\right)|d z|=\int_{\partial D}|f|^{p}|d z|=\|f\|_{p}^{p}
$$

proving (2.5).
We should also note the obvious facts that $E f=f$ for all $f \in L^{p} \mid G$ and that $E \bar{f}=\overline{E f}$ for all $f \epsilon L^{p}$.

Remark. The identity

$$
E(f g)=f E g, \quad f \in L^{p} \mid G, g \in L^{q}
$$

is immediate from (2.4). With (2.7) it implies that

$$
\begin{equation*}
\int_{\partial D} f g|d z|=\int_{\partial D} f(E g)|d z|, \quad f \in L^{p} \mid G, g \in L^{q} \tag{2.8}
\end{equation*}
$$

whence

$$
\int_{\partial D} f(E g)|d z|=\int_{\partial D}(E f) g|d z|, \quad \quad f \in L^{p}, g \in L^{q}
$$

Thus E is the conditional expectation operator considered by Forelli [6]. (Of course the numbers p and q above satisfy $p^{-1}+q^{-1}=1$.)
2.5. The Hardy space $H^{p}(D), 1 \leqq p \leqq \infty$, is the Banach space of analytic functions in D which satisfy the equivalent conditions

$$
\begin{align*}
& \|f\|_{p}^{p}=\lim _{r \rightarrow 1} \int_{|z|=r}|f|^{p}|d z| /|z|<\infty \quad(p<\infty) \tag{i}\\
& \|f\|_{\infty}=\lim _{r \rightarrow 1} \max \{|f(z)|:|z|=r\}<\infty
\end{align*}
$$

(ii) $|f|^{p}$ has a harmonic majorant in $D(p<\infty)$.

For each $f \epsilon H^{p}(D), f\left(e^{i \theta}\right)=\lim _{r \rightarrow 1} f\left(r e^{i \theta}\right)$ exists a.e. on ∂D and is in L^{p}. Furthermore, its L^{p} norm equals the norm given by (i), and f is equal to the Poisson integral of its boundary values [8]. We may therefore identify $H^{p}(D)$ with a subspace of L^{p}.

The Hardy space $H^{p}(R), 1 \leqq p \leqq \infty$ is the Banach space of analytic functions in R satisfying the equivalent conditions (see [11]):

$$
\begin{align*}
\|f\|_{p}^{\prime p} & =\lim _{r \rightarrow 1} \int_{l_{r}}|f|^{p}(\partial g / \partial n) d s<\infty \quad(p<\infty) \tag{i}\\
\|f\|_{\infty}^{\prime} & =\lim _{r \rightarrow 1} \max \left\{|f(z)|: z \in l_{r}\right\}<\infty
\end{align*}
$$

(ii) $|f|^{p}$ has a harmonic majorant in $R(p<\infty)$,
(iii) $f \in H^{p}(D)$ and f is automorphic.

Here g is Green's function on R with pole at $\pi(0)$, and

$$
l_{r}=\{z \in R: g(z)=1-r\}
$$

Furthermore $\|f\|_{p}^{\prime}=\|f\|_{p}$. Using (iii) we shall identify $H^{p}(R)$ with a subspace of L^{p}; in fact $H^{p}(R)=L^{p} \mid G \cap H^{p}(D)$.

Finally, $H_{0}^{p}(D)$ is the set of $f \in H^{p}(D)$ satisfying the equivalent conditions $f(0)=0$ and

$$
\int_{\partial D} f|d z|=0
$$

set $H_{0}^{p}(R)=H_{0}^{p}(D) \cap H^{p}(R)$.
2.6. The operator E is a powerful tool for the study of $H^{p}(R)$, as Forelli has shown in [6]. The basic fact is

Proposition $4([6]) . \quad E H^{p}(D)=H^{p}(R) \oplus N, 1 \leqq p \leqq \infty$.
Proof. The inclusion $H^{p}(R) \subset E H^{p}(D)$ is obvious because E leaves $H^{p}(R)$ fixed. Since the functions h_{j} belong to $H^{p}(D)$ for all $p \geqq 1$, we also have $N \subset E H^{p}(D)$. Corollary 2, §2.3, implies that $H^{p}(R) \cap N=\{0\}$. Moreover, $H^{p}(R) \oplus N$ is closed in L^{p} / G, and the natural projection from $H^{p}(R) \oplus N$ to $H^{p}(R)$ is continuous, because N is finite dimensional. (That justifies the direct sum notation.) We have proved that

$$
H^{p}(R) \oplus N \subset E H^{p}(D)
$$

Suppose now that $f \in H^{\infty}(D)$. As we observed in §2.1, $E f$ is meromorphic in R with poles only at the zeros of α. By Theorem 1 , there exists $h \in N$ such that $E f-h \in H^{\infty}(R)$. Thus, $E H^{\infty}(D) \subset H^{\infty}(R) \oplus N$.

If $f \in H^{p}(D), p<\infty$, and $f_{r}(z)=f(r z), r<1$, then $f_{r} \rightarrow f$ in L^{p} as $r \rightarrow 1$ (see [8]). From (2.5) it follows that $E f_{r} \rightarrow E f$ in $L^{p} \mid G$. But

$$
E f_{r} \epsilon H^{\infty}(R) \oplus N \subset H^{p}(R) \oplus N
$$

Since $H^{p}(R) \oplus N$ is closed, we conclude that $E H^{p}(D) \subset H^{p}(R) \oplus N$ for all $p \geqq 1$.
Proposition 5 ([6], [7]). For $1<p<\infty$,

$$
L^{p} \mid G=H_{0}^{p}(R) \oplus H^{p}(R) \oplus N .
$$

Proof. It is classical (see [8]) that $L^{p}=H_{0}^{p}(D) \oplus \overline{H^{p}(D)}$ if $1<p<\infty$. Writing $f \in L^{p} \mid G$ in the form $f=g+\bar{h}$, with g and $h \in H^{p}(D)$, and applying E, we obtain

$$
f=E f=E g+\overline{E h} .
$$

To complete the proof we apply Proposition 4 and observe that $N=\bar{N}$ because of Corollary 1, §2.3.

Proposition 6. [3], [7], [9], [10]. $f \in L^{1} \mid G$ is in $H^{1}(R)$ if and only if

$$
\begin{equation*}
\int_{\partial R} f \beta=0 \text { for all } \beta \in \mathbb{Q}(R) \tag{2.9}
\end{equation*}
$$

Proof. If $f \in H^{1}(R)$ is continuous in \bar{R}, (2.9) follows immediately from Stokes' theorem. For any $f \in H^{1}(R), E f_{r}$ is continuous on $\partial R, r<1$. If Q is the (continuous) projection from $H^{1}(R) \oplus N$ to $H^{1}(R)$, then $Q E f_{r}$ belongs to $H^{1}(R)$ and is continuous in \bar{R}. Since $Q E f_{r} \rightarrow Q E f=f$ as $r \rightarrow 1$, (2.9) holds for all $f \in H^{1}(R)$.

Conversely, let $f \in L^{1} \mid G$ satisfy (2.9). Then, for all $n \geqq 0$,

$$
\begin{aligned}
0 & =\int_{\partial R} f(z) \Theta\left(z^{n}\right) d z=\int_{\partial R} f(z) E\left(z^{n+1}\right) \alpha \\
& =i \int_{\mathcal{S}} f(z) E\left(z^{n+1}\right) \rho(z)|d z|=i \int_{\partial D} f(z) z^{n+1}|d z|,
\end{aligned}
$$

by (2.1), (1.15) and (2.7). A classical theorem implies that $f \in H^{1}(D)$. Thus, $f \in H^{1}(D) \cap L^{1} \mid G=H^{1}(R)$.
Remark. Proposition 6 is a weak form of the Cauchy-Read theorem [9], [10]. We shall obtain the strong form in $\S 3.2$ as a consequence of the F . and M. Riesz theorem.
2.7. Remark. Let g be any meromorphic function on \hat{R} having the same zeros as α, with no other zeros or poles in \bar{R}. Then, it is clear that

$$
E\left(g H^{\infty}(D)\right)=g\left(H^{\infty}(R) \oplus N\right)=H^{\infty}(R) .
$$

For on the one hand $g\left(H^{\infty}(R) \oplus N\right)$ is obviously contained in $H^{\infty}(R)$, and on the other hand Theorem 1 implies that $f / g \in H^{\infty}(R) \oplus N$ whenever $f \in H^{\infty}(R)$.

As Forelli showed in [6], the corona conjecture for $H^{\infty}(R)$ can be proved
in a few lines as soon as $g \epsilon H^{\infty}(D)$ with $E\left(g H^{\infty}(D)\right)=H^{\infty}(R)$ is found. He found such a g by methods quite different from ours.

3. Functions with continuous boundary values

3.1. Let $C(\partial D)$ and $C(\partial R)$ be the Banach spaces of continuous complexvalued functions on ∂D and ∂R, respectively. Proposition 2 and the formula (2.4) show that E maps $C(\partial D)$ into $C(\partial R)$. Formula (2.5) shows that $E: C(\partial D) \rightarrow C(\partial R)$ has norm one. We shall calculate the adjoint map $E^{*}: C(\partial R)^{*} \rightarrow C(\partial D)^{*}$. In addition, we shall use a map

$$
\pi_{*}: C(\partial D)^{*} \rightarrow C(\partial R)^{*}
$$

induced by the natural map $\pi: \hat{D} \rightarrow \hat{R}$.
By the Riesz representation theorem, $C(\partial D)^{*}$ is the space of finite complex Baire measures on ∂D, and $C(\partial R)^{*}$ is the space of finite complex Baire measures on ∂R, or equivalently, on $\mathscr{G} \subset \partial D$.

Lemma 3. For each $\mu \in C(\partial R)^{*}$ and each Baire set $S \subset \partial D$,

$$
\begin{equation*}
\left(E^{*} \mu\right)(S)=\sum_{A \in G} \int_{A^{-1}(s) \cap_{\mathfrak{s}}}\left|A^{\prime}(z)\right| \rho(z)^{-1} d \mu(z) \tag{3.1}
\end{equation*}
$$

Proof. Let $\mu^{*}(S)$ denote the right side of (3.1). It is clear that μ^{*} is a finite complex Baire measure on ∂D. We will show that it has the properties

$$
\begin{array}{cc}
\mu^{*}(L(G))=0 & B \in G \\
\mu^{*}(B(S))=\int_{S}\left|B^{\prime}(z)\right| d \mu^{*}(z), & f \in C(\partial D)
\end{array}
$$

The truth of (3.2) is clear. (3.4) implies that $\mu^{*}=E^{*} \mu$. By a change of variable $w=B(z), B \in G$, in (3.1) we find that $\mu^{*}(S)$ is equal to the series in (3.1) with \mathfrak{g} replaced by $B(\mathfrak{g})$. Hence $d \mu^{*}(B(z))=\rho(w)^{-1} d \mu(w)=$ $\left|B^{\prime}(z)\right| \rho(z)^{-1} d \mu(z)=\left|B^{\prime}(z)\right| d \mu^{*}(z)$, first for $z \in \mathscr{G}$ and then for arbitrary $z \epsilon \partial D-L(G)$. This is the differentiated form of (3.3). To prove (3.4):

$$
\begin{aligned}
\int_{\mathcal{S}} E f(z) d \mu(z) & =\sum_{A \in G} \int_{\mathscr{S}} f(A z)\left|A^{\prime}(z)\right| \rho(z)^{-1} d \mu(z) \\
& =\sum_{A \in G} \int_{\mathscr{S}} f(A z)\left|A^{\prime}(z)\right| d \mu^{*}(z) \\
& =\sum_{A \in G} \int_{\mathcal{S}} f(A z) d \mu^{*}(A z)=\int_{\partial D} f d \mu^{*}
\end{aligned}
$$

Lemma 4. Define $\pi_{*}: C(\partial D)^{*} \rightarrow C(\partial R)^{*} b y$

$$
\begin{equation*}
\left(\pi_{*} \mu\right)(S)=\mu(G(S))=\sum_{A \in G} \mu(A(S)) \tag{3.5}
\end{equation*}
$$

for each $\mu \epsilon C(\partial D)^{*}$ and each Baire set $S \subset \partial R . \pi_{*}$ is linear of norm one. Moreover, $\pi_{*} \circ E^{*}$ is the identity on $C(\partial R)^{*}$, and $P=E^{*} \circ \pi_{*}$ is a projection of norm one from $C(\partial D)^{*}$ onto the closed subspace of measures which satisfy (3.2) and (3.3).

Proof. Let $\mu_{*}=\pi_{*} \mu, \mu \in C(\partial D)^{*}$. Then $d \mu_{*}(z)=\sum d \mu(A z)$, and

$$
\int_{\partial D-L(G)} f d \mu=\sum \int_{\mathcal{S}} f(w) d \mu(A w)=\int_{\mathcal{g}} f d \mu_{*}
$$

for all $f \in C(\partial R)$. Thus π_{*} has norm one. Let $\mu \in C(\partial R)^{*}$ and suppose $S \subset g$ is a Baire set. Setting $\mu^{*}=E^{*} \mu \in C(\partial D)^{*}$ we obtain

$$
\begin{aligned}
\left(\pi_{*} \mu^{*}\right)(S) & =\sum_{A \in G} \mu^{*}(A(S))=\sum_{A \in G} \int_{S}\left|A^{\prime}(z)\right| d \mu^{*}(z) \\
& =\int_{S} \rho(z) d \mu^{*}(z)=\int_{S} d \mu(z)=\mu(S)
\end{aligned}
$$

proving that $\pi_{*} \circ E^{*}$ is the identity.
Finally, each $\mu^{*} \in C(\partial D)^{*}$ which satisfies (3.2) and (3.3) is in the range of E^{*}; in fact, $\mu^{*}=P \mu^{*}=E^{*} \mu$, where $\mu=\pi_{*} \mu^{*}$. For by (3.3),

$$
\mu(S)=\int_{S} \rho(z) d \mu^{*}(z) \quad \text { if } S \subset \mathfrak{g}
$$

Hence for any Baire set $T \subset \partial D$

$$
\begin{aligned}
\left(E^{*} \mu\right)(T) & =\sum_{A \in G} \int_{A^{-1}(T) \cap_{s}}\left|A^{\prime}(z)\right| d \mu^{*}(z) \\
& =\sum_{A \in G} \int_{T \cap_{A(g)}} d \mu^{*}(A z)=\mu^{*}(T)
\end{aligned}
$$

by (3.2) and (3.3).
Remark. We map L^{1} into $C(\partial D)^{*}$ by identifying each $f \epsilon L^{1}$ with the measure $d \mu=f(z)|d z|$ on ∂D. Each subspace of L^{1} will be identified with its image in $C(\partial D)^{*}$. The restriction of P to L^{1} is simply E. In particular, $P\left(H^{1}(D)\right)=H^{1}(R) \oplus N$.
3.2. Our work in $\S 3.1$ has two immediate applications.

Theorem 2. E maps $C(\partial D)$ onto $C(\partial R)$.
Proof. A standard result in functional analysis [4, p. 488] says that E has dense range if and only if E^{*} is one-to-one and E has closed range if and only if E^{*} does. Therefore Theorem 2 is equivalent to the assertion that E^{*} is one-to-one and has closed range. These properties of E^{*} are immediate consequences of Lemma 4, specifically of the fact that E^{*} has a left inverse.

We will now introduce the two Banach spaces

$$
\begin{aligned}
& A_{0}(D)=\left\{f \epsilon H_{0}^{\infty}(D): f \text { is continuous in } \bar{D}\right\} \\
& A_{0}(R)=\left\{f \in H_{0}^{\infty}(R): f \text { is continuous in } \bar{R}\right\} .
\end{aligned}
$$

The functions $z^{n}, n \geq 1$, are dense in $A_{0}(D)$. We have by uniform convergence that $E f$ is meromorphic in R, continuous on ∂R, and vanishes at $\pi(0)$. Hence as in §2.6,

$$
\begin{equation*}
E\left(A_{0}(D)\right) \subset A_{0}(R) \oplus N \tag{3.6}
\end{equation*}
$$

but the opposite inclusion is not obvious.
Lemma 5 (F. and M. Riesz) [3], [7], [10]. Let μ be a finite complex Baire measure on ∂R such that

$$
\int_{\partial R} f d \mu=0, \quad \text { all } f \in E\left(A_{0}(D)\right)
$$

Then $d \mu=h(z) \rho(z)|d z|$ for some $h \in H^{1}(R)$.
Proof. Set $\mu^{*}=E^{*} \mu$. (3.4) implies that $\int_{\partial D} z^{n} d \mu^{*}=0$ for all $n \geq 1$, and hence the classical result in D implies that $d \mu^{*}=h(z)|d z|$ for some $h_{-}^{h} \in H^{1}(D)$. But (3.3) implies that

$$
h(B(z))\left|B^{\prime}(z)\right||d z|=\left|B^{\prime}(z)\right| h(z)|d z|
$$

so that $h(B(z))=h(z)$ for all $z \epsilon \partial D$ and $B \in G$. Hence $h \in H^{1}(R)$.
Corollary 1 ([9], [10]). $\quad\left[A_{0}(R) \oplus N\right]^{\perp}=\pi_{*}\left(H^{1}(R)\right)$.
Proof. Since $\pi_{*}\left(H^{1}(R)\right)$ consists of the measures on ∂R of the form $d \mu=h(z) \rho(z)|d z|, h \in H^{1}(R)$, (3.6) and Lemma 5 imply that

$$
\begin{equation*}
\left[A_{0}(R) \oplus N\right]^{\perp} \subset\left[E\left(A_{0}(D)\right)\right]^{\perp} \subset \pi_{*}\left(H^{1}(R)\right) \tag{3.7}
\end{equation*}
$$

Conversely, if $f \in A_{0}(R) \oplus N$ and $\mu \epsilon \pi *\left(H^{1}(R)\right)$, then

$$
i \int_{\mathcal{g}} f d \mu=i \int_{\mathcal{s}} f(z) h(z)_{\rho}(z)|d z|=\int_{\partial R} h f \alpha=0
$$

by (1.15) and Proposition 6, since $f \alpha \in \mathbb{Q}(R)$ when $f \in A_{0}(R) \oplus N$.
Corollary 2. $E\left(A_{0}(D)\right)$ is dense in $A_{0}(R) \oplus N$.
In fact, Corollary 1 and (3.7) imply that every linear functional which vanishes on $E\left(A_{0}(D)\right)$ vanishes on $A_{0}(R) \oplus N$.

Remark. Corollary 1 is the strong form of the Cauchy-Read theorem which we promised in §2.6. It corresponds to the classical theorem that

$$
A_{0}(D)^{\perp}=H^{1}(D)
$$

3.3. We are now ready to prove the main result of this chapter.

Theorem 3. $E\left(A_{0}(D)\right)=A_{0}(R) \oplus N$.
Proof. By Corollary 2 of Lemma 5, we need to prove only that

$$
E: A_{0}(D) \rightarrow A_{0}(R) \oplus N
$$

has closed range. As in Theorem 2, we shall prove instead that E^{*} has closed range. Corollary 1 of Lemma 5 allows us to interpret E^{*} as a map from the coset space $C(\partial R)^{*} / \pi_{*}\left(H^{1}(R)\right)$ into $C(\partial D)^{*} / H^{1}(D)$. The image of E^{*} is therefore

$$
E^{*}\left(C(\partial R)^{*}\right) / H^{1}(D)=P\left(C(\partial D)^{*}\right) / H^{1}(D)
$$

where $P: C(\partial D)^{*} \rightarrow C(\partial D)^{*}$ is the projection defined in Lemma 4. It is not obvious that $P\left(C(\partial D)^{*}\right) / H^{1}(D)$ is closed. The difficulty is that P does not preserve $H^{1}(D)$. To compensate for that we use the projection

$$
Q: H^{1}(D) \oplus N \rightarrow H^{1}(D)
$$

with kernel N. Here we interpret $H^{1}(D)$ and N as closed subspaces of $C(\partial D)^{*}$. The subspace $H^{1}(D) \oplus N$ is closed, and Q is continuous, because N has finite dimension.

Let $\left\{\mu_{n}\right\} \subset P\left(C(\partial D)^{*}\right)$ and $\left\{\nu_{n}\right\} \subset H^{1}(D)$ be sequences such that

$$
\mu_{n}+\nu_{n} \rightarrow \lambda \epsilon C(\partial D)^{*}
$$

We must find $\sigma \in H^{1}(D)$ such that $\sigma+\lambda=P(\sigma+\lambda)$. We assert that

$$
\sigma=Q(P \lambda-\lambda)=\lim \left(Q P \nu_{n}-\nu_{n}\right), \quad n \rightarrow \infty
$$

suffices. First we verify that σ exists. Since $\mu_{n}+\nu_{n} \rightarrow \lambda$,

$$
P\left(\mu_{n}+\nu_{n}\right)=\mu_{n}+P \nu_{n} \rightarrow P \lambda
$$

Therefore $P \lambda-\lambda=\lim \left(P \nu_{n}-\nu_{n}\right) \epsilon H^{1}(D) \oplus N$, and σ exists, because

$$
P \nu_{n} \in P H^{1}(D)=H^{1}(R) \oplus N \subset H^{1}(D) \oplus N
$$

a closed subspace. Since $Q P \nu_{n} \in H^{1}(R)$, it is fixed by P, and we find that

$$
\begin{aligned}
P(\sigma+\lambda) & =\lim \left(P Q P \nu_{n}-P \nu_{n}+P \nu_{n}+\mu_{n}\right) \\
& =\lim \left(Q P \nu_{n}-\nu_{n}+\nu_{n}+\mu_{n}\right)=\sigma+\lambda
\end{aligned}
$$

completing the proof.
3.4. Theorem 3 has an interesting application to Poincaré series Set $A(D)=A_{0}(D) \oplus C ; A(D)$ is the closure in $C(\partial D)$ of the polynomials.

Theorem 4. The Poincaré series (1.13), maps $A(D)$ onto $\mathbb{Q}(R)$.
Proof. The map $f(z) \rightarrow f_{0}(z)=z f(z)$ carries $A(D)$ onto $A_{0}(D)$. Com-
paring (1.13), (1.14) and (2.1) we find that

$$
(\Theta f)(z) d z=\left(E f_{0}\right)(z) \alpha
$$

By Theorem 3, the range of Θ is the set of all differentials $f \alpha, f \in A_{0}(R) \oplus N$. But the mapping $\beta \rightarrow \beta / \alpha$ is a one-to-one correspondence between $Q(R)$ and $A_{0}(R) \oplus N$, by Theorem 1.

Remark. Since polynomials are dense in $A(D)$, the Poincare series of polynomials are dense in $\mathbb{Q}(R)$. Thus each differential in $\mathbb{Q}(R)$ can be uniformly approximated in \bar{R} by meromorphic differentials in \hat{R} which have poles only at $\pi(\infty)$.
3.5. The meromorphic differentials on \hat{R} can also be described easily by Poincaré series. In fact, Proposition 3 has the following converse.

Theorem 5. Every meromorphic differential on \hat{R} has the form $(\Theta r)(z) d z$, where $r(z)$ is rational with no poles in $L(G)$.

Proof. Put $r_{n}(z)=(z-\zeta)^{n}$. If $\zeta \in \hat{D}-G(\infty)$, then $\left(\Theta r_{n}\right)(z) d z$ has a pole of order $-n$ at $\pi(\zeta)$ for $n<0$, a pole of order $n+2$ at $\pi(\infty)$ for $n>-2$, and no other poles in \hat{R}. Therefore, every meromorphic differential on \hat{R} is the sum of an analytic differential and a linear combination of the differentials $\left(\Theta r_{n}\right)(z) d z$. From (2.3), Lemma 1, and Corollary 1 of Lemma 2, we conclude that every analytic differential on \hat{R} is the Θ-series of a rational function with poles only in $G(\infty)$. That proves Theorem 5.
3.6. To illustrate some of the difficulties that can arise upon projecting a theorem on $H^{p}(D)$ we will present the theorem of Szegö and KolmogoroffKrein as presented in [8] (cf. [1, §5]).

Let μ be a finite positive Baire measure on ∂R with

$$
d \mu=(1 / 2 \pi) h(z) \rho(z)|d z|+d \mu_{s}
$$

μ_{s} singular. Then for

$$
D(f)=\int_{\partial R}|1-f|^{2} d \mu
$$

$$
\inf _{f \in E\left(\Lambda_{0}(D)\right)} D(f) \leqq \exp (1 / 2 \pi) \int_{\partial R}(\log h) \rho(z)|d z| \leqq \inf _{f \in A_{0}(R)} D(f)
$$

There is equality on both sides if $N \perp A(R)$ with respect to $d \mu$.
Proof. The corresponding theorem in D applied to $E^{*}{ }_{\mu}$ implies that

$$
\inf _{g \in A_{0}(D)} \int_{\partial R} E\left(|1-g|^{2}\right) d \mu=\exp (1 / 2 \pi) \int_{\partial R}(\log h)_{\rho}(z)|d z|
$$

On the one hand from (2.6) we have

$$
E\left(|1-g|^{2}\right) \geqq|E(1-g)|^{2}=|1-E(g)|^{2}
$$

On the other hand if $f \in A_{0}(R)$ then $f_{r}(z)=f(r z) \epsilon A_{0}(D)$ and it is not hard to show that

$$
\lim E\left(\left|1-f_{r}\right|^{2}\right)=E\left(|1-f|^{2}\right)=|1-f|^{2}
$$

uniformly on g. Finally if $N \perp A(R)$ with respect to $d \mu$ then writing $f \in E\left(A_{0}(D)\right)$ as $f=f_{1}+f_{2}, f_{1} \in A_{0}(R), f_{2} \in N$, we have

$$
\int_{\partial R}|1-f|^{2} d \mu=\int_{\partial R}\left|1-f_{1}\right|^{2} d \mu+\int_{\partial R}\left|f_{2}\right|^{2} d \mu
$$

4. Reproducing kernels on R

4.1. We will first construct the Poisson kernel for R. We recall that

$$
P_{\zeta}(z)=\left(1-|\zeta|^{2}\right) /|z-\zeta|^{2}, \quad z \in \partial D, \quad \zeta \in D
$$

is the Poisson kernel for D. Noting that

$$
P_{A \zeta}(A z)=\frac{1-|A \zeta|^{2}}{|A z-A \zeta|^{2}}=\frac{\left(1-|\zeta|^{2}\right)\left|A^{\prime}(\zeta)\right|}{|z-\zeta|^{2}\left|A^{\prime}(z)\right|\left|A^{\prime}(\zeta)\right|}=P_{\zeta}(z)\left|A^{\prime}(z)\right|^{-1}
$$

for all $A \in G$, we find that

$$
E\left(P_{A \zeta}\right)(z)=E\left(P_{\zeta}\right)(z), \quad \text { all } \quad A \in G \quad \text { and } \quad z \in \partial D-L(G)
$$

Thus $\left(E P_{A \zeta}\right)(B(z))=\left(E P_{\zeta}\right)(z)$ for all $z \in \partial D-L(G), \zeta \in D$ and $A, B \in G$, so that $\left(E P_{\zeta}\right)(z)$ is a function on $\partial R \times R$. Furthermore if $f(\zeta)$ is any harmonic function in R, continuous on ∂R, we have, using (2.8),

$$
2 \pi f(\zeta)=\int_{\partial D} f(z) P_{\zeta}(z)|d z|=\int_{\partial R} f(z)\left(E P_{\zeta}\right)(z) \rho(z)|d z|
$$

Therefore $\left(E P_{\zeta}\right)(z)$ is the Poisson kernel for R.
4.2. We call the function $C(z, \zeta)$ a Cauchy kernel in R if for fixed $z \epsilon \bar{D}-L(G), C(z, \zeta) d \zeta$ is a meromorphic differential in \bar{R} having one simple pole of residue one at $\pi(z)$, and for fixed $\zeta, C(z, \zeta)$ is a meromorphic function in \bar{R} having one simple pole of residue -1 at $\pi(\zeta)$. Thus $C(z, \zeta)$ must satisfy

$$
C(A z, B \zeta) B^{\prime}(\zeta)=C(z, \zeta), \quad z, \zeta \in D ; A, B \in G
$$

By analogy with $\S 4.1$ define

$$
C_{1}(z, \zeta)=\sum_{A \in G} \frac{A^{\prime}(\zeta)}{A(\zeta)-z}=E_{\zeta}\left(\frac{\zeta}{\zeta-z}\right) \alpha
$$

where the subscript ζ indicates that $\zeta(\zeta-z)^{-1}$ is interpreted as a function of ζ. For $f(z)$ analytic in R and continuous in \bar{R} we find

$$
\begin{align*}
2 \pi f(z) & =\int_{\partial D} \frac{\zeta f(\zeta)}{\zeta-z}|d \zeta|=\int_{\partial R} f(\zeta) E_{\zeta}\left(\zeta(\zeta-z)^{-1}\right)(\zeta) \rho(\zeta)|d \zeta| \\
& =-i \int_{\partial R} f(\zeta) C_{1}(z, \zeta) d \zeta \tag{4.1}
\end{align*}
$$

Furthermore, $C_{1}(z, \zeta) d \zeta$ is a differential on R for each $z \in D$. However $C_{1}(z, \zeta)$, for fixed ζ, is not a function on R. To rectify this problem we will use a projection P that we constructed in [5]. Consider the Poincaré series

$$
\Phi h=\sum_{A \in G} h(A(z)) A^{\prime}(z)^{2}
$$

We choose a polynomial F so that ΦF is non-zero in \bar{R} (see [5]), and we define

$$
(P f)(z)=(\Phi f F)(z) /(\Phi F)(z)
$$

If f is analytic in $\bar{D}, P f$ is an analytic function in \bar{R}. If f is meromorphic in \bar{D} with a simple pole of residue c at $z=\zeta$, then Pf is meromorphic in \bar{R} with a simple pole of residue $c F(\zeta) /(\Phi F)(\zeta)$ at $\pi(\zeta)$.

Now we claim that

$$
\begin{equation*}
C(z, \zeta)=P_{z} C_{1}(z, \zeta) \tag{4.2}
\end{equation*}
$$

where the subscript z indicates that $C_{1}(z, \zeta)$ is to be considered as a function of z, is the required Cauchy kernel. Explicitly
$(4.2)^{*} \quad C(z, \zeta)=\sum_{A, B \in G} \frac{F(B z) A^{\prime}(\zeta) B^{\prime}(z)^{2}}{(A \zeta-B z) \varphi(z)}=\sum \frac{F(B z) A^{\prime}(\zeta)}{\varphi(B z)(A \zeta-B z)}$
where $\varphi(z)=(\Phi F)(z)$.
To prove that the double series involved in (4.2) converges, we need the identity

$$
|B(A \zeta)-B(z)|=|A(\zeta)-z|\left|B^{\prime}(A \zeta)\right|^{1 / 2}\left|B^{\prime}(z)\right|^{1 / 2}
$$

and the inequalities

$$
\begin{array}{rlrl}
\left|B^{\prime}(z)\right| \leqq & (|a|-|b|)^{-2}=(|a|+|b|)^{2}, & & z \in D \\
& \left|B^{\prime}(z)\right| \leqq \sigma^{-2}|b|^{-2}, & z \in \mathbb{R}
\end{array}
$$

Here $B(z)=(a z+b) /(\bar{b} z+\bar{a}),|a|^{2}-|b|^{2}=1, \Omega$ is a fundamental region for G in D, and σ is the distance from R to the closed set $G(\infty) \cup L(G)$ (cf. (1.12)). Setting

$$
M=\sup \{|F(z)|: z \in D\} \quad \text { and } \quad m=\inf \{\mid(\Phi F)(z): z \in \mathbb{R}\}
$$

we obtain, for $z, \zeta \in R$,

$$
\begin{aligned}
\left|P_{z} C_{1}(z, \zeta)\right| & \leqq \frac{M}{m} \sum_{B} \sum_{A} \frac{\left|B^{\prime}(z)\right|^{2}\left|(B A)^{\prime}(\zeta)\right|}{|(B A)(\zeta)-B(z)|} \\
& =\frac{M}{m} \sum_{B} \sum_{A} \frac{\left|B^{\prime}(z)\right|^{3 / 2}\left|B^{\prime}(A \zeta)\right|^{1 / 2}\left|A^{\prime}(\zeta)\right|}{|A(\zeta)-z|} \\
& \leqq \frac{M}{m \delta^{3}}\left(\sum_{A} \frac{\left|A^{\prime}(\zeta)\right|}{|A(\zeta)-z|}\right)\left(1+\sum_{B}^{\prime} \frac{|b|+|a|}{|b|^{3}}\right)
\end{aligned}
$$

where \sum^{\prime} denotes summation over all $B \neq I$. By (1.11), $\sum^{\prime}|b|^{-2}$ converges. Since $|a / b|=\left|B^{-1}(\infty)\right|$, the terms $|a / b|$ are uniformly bounded,
and the second series in parenthesis converges. The first converges uniformly for $z \in \mathbb{R}$, provided the term $A=I$ is omitted.

Finally we note that the residue at $\pi(\zeta)$ for fixed ζ of $P_{z} C_{1}(z, \zeta) d \zeta$ is

$$
-\sum F(A \zeta) /(\Theta F)(A \zeta)=-1
$$

and similarly we see that $C(z, \zeta) d \zeta$ for fixed z is a meromorphic differential in ζ with simple pole at $\zeta=z$. Since $P f=f$ for G-invariant functions f, the fact that C is a Cauchy kernel now follows from (4.1).

Remark. The essential part of our proof is the construction of C_{1}. At that point there is considerable freedom in choosing a projection P. Our construction of a Cauchy kernel appears to be simpler and, in a sense, more natural than the classical one.

References

1. P. R. Ahern and D. Sarason, The H^{p} spaces of a class of function algebras, Acta Math., vol. 117 (1967), pp. 123-163.
2. L. V. Ahlfors and L. Sario, Riemann surfaces, Princeton University Press, Princeton, 1960.
3. N. Alling, Extension of meromorphic function rings over non-compact Riemann surfaces II, Math. Zeit., vol. 93 (1966), pp. 345-394.
4. N. Dunford and J. T. Schwartz, Linear operators I, Interscience, New York, 1958.
5. C. J. Earle and A. Marden, Projections to automorphic functions, Proc. Amer. Math. Soc., vol. 19 (1968), pp. 274-278.
6. F. Forelli, Bounded holomorphic functions and projections, Illinois J. Math., vol. 10 (1966), pp. 367-380.
7. M. Heins, Symmetric Riemann surfaces and boundary problems, Proc. London Math. Soc., vol. 14A (1965), pp. 129-143.
8. K. Hoffman, Banach spaces of analytic functions, Prentice Hall, Englewood Cliffs, New Jersey, 1962.
9. A. H. Read, A converse of Cauchy's theorem and applications to extremal problems, Acta Math., vol. 100 (1958), pp. 1-22.
10. H. L. Royden, The boundary values of analytic functions, Math. Zeit., vol. 78 (1962), pp. 1-24.
11. W. Rudin, Analytic functions of class H^{p}, Trans. Amer. Math. Soc., vol. 78 (1955), pp. 46-66.
12. M. Tsujı, Potential theory in modern function theory, Maruzen Co., Ltd., Tokyo, 1959.

Cornell University
Ithaca, New York
University of Warwick
Coventry, England
University of Minnesota
Minneapolis, Minnesota
Cornell University
Ithaca, New York

