SOME SUBGROUPS OF $S L_{n}\left(\mathbf{F}_{2}\right)$

BY
 Jack McLaughlin ${ }^{1}$
 1. Introduction

In this paper we determine those irreducible subgroups of $S L_{n}\left(\mathbf{F}_{2}\right)$ which are generated by transvections.

Theorem. Let V be a vector space of dimension $n \geqq 2$ over \mathbf{F}_{2} and let G be an irreducible subgroup of $S L(V)$ which is generated by transvections. If $G \neq S L(V)$ then $n \geqq 4$ and G is one of the following subgroups of $S p(V)$: $\operatorname{Sp}(V), O_{-1}(V), O_{1}(V)$ (except at $\left.n=4\right)$, the symmetric group of degree $n+2$, or the symmetric group of degree $n+1$.

This result has some relevance to the question left open in [3].
Some of the notation and terminology of [3] will be used and we review it briefly there. (Since we work over a finite prime field our assumption that G is generated by transvections is equivalent to the assumption that G is generated by subgroups of root type.) If G contains the transvection τ with $P=\operatorname{Im}(\tau-1)$ and $H=\operatorname{Ker}(\tau-1)$ we say P is a center (for $G), H$ is an axis (for G). Also we say P is a center for H and H is an axis for P. The set of centers for G is C and the set of axes for G is A. For $P \epsilon C, a(P)$ is the intersection of the axes of P and for $H \in A, c(H)$ is the sum of the centers for H.

2. Preliminary lemmas

Our determination will be made by induction on n; in this section we collect some information needed for the induction. G is a group satisfying the hypotheses of the theorem.

Lemma 2.1. G is transitive on C and A.
Proof. Choose P such that $\operatorname{dim} a(P)$ is maximal. Then Lemma 2 of [3] tells us that G has an orbit of centers containing P and all centers off $a(P)$. Since G is irreducible there cannot be a second orbit. Likewise for A.

Lemma 2.2. If $P \in C$ and $a(P)$ is not a hyperplane then $G=S L(V)$.
Proof. Choose $P \in C$ and suppose S is another center on $a(P)$. By Lemma 4 of [3] we have a center Q off $a(P)$ and $a(S)$. Let K be a hyperplane over $Q+a(P)$. Since $K \supseteq a(P), K$ is an axis for P. Then using Lemma 2 of [3] we see K is an axis for Q and then K is an axis for S. Thus all points on $P+S$ are centers. Since G is irreducible, C spans V and consequently every

[^0]point of V is in C. Now let H be an axis for P. If $Q \subseteq H$ and $Q \nsubseteq a(P)$ then Q is a center for H (again Lemma 2 of [3]). Hence $c(H)=H$. Now dualize the remarks at the beginning of the proof and see that every hyperplane is an axis. Lemma 3 of [3] completes the proof.

These two lemmas are valid for arbitrary irreducible groups generated by subgroups of root type.

From now on we suppose $G \neq S L(V)$. Then for $P \in C, a(P)$ is a hyperplane, P^{\perp}, and for $H \in A, c(H)$ is a point, H^{\perp}. We also are assuming that the ground field is \mathbf{F}_{2} and consequently for each $P \epsilon C$ there is a unique transvection τ_{P} with center P, axis P^{\perp}. These involutions form a single conjugate class-which generates G. If P and Q are two centers then $\tau_{P} \tau_{Q}$ has order 1,2 , or 3 according as $P=Q, P \neq Q \subseteq P^{\perp}, Q \nsubseteq P^{\perp}$. For $P \epsilon C, \Delta(P)$ will be the centers $\neq P$ lying on P^{\perp} and $\Gamma(P)$ will be the centers off P^{\perp}.

Lemma 2.3. $P+\sum \Delta(P)=P^{\perp}$.
Proof. Choose $Q \in \Gamma(P)$; it will suffice to show that all centers are on $P+Q+\sum \Delta(P)$. Suppose $R \in \Gamma(P) \cap \Gamma(Q)$. Then $(R+Q) \cap P^{\perp}=$ S is a center and

$$
R \subseteq Q+S \subseteq Q+P+\sum \Delta(P)
$$

If $R \in \Gamma(P) \cap \Delta(Q)$ let T be the third point on $P+R$. Then

$$
T \in \Gamma(P) \cap \Gamma(Q) \quad \text { so } \quad R \subseteq P+T \subseteq Q+P+\sum \Delta(P)
$$

The same sort of argument yields:
Lemma 2.4. If $P \in C$ and $Q \in \Gamma(P)$ then G is generated by τ_{Q}, τ_{P}, and those τ_{S} with $S \in \Delta(P)$.

Corollary. G is primitive on C.
For if $P \in C$ and $G_{P} \subset M \subseteq G$, then we have $\eta(P) \neq P$. Then $\eta\left(P^{\perp}\right) \neq P^{\perp}$ and by Lemma 2.3. there will be a center $S \subseteq P^{\perp}$ with $Q=\eta(S) \nsubseteq P^{\perp}$. But $\tau_{Q}=\eta \tau_{S} \eta^{-1} \in M$ so $M=G$.

Lemma 2.5. $\quad G_{P}$ is transitive on $\Gamma(P)$.
Proof. If $R, Q \in \Gamma(P)$ and $R \in \Gamma(Q)$ then $P^{\perp} \cap(Q+R)=S$ is a center, $\tau_{S} \in G_{P}$ and $\tau_{S}(Q)=R$. If $R \in \Delta(Q)$ let T be the third point on $P+R$; then T and R are in the same G_{p}-orbit-as are T and Q.

Lemma 2.6. Let $G_{P}^{*}=\left\langle\tau_{S} \mid S \in \Delta(P)\right\rangle$; then G_{P}^{*} is transitive on $\Delta(P)$.
Proof. Suppose $R, S \in \Delta(P)$ are in different G_{P}-orbits. Then $T \in \Delta(R)$ or $T \epsilon \Delta(S)$ for otherwise $\left\langle\tau_{R}, \tau_{T}, \tau_{S}\right\rangle$ moves R to S (via T). In particular $R \in \Delta(S)$ so we can choose $Q \in \Gamma(R) \cap \Gamma(S)$. If $P \subseteq R+S$ then $P=$ $Q^{\perp} \cap(R+S)$ and $Q \in \Delta(P)$-against the above remark. Hence $P+R+S$ has dimension 3 and

$$
Q \in \Gamma(P) \cap \Gamma(R) \cap \Gamma(S)
$$

Let $X=(P+S) \cap Q^{\perp}, Y=(P+R) \cap Q^{\perp}, Z$ be the third point on $X+Y$, and U be the third point on $P+Z$. Now $\left\langle\tau_{P}, \tau_{Q}, \tau_{R}, \tau_{S}\right\rangle$ fixes X and moves P to R. Hence G moves S to U and $U \epsilon C$. The dual of Lemma 2.3 tells us that for some $T \in \Delta(P), X \nsubseteq T^{\perp}$. Then $S \nsubseteq T^{\perp}$ so $R \subseteq T^{\perp}$. But now $U \nsubseteq T^{\perp}$ so S and U are in the same G_{P}^{*}-orbit. Symmetry will finish the argument.

Corollary. If $P \in C$ and for some $S \in \Delta(P)$ the third point on $P+S$ is in C then $G=S p(V)$.

For this will then be true for each S in $\Delta(P)$ and consequently the third point on the line joining any two centers is a center. $\quad V=\sum C$ so all points of V are centers. Then all hyperplanes are axes and the corollary follows from Lemma 3 of [3].

Lemma 2.7. The dimension of V is at least 4.
Proof. Recall that we are now supposing $G \neq S L(V)$ so certainly $n>2$. If $\geqq 3$ then $\Delta(P)$ is not empty by Lemma 2.3. If $n=3$ and $S \epsilon \Delta(P)$ then $P^{\perp}=S+P=S^{\perp}$ against our hypothesis that each axis has a unique center.

If $P \epsilon C$ and $S \epsilon \Delta(P)$ then τ_{s} induces a transvection on P^{\perp} / P with center $P+S / P$ and axis $P^{\perp} \cap S^{\perp} / P$. Let $G(P)$ be the subgroup of $S L\left(P^{\perp} / P\right)$ generated by all such transvections.

Lemma 2.8. $G(P)$ is an irreducible group.
Proof. Suppose X / P is stable for $G(P)$. Then for $S \epsilon \Delta(P), \tau_{s}$ fixes X so either $S \subseteq X$ or $S^{\perp} \supseteq X$. Using Lemmas 2.6 and 2.3 we have $S \subseteq X$ implies $X=P^{\perp}$ and $S^{\perp} \supseteq X$ implies $X=P$.

Corollary. The centers for $G(P)$ are precisely the $S+P / P$ with $S \in \Delta(P)$, and the dual statement for axes.

For $G(P)$ is transitive on this set of centers and being an irreducible group it is transitive on its full set of centers.

Lemma 2.9. If $n>4$ then $G(P) \neq S L\left(P^{\perp} / P\right)$.
Proof. If $G=S p(V)$ this is certainly so. Otherwise by the corollary to Lemma 2.6 we know that for $S \epsilon \Delta(P)$, the third point on $P+S$ is not a center. If $G(P)=S L\left(P^{\perp} / P\right)$ then G_{P}^{*} is doubly transitive on $\Delta(P)$, so for $S \in \Delta(P) G_{P, S}$ is transitive on $\Delta(P)-\{S\}$. Then if $\Delta(P) \cap \Delta(S)$ is not empty $\Delta(P)-\{S\} \subseteq \Delta(S)$ and we find $P^{\perp} \subseteq S^{\perp}$-a contradiction. If $n>4$ so $\operatorname{dim} P^{\perp}>3$ then we can choose R, S, T in $\Delta(P)$ so $P \nsubseteq R+S+T$ and $\operatorname{dim}(R+S+T)=3$. The preceding remarks tell us that distinct centers on $R+S+T$ are not perpendicular and consequently all points on $R+S+T$ are centers. On the other hand $S^{\perp} \cap(R+S+T)$ is a line thru S in S^{\perp} and so contain at most two centers. This contradiction finishes the proof.

3. Construction of the polarity

V continues to be a vector space of dimension $n \geqq 2$ over \mathbf{F}_{2} and G is an irreducible subgroup of $S L(V)$ which is generated by transvections. We suppose each member of C has a unique axis and each member of A has a unique center. We refer to this correspondence between C and A as the partial polarity determined by G.

Lemma 3.1. The partial polarity determined by G extends uniquely to a null polarity on the subspaces of V.

Proof. We go by induction on n. For $n=2$ there is nothing to do; take $n>2$. By Lemma 2.7 we know $n \geqq 4$ and Lemmas 2.8 and 2.9 tell us that the group $G(P)$ satisfies the hypotheses of the lemma. Hence the partial polarity determined by $G(P)$ extends uniquely to a null polarity on the subspaces of P^{\perp} / P. We proceed to assemble some facts which will allow us to build the desired polarity.
(1) If $P \in C$ and $X=\cap\left\{Q^{\perp} \mid Q \subset \Gamma(P)\right\}$ then $X=0$.
X is stable for G_{P} so $S \epsilon \Delta(P)$ implies $S \subseteq X$ or $S^{\perp} \supseteq X$. By Lemma 4 of [3], $S \nsubseteq X$ so $S^{\perp} \supseteq X$. Thus X is on all axes and $X=0$.
(2) If X is a point then $X \subseteq P^{\perp}$ for some $P \in C$.

Suppose false, choose $P \in C$ and let Y be the third point on $P+X$. If $Q \in \Gamma(P)$ then $Y=Q^{\perp} \cap(P+X)$ against (1).
(3) If X is a point and $Y=\cap\{H \in A \mid H \supseteq X\}$ then $Y=X$.

Choose $P \in C$ so $X \subseteq P^{\perp}$; an induction hypothesis tells us that

$$
P+X=\cap\{H \in A \mid H \supseteq P+X\}
$$

It suffices then to produce $Q \in \Gamma(P)$ with $Q^{\perp} \supseteq X$. If such does not exist we arrive at a contradiction as in the proof of (2).
(4) If $P, S_{1}, \cdots S_{m} \in C$ and $P \subseteq \sum S_{i}$ then $P^{\perp} \supseteq \cap S_{i}^{\perp}$.

Suppose false for some minimal m. If all $S_{i} \subseteq S_{1}^{\perp}$ we may suppose, by induction, that $P^{\perp} \cap S_{1}^{\perp} / S_{1} \supseteq \cap\left(S_{1}^{\perp} \cap S_{i}^{\perp}\right) / S_{1}$. Then

$$
P^{\perp} \supseteq \cap\left(S_{1}^{\perp} \cap S_{i}^{\perp}\right)=\cap S_{i}^{\perp}
$$

So we suppose $S_{1} \nsubseteq S_{2}^{\perp}$. Then all three points on $S_{1}+S_{2}$ are centers and

$$
P \subseteq T+S_{3}+\cdots+S_{m}
$$

where T is one of the points on $S_{1}+S_{2}$. By the minimality of m,

$$
P^{\perp} \supseteq T^{\perp} \cap S_{3}^{\perp} \cap \cdots \cap S_{m}^{\perp}
$$

Since $\tau_{\boldsymbol{T}} \in\left\langle\tau_{S_{1}}, \tau_{S_{2}}\right\rangle, \tau_{T}$ fixes $S_{1}^{\perp} \cap S_{2}^{\perp}$ and $T^{\perp} \supseteq S_{1}^{\perp} \cap S_{2}^{\perp}$. Thus we have a contradiction and the statement is true for all m.
(5) If X is a point then $H=\sum\left\{P_{\epsilon} C \mid P^{\perp} \supseteq X\right\}$ is a hyperplane containing X.

We first note that if $Q \epsilon C$ and $Q^{\perp} \nsupseteq X$ then by (4), $Q \nsubseteq H$. Thus $H \neq V$.
Now choose $P \in C$ with $P \neq X$ and $X \subseteq P^{\perp}$. By induction we have

$$
P+\sum\left\{S \in \Delta(P) \mid S^{\perp} \supseteq X\right\}
$$

is a hyperplane of P^{\perp} which contains $P+X$. Thus it suffices to find $Q \in \Gamma(P)$ with $Q^{\perp} \supseteq X$ and (3) tells us such Q exist.

If $X \epsilon C$ then the hyperplane determined in (5) is just X^{\perp}; if X is any point we now write X^{\perp} for the hyperplane determined in (5). We can then improve (4).
(6) If X is a point, $S_{i} \in C$ and $X \subseteq \sum S_{i}$ then $X^{\perp} \supseteq \cap S_{i}^{\perp}$.

The argument is, as in (4), by induction.
(7) If X and Y are points with $X \subseteq Y^{\perp}$ then $Y \subseteq X^{\perp}$.

Since $Y^{\perp}=\sum\left\{S \in C \mid S^{\perp} \supseteq Y\right\},(6)$ says

$$
X^{\perp} \supseteq \cap\{H \in A \mid H \supseteq Y\}=Y
$$

by (3).
With (7) we've finished the proof of the lemma-we have a one-one map from the points of V onto the hyperplanes of V which behaves properly with respect to incidence. Such a map extends uniquely to a polarity. We have $X \subseteq X^{\perp}$ for all points X so we have a null polarity

4. $G(P)$ is the symplectic group

We keep the assumptions of $\S 3$. Then $G \subseteq S p(V)$.
Lemma 4.1. If $G \subset S p(V)$ and $G(P)=S p\left(P^{\perp} / P\right)$ then G is one of the orthogonal groups.

Proof. We have $n \geqq 4$ and for $P \epsilon C$, each line through P on P^{\perp} contains exactly one other center. Define Q on V by $Q(0)=0$ and for $x \neq 0, Q(x)=1$ or 0 according as $\langle x\rangle$ is a center or not. Then $Q(\sigma x)=Q(x)$ for all $\sigma \epsilon G$ and all $x \in V$. Choose x, y distinct in V and different from 0 . We want to show

$$
Q(x)+Q(y)+Q(x+y)=0 \text { or } 1
$$

according as $\langle x\rangle \subseteq\langle y\rangle^{\perp}$ or not. If $\langle x\rangle \in C$ then our relation comes directly from the definition of Q. We suppose then that x and y are not centers. If $\langle x\rangle \subseteq\langle y\rangle^{\perp}$ then x, y and $x+y$ are mutually perpendicular so $x+y$ is not a center and our relation holds. Now suppose $\langle x\rangle \nsubseteq\langle y\rangle^{\perp}$ and choose a center $\langle z\rangle \subseteq\langle y\rangle^{\perp}$. Let f be an alternate form on V which yields our polarity. Then $f(y+z, x+z)=1+f(z, x)$ and we see $\langle x+z\rangle \subseteq\langle y+z\rangle^{\perp}$ if and only if $\langle x+y\rangle$ is not a center. Hence in either case $\langle x+y\rangle$ is a center and we have the desired relation. Thus Q is a quadratic function belonging to f and
$G \subseteq O(Q)$. Since G contains all the orthogonal transvections $G=O(Q)$. (We cannot be in the situation $n=4, Q$ of maximal index, because there the subgroup of $O(Q)$ generated by transvections is not irreducible).

5. $G(P)$ is a symmetric group

The irreducible symplectic representation of degree $2 k$ over \mathbf{F}_{2} of the symmetric groups of degree $2 k+1$ and $2 k+2$ is described in [1].

Lemma 5.1. If $n \geqq 6$ and $G(P)$ is the symmetric group of degree n or $n-1$ then G is the symmetric group of degree $n+2$ or $n+1$.

Proof. For this and the remaining lemma we will need some of the numerical relations on the parameters of a primitive group of rank 3. These are developed in [2] and we use the notation of that paper. We use m for either n or $n-1$. Our assumptions tell us some of the parameters immediately. Thus

$$
k=|\Delta(P)|=\binom{m}{2} \quad \text { and } \quad \lambda=|\Delta(P) \cap \Delta(S)|=\binom{m-2}{2}
$$

(here $S \in \Delta(P)$). We want to determine

$$
l=|\Gamma(P)| \quad \text { and } \quad \mu=|\Delta(P) \cap \Delta(Q)|
$$

for $Q \in \Gamma(P)$. In $\Gamma(P)$ we have Q, the $k-\mu$ elements in $\Delta(Q)-(\Delta(Q) \cap$ $\Delta(P))$ and the $1+k-\mu$ elements consisting of the third point on $Q+S$ as S runs over the centers on P^{\perp} and off $P^{\perp} \cap Q^{\perp}$. So $l=2(1+k-\mu)$. From [2] we have the relation $\mu l=k(k-\lambda-1)$ so

$$
\mu^{2}-(k+1) \mu+\frac{1}{2} k(k-\lambda-1)=0
$$

From the known values of k and λ we obtain $\mu=m$ or $\binom{m-1}{2}$.
From [2] we know that $d=(\lambda-\mu)^{2}+4(k-\mu)$ is a square. If $\mu=m$,

$$
d=d(m)=\frac{1}{4}(m-1)^{2}(m-6)^{2}+2 m(m-3)
$$

We see $d(5)=24, d(6)=36$, and $d(7)=65$. The parameters coming from $m=6, \mu=6$ are those of $U_{4}(2)$ on the cosets of $S p_{4}(2)$, however we can ignore $m=6$ here since $S_{6}=S p_{4}(2)$-a case disposed of in the previous section. Thus we may assume that if $\mu=m$ then $m>7$.

We now count the lines full of centers on P^{\perp}-call such lines h-lines. If $S \in \Delta(P)$, there are $2(m-2)$ members of $\Delta(P)$ which are not on S^{\perp}. Hence there are $m-2 h$-lines through S on P^{\perp}. So if h is the number of h-lines on P^{\perp} we have $3 h=\binom{m}{2}(m-2)$.

Choose $Q \in \Gamma(P)$ and let E_{i} be the orbits of $G_{P, Q}$ on $\Delta(P) \cap \Delta(Q)$. Set $\mu_{i}=\left|E_{i}\right|$ and $s_{i}=\mid h$-lines on $P^{\perp} \cap Q^{\perp}$ passing through an S in $E_{i} \mid$. Since each h-line on P^{\perp} is either on $P^{\perp} \cap Q^{\perp}$ or meets $P^{\perp} \cap Q^{\perp}$ in a point we have

$$
\frac{1}{3}\binom{m}{2}(m-2)=\sum \frac{1}{3} \mu_{i} s_{i}+\sum \mu_{i}\left(m-2-s_{i}\right)
$$

$$
=\mu(m-2)-\frac{2}{3} \sum \mu_{i} s_{i} .
$$

Hence

$$
3 \mu=\binom{m}{2}+(2 /(m-2)) \sum \mu_{i} s_{i}
$$

In particular, $3 \mu \geqq\binom{ m}{2}$ so if $\mu=m$ then $m \leqq 7$. Hence we may suppose that $\mu=\left({ }_{2}^{m-1}\right)$ and then $l=2 m$. Thus each center is on exactly $m h$-lines. If we choose $S \in \Delta(P)$, there will be just $2 h$-lines through S and off P^{\perp}. Take T in $\Delta(P) \cap \Delta(S)$ and R in $\Delta(P)$ off S^{\perp} and T^{\perp}. If X is the third center on $S+R$ then $T+R$ and $T+X$ are the $2 h$-lines through T and off S^{\perp}-each lies in P^{\perp}. Now keep $S \in \Delta(P)$ and choose $Q \in \Gamma(P) \cap \Gamma(S)$. The above remark shows that $T \in \Delta(P) \cap \Delta(S)$ implies that $T \in \Delta(P) \cap \Delta(Q)$.

We have $S_{i} \in \Delta(P), i=1,2, \cdots, m-1$ such that if $\tau_{i}=\tau_{s_{i}}$ then $\tau_{i} \tau_{i+1}$ has order 3 and all other pairs commute. Choose $Q \in \Gamma(P) \cap \Gamma\left(S_{1}\right)$ and put $\sigma=\tau_{P}, \tau=\tau_{Q}$. If τ and τ_{2} do not commute replace τ_{2} by $\tau_{1} \tau_{2} \tau_{1}$. One way or the other we see that G is generated by the involutions $\sigma, \tau, \tau_{1}, \cdots$, τ_{m-1} where the product of adjacent members in this list has order 3 and all others commute. Thus $G=S_{m+2}$-that is $G=S_{n+1}$ or S_{n+2}.

6. $G(P)$ is an orthogonal group

We will have a proof of the theorem if we prove
Lemma 6.1. $\quad G(P)$ is an orthogonal group only when it is a symmetric group.
Proof. We suppose $n=2 m \geqq 6$ and that $G(P)$ is one of the orthogonal groups of degree $2(m-1)$. Then we know

$$
k=2^{m-2}\left(2^{m-1}-\varepsilon\right) \quad \text { and } \quad \lambda=2^{2(m-2)}-1
$$

(Here $\varepsilon= \pm 1$ according as the form for $G(P)$ has maximal index or not.) As in §5 we have

$$
\mu^{2}-(k+1) \mu+\frac{1}{2} k(k-\lambda-1)=0
$$

Hence $(k+1)^{2}-2 k(k-\lambda-1)$ is a square-say y^{2}. Then

$$
\begin{aligned}
y^{2}-1 & =k(2 \lambda+4-k) \\
& =2^{m-2}\left(2^{m-1}-\varepsilon\right)\left(2+\varepsilon 2^{m-2}\right) \\
& =2^{m-1}\left(2^{m-1}-\varepsilon\right)\left(1+\varepsilon 2^{m-3}\right)
\end{aligned}
$$

If $\varepsilon=-1$ then $m=3$ and $G(P)$ is the symmetric group of degree 5 . We suppose $\varepsilon=1$, set $x=m-1$ and then

$$
y^{2}-1=2^{x}\left(2^{x}-1\right)\left(2^{x-2}+1\right)
$$

Since the orthogonal group of maximal index in dimension 4 is not generated by transvections we have $x \geqq 3$. If $y \equiv 1$ (4) then $y=\alpha \cdot 2^{x-1}+1$ for some α and we have

$$
\alpha\left(\alpha \cdot 2^{x-2}+1\right)=\left(2^{x}-1\right)\left(2^{x-2}+1\right) \quad \text { and } \quad \alpha \equiv-1\left(2^{x-2}\right)
$$

Write $\alpha=\beta 2^{x-2}-1$. Then $\alpha>1$ so $\beta=1,2$, or 3 . We can rewrite our condition as

$$
\begin{aligned}
\alpha(\alpha-1) 2^{x-2} & =\left(2^{x-2}+1\right)\left(2^{x}-(\alpha+1)\right) \\
& =\left(2^{x-2}+1\right) 2^{x-2}(4-\beta) .
\end{aligned}
$$

Hence $\alpha(\alpha-1) / 2=\left(2^{x-2}+1\right)(2-\beta / 2)$ and $\beta=2$. This determines $x=3$ and $G(P)$ is the symmetric group of degree 8 . Finally suppose $y \equiv-1$ (4)-say $y+1=\alpha 2^{x-1}$. Then $\alpha\left(\alpha 2^{x-2}-1\right)=\left(2^{x}-1\right)\left(2^{x-2}+1\right)$ and $\alpha=\beta \cdot 2^{x-2}+1$. Then $\alpha>1$ and consequently $\alpha \leqq 4$. This forces $x=3$ which this time is a contradiction.

7. Concluding remarks

The well-known identifications of the Weyl groups of type E can be read from our list. Let V be a vector space of dimension n over \mathbf{F}_{2} and let ($A_{i j}$) be the Cartan matrix for E_{n}. Choose a base $\left\{x_{i}\right\}$ for V and let G be the subgroup of $S L(V)$ generated by the mappings τ_{i} given by $\tau_{i} x_{j}=x_{j}+A_{i j} x_{i}$. The τ_{i} are transvections with center $\left\langle x_{i}\right\rangle$. If f is the alternate bilinear on V whose matrix with respect to the given base is $\left(A_{i j}\right)$ then G is in the group of f. For $n=6$ and $8, f$ is non-singular and for $n=7, f$ has a radical, $\langle x\rangle$, of dimension 1. Thus if W is the Weyl group of E_{n} we have a homomorphism from W into $S p(V)$ in the first two cases and into $S p(V /\langle x\rangle)$ in the latter case. For $n=7$ and $8,-1 \epsilon W$ so -1 is in the kernel of our homomorphism in these two cases. Since W is transitive on the roots, the image of our homomorphism will be an irreducible group (generated by transvections). Since W is finite the kernel of our homomorphism is a 2 -group. Knowing the order of W and scanning our list for the possible images of W we see $W \cong O_{6}\left(-1, \mathbf{F}_{2}\right)$ at $n=6, W /\langle-1\rangle \cong S p_{6}\left(\mathbf{F}_{2}\right)$ at $n=7$, and $W /\langle-1\rangle \cong O_{8}\left(1, \mathbf{F}_{2}\right)$ at $n=8$.

Bibliography

1. L. E. Dickson, Representation of the general symmetric group as linear groups in finite and infinite fields, Trans. Amer. Math. Soc, vol. 9 (1908) pp. 121-148.
2. D. G. Higman, Finite permutation groups of rank 3, Math. Zeitschrift, vol. 86 (1964), pp. 145-156.
3. Jack McLaughlin, Some groups generated by transvections, Arch. Math., to appear.

The University of Michigan
Ann Arbor, Michigan

[^0]: Received May 24, 1967.
 ${ }^{1}$ Research supported in part by a grant from the National Science Foundation.

