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1. Introduction

Let K be a field and let L K(a) be a primitive algebraic extension of K.
It is well known that there are only finitely many fields intermediate between
K and L. We ask whether maximal chains of such intermediate fields have
the same length and whether the relative degrees of the terms in such chains
form a set of invariants for the pair L over K. The exact statement is given in
Theorem 2.3. Theorem 2.1 and Theorem 3.6 give two contexts in which the
conclusion of Theorem 2.3 (invariance of chains) is true. The methods used
in these two cases are quite different. By making use of either of these two
theorems we are able to give a new proof of a theorem of Ritt [1] concerning
composition of polynomials. See Theorem 3.1 for an exact statement. The
paper concludes with Theorem 4.2 which gives a criterion for a polynomial of
the form f(x) g(z) to have a proper divisor of the same form.

2. A Jordan-HSIder theorem for fields

Let K and L be fields such that K < L. We wish to consider maximal
chains of subfields between K and L and to ask the following questions" (i) do
any two such chains have the same length and (ii) are the relative degrees of
the terms in any two such chains the same in some possibly permuted order?
As we will show, the answer is in the affirmative if suitable assumptions are
made on K and L. We begin with"

THEOREM 2.1. Let R be a discrete valuation ring with quotient field K and let
L be afinite separable extension of K ,with R’ equal to the integral closure of R in
L. Moreover, let L be Galois closure of L over K, and let R" be the integral
closure of R in L. If (i) R’ is again a discrete valuation ring, (ii) the residue
class degree of R over R’ equals unity and (iii) L is cyclic over the inertial field
with respect to some prime of R", then for any pair of fields M1 and M. inter-
mediate between K and L we have

[M1 a Ms’K] gcd ([M’K], [M." K])

and IMaMs." K] lcm (IMp" K], [Ms: K]).

Proof. Let P’ be a generator of the (unique) prime ideal of R’ and let P
be a generator of the prime ideal of R. By hypothesis we have PR’ (PrR’)"
where n [L" K]. Thus L K(P’). Now pt satisfies an Eisenstein equa-
tion over K. That is to say, the minimal polynomial of pt overK is of the form
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Xrlx+a-I + +a0wherePlaj,j=0,... ,n-- lbutP2 a0. This
follows as in the case of complete fields by considering the coefcients a. as
elementary symmetric functions in the conjugates of P’. Let Kr be the
inertial subfield over which L is assumed to be cyclic. By construction, P
generates the maximal ideal of any of the local rings over the integral closure
Rr of R in Kr. Thus the equation for P’ remains irreducible over Kr. Now
L is generated over Kr by the conjugates of pt, but Kr(P’) is normal over Kr
since L over Kr is abelian. Thus Kr(P’) ,. Let nowf(x) be the minimal
polynomial of P’ over K. If M is an intermediate field between K and L, the
minimal polynomial for P’ over M is some polynomial f(x) which divides
f:(x) and M is generated over K by the coefficients of f(x). For any such
M let M’ be the field intermediate between Kr and L generated by the coef-
cients of fM(x). We see that [M" K] [M" Kr]. If M1 and M2 are a pair of
fields intermediate between K and L then one verifies that

fMIYIM2(X) lcm (f(x), fM2(X)) and fM(x) gcd (f(x), fM2(X)).

Consequently, (M a M)’ M’ M and (M1 M)’ M’I M. Thus there
is a monomorphism of the lattice of subfields intermediate between K and L
into that between KT and L. Now apply the "Fundamental Theorem of
Galois Theory" and the hypothesis that L is cyclic over KT in order to yield the
conclusion of the theorem.
We are now in a position to prove a kind of "Zassenhaus Lemma" for inter-

mediate fields.

THEOREM 2.2. Let the hypotheses be as in Theorem 2.1. Let K M
M < L and K < N < N. < L be intermediate fields. Then

IMp. (M1N)"M n (M N)] [N n (N M)"N2 (N M1)].

Proof. By Theorem 2.1 it suffices to show

gcd(m, lcm(m, n)) gcd(n, lcm(n, m))
gcd(m:, lcm(m, n)) gcd(n, lcm(n, m))’

where m [M:K] and n [N:K] for i 1, 2. This fact is, however,
readily verified.
Our final result in this section is the Jordan-Hhlder theorem for intermediate

fields.

THEOREM 2.3. Let the hypotheses be as in Theorem 2.1. Then any two maxi-
mal chains of intermediate fields have the same length and the relative degrees of the
terms in one chain equal the relative degrees of the terms in another such chain, in a
possibly permuted order.

Proof. This result follows from Theorem 2.2 exactly as in the analogous
case of groups. Indeed let

K =M0<MI<: <M,= L and K=N0<N< <N,=L
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be two maximal chains. Consider the two chains given by

M M+I n (M N) and N. N+I n (N M).

Since these two chains refine the original chains which were assumed maximal
they give, in fact, the original chains. One now applies Theorem 2.2 in order
to compare degrees and obtain the conclusion of Theorem 2.3.

It is worthwhile to remark at this point that if one is interested only in
Theorem 2.3, the hypotheses of Theorem 2.1 may be weakened to the extent of
assuming that L is merely abelian over Kr. The proof presents no special
difficulty and we leave it to the reader. We stress, however, that the rather
strong property of Theorem 2.2 is no longer valid.

3. An application to polynomial decomposition
We wish to give here a proof of a generalization of a theorem of Ritt [1].

THEOREm 3.1. Let k be an arbitrary field and let f(x) be a polynomial in k[x].
Moreover, we will assume that either char (k) 0 or char (k) > deg (f(x) ). I]

f(x) g(g.(... (gr(x)) ...) h(h.(... (hs(x)) ...)

where the polynomials g and h have coecients in k and cannot be further de-
composed over k, then r s and there exists a permutation - of the symbols 1, .., r
such that deg (g(x) ) deg (h(x) ).

We defer the proof of Theorem 3.1 until we verify several preliminary
propositions.

PROPOSITION 3.2. Let k be a field and let z be an element of k(x). Then z is
in k[x] if and only if the prime at infinity in k(x) is the only prime which lies over
the prime at infinity in k(z). Under these circumstances the prime at infinity is
totally ramified.

Proof. Given the truth of the if and only if portion of the proposition we
note that the prime at infinity must be totally ramified since the residue class
degree of the prime at infinity is always unity. Let us suppose first that z is a
polynomial in x, but that there is a valuation ring R such that <: R,/(x) is
the quotient field of R, x e R and R contracts in k(z) to the local ring at infinity
(whose maximal ideal is, of course, generated by l/z). Thus z is not in R
since 1/z is certainly not a unit in R. However, z must be in R since
z k[x] <_ R. Thus we have a contradiction. Conversely the hypothesis
clearly implies that z in an element of every valuation ring of k(x) which con-
tains k[x]. But the intersection of these rings is exactly k[x].

Using Proposition 3.2 we can tie up the decomposition of a polynomial witl
the lattice of subfields of k(x). First we need a definition.

DEFINITION 3.3. :Let k be any field and let f(x) and g(x) be two poly-
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nomials in lc[x]. We say the f(x) and g(x) are linearly equivalent if there exist
constants a and b in/ such that f(x) ag(x) - b.

We now construct a correspondence between polynomials in ][x] and sub-
fields of k(x) as follows. Letf(x) be an element of k[x]. By S we will denote
the set of all polynomials h(x) ink [x] such that f(x) g(h(x) for some poly-
nomial g(x) in k[x]. By T we will denote the set of all intermediate fields
between k(f(x) and k(x). Given h(x) in S we assign to it the intermediate
field Mh k(h(x)).

PROIOSITION 3.4. The mapping h -- Mh sends S onto T and Mh M if and
only if h and are linearly equivalent.

Proof. We note first that Mh Mw if and only if h and w are related by a
linear fractional transformation as a result of the general theory of function
fields. Thus, if h and w are linearly equivalent, we see that Ma M. Con-
versely, if Mh M, we make use of the hypothesis that m(w(x) f(x)
g(h(x) for suitably selected polynomials m and g. This, together with Propo-
sition 3.2, shows that the prime at infinity is the same in both Mh and M.
In other words, h and w are linearly equivalent. Finally, in order to show that
eyery intermediate field is of the form Ma we appeal to Ltiroth’s theorem to-
gether with Proposition 3.2. Indeed, for an intermediate field M, we have
M k(a(x)/b(x)). We may assume that the prime at infinity in
](a(x)/b(x)) lies over the prime at infinity in tc(f(x)). Use a linear frac-
tional transformation if necessary. Thus the hypotheses for Proposition 3.2
are satisfied for ](x) over M and M over ](f(x)). Hence a(x)/b(x) h(x)
and f(x) g(a(x)/b(x) g(h(x) ).

We can now give the following"

Proof of Theorem 3.1. First we see that ]c(x) is separable over (f(x) since
f’(x) O. Let R be the local ring at infinity in k(f(x)). Its integral closure
in k(x) is again a discrete valuation ring by Proposition 3.2. Moreover, the
assumption char (/) 0 or char (/) > deg (f(x)) guarantees that all ramifi-
cation is tame and thus L over Kr is cycle where L is the Galois closure of/(x)
over k(f(x) and Kr is the inertial subfield of some extension of the prime in R
to L. The hypotheses of Theorem 2.3 are thus satisfied and interpretation of
its conclusion in terms of Proposition 3.4 finishes our work.

It is possible to give an alternate proof of Theorem 3.1. Since the tech-
niques are somewhat different, we include the proof. Let us begin with a result
which, while special, is surprising. We do not know how much the hypotheses
can be weakened.

THEOREM 3.5. Let ] be an arbitrary field and let f(x) be a polynomial in
such that gcd (deg (f(x)), char ()) 1 or char (t) O. Let f be the algebraic
closure of t. Then the correspondence M -- k (R) k M establishes a relative degree-
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preserving isomorphism of the lattice of fields intermediate between k(x) and
tc (f(x) ) onto the lattice offields intermediate between (x and (f x

Proof. Since k(x) and ] are linearly disjoint over k, the given correspond-
ence is a lattice monomorphism. To show the suriective nature of it let be
a field between ](x) and (f(x)). By Proposition 3.4 there are polynomials
g(x) and h(x) with coefficients in / such that f(x) g(h(x)) and
il (h(x) ). It is easy to arrange matters so that both the leading and con-
stant term coefficients of h(x) are in k. Indeed, take a polynomial linearly
equivalent to h(x) if necessary. Let

f x a q- a x -- -- a, x g x b -- b x - -- b

and
h x Co -- c x - - c x

We note that am br c. Thus br is in k. We continue by induction. For
0 < < s we see that a_t rb c-lcs_t -- w. But w is a universal polynomiaI
involving only b, c8 ,..., cs_t+ and thus is in k by inductive hypothesis.
Since r and char (k) are relatively prime we may therefore assume that c,_t is
in k. Hence, h(x) is in ][x]. Now a._, b,_ c-1 -- u where u is a universal
polynomial involving only b and the coefficients of h(x). Thus br_ is in k.
Continuing in this way we see finally that g(x) has coefficients in k. Finally
let M k(h(x)). Clearly ] (R) M.

Our next result is quite similar to Theorem 2.1. The methods used in the
two cases are, however, very different. Neither result exactly contains the
other.

THEOaEM 3.6. Let ] be an arbitrary field and let z f x be a polynomial in
k[x] such that gcd (char (It), deg (f(x) 1 or char (k) O. If MI andM
are fields intermediate between L k(x) and K- ](f(x) ), then

[M n M"K] god ([Mx" g], IMp" g])

and [M M’K] lcm (IMp" g], IMp." g]).

Proof. By virtue of Theorem 3.5 we may assume from the start that ] is
algebraically closed. Let K and L be the completions of K and L at their
respective infinite primes. By Hensel’s lemma there is an element w in L
such thatw 1/z where n deg (f(x)). Moreover L k((w)) and
K= =/( (w) ). Thus L= is a cyclic extension of K= and the fields intermedi-
ate between them are given exactly by k( (w) ) where r ranges over the divisors
of n. Now let Mi k(zi) where z. f(x) in k[x], j 1, 2. Moreover, let
deg (fi(x)) ntt where gcd (nx, n) 1. We wish to show first that there
exist polynomials g(x) with degrees n. such that g(z) g(z). Indeed, le
w =w’. By replacing each z. with a linearly equivalent polynomial if
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necessary we may assume that

z" w7 + a’0 + a w. + - a. w +
are the respective power series expansions of z and z in k((w)) and k((w)).
Since, for an arbitrary natural integer r, z w7 + terms of higher order in
w., them are, clearly, polynomials g(x) of degrees n., respectively, such that

g(z) w’ -I- bo -{- bn w + ....
Noww w so g(z) g(z.) has non-negative order at infinity. But this
element-has non-negative order at all of the finite primes as well. Hence it
must be an element of k. By adding the appropriate constant to one or the
other of the two polynomials we may assume that g(z) g,(z.). Thus
k(g(z)

_
M n M2 From this it follows that

[k(g(z))" K][[M a M"g][ gcd (n t, n. t) t.

Hence the first conclusion of the theorem is verified. For the second con-
clusion let MM /c(za), where za is in/[x]. Moreover let [M M:K]

wn/in1 n. u. Let wa where s tnl n. u. We have
--1z w -t-a0+ aw-t- -".

As before we can find a polynomial of degree u, say h(x), such that h(z)
w + b0 + b w + .... Moreover we can find by the same process poly-
nomials g(x) and g(x) of degrees n and n, respectively, such that

g(h(z)) w- + co + c w + and g.(h(z)) w-" + do + d w +
where r un and s un. As in the first part of the proof we find that each
of the elements z g(h(za) has a non-negative order at infinity as well as at
all the finite primes. Thus we my ssume (by a linear change, if necessary)
that z g(h(z) ). NowMM

_
k(h(z) ). Hence

tn n u [M M’Kll[k(h(za) )’K] tnl n
Thus u 1 and we are done.

From this point on the proof of Theorem 3.1 is exactly the same as in the
first part of this section. As a matter of fact we may even weaken the assump-
tion concerning the degree of f(x) in Theorem 3.1 to the hypothesis that it is
relatively prime to the characteristic of k.

4. Composite pairs

In this final section we consider the problem of factorization of polynomials
of the form f(x) g(z) where f(x) and g(z) are themselves polynomials.

DEFINITION 4.1. Let f(x) and g(x) be elements of k[x] where k is an arbi-
trary ring. We say that f and g are a composite pair over ]c if there exists a
polynomial F(x) of degree greater than one and polynomials f(x) and g(x),
all in k[x], such that f(x) F(f(x) and g(x) F(g(x) ).
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The main result is the following"

THEOREM 4.2. Let be a field and let f(x) and g(x) be elements of k[x].
Thenf(x) and g(x) are a composite pair if and only if the polynomial](x) g(z)
has a proper divisor of the form fl (x) gl (z) in k[x, z].

Proof. Iff(x) and g(x) are a composite pair then we have](x) F(](x))
and g(x) F(g(x)) with deg (F) > 1. Clearly f(x) g(z) is a proper
divisor of f(x) g(z). Conversely, suppose that f(x) g(z) is a proper
divisor forf(x) g(z). Let q(x, z) be an irreducible factor off,(x) g(z).
Moreover let L k(u, v) be the field of algebraic functions on the curve
q(u, v) 0. Consider the subfields/(u) and k(v). Let M be their inter-
section. We have, for w f(u) g(v) and w f(u) g(v), that
k(w) < M and k(wl) _< M. The first containment is proper since
f(x) gl(z) is a proper divisor of f(x) g(z) by hypothesis. Now by
Proposition 3.4, M k(w3) where w3 f(u) g(v) and w F(w) where
deg (F) > 1. Hence f(x) F(f(x)) and g(x) F(g3(x)) as was to be
shown.
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