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1. Introduction

In this paper we determine those irreducible subgroups of SL(F.) which
are generated by transvections.

THEOREM. Let V be a vector space of dimension n >- 2 over F, and let G be
an irreducible subgroup of SL(V) which is generated by transvections. If
G SL(V) then n >- 4 and G is one of the following subgroups of Sp(V)"
Sp(V), O-I(V), 01(V) (except at n 4), the symmetric group of degree n 2,
or the symmetric group of degree n 1.

This result has some relevance to the question left open in [3].
Some of the notation and terminology of [3] will be used and we review it

briefly there. (Since we work over a finite prime field our assumption that
G is generated by transvections is equivalent to the assumption that G is
generated by subgroups of root type.) If G contains the traasvectioa r
withP Im(r- 1)andH= Ker(r- 1)wesayPisacenter(forG),H
is an axis (for G). Also we say P is a center for H aad H is aa axis for P.
The set of centers for G is C and the set of axes for G is A. For P e C, a(P)
is the intersection of the axes of P and for H A, c(H) is the sum of the centers
for H.

2. Preliminary lemmas
Our determination will be made by induction on n; in this section we collect

some information needed for the induction. G is a group satisfying the
hypotheses of the theorem.

LEMMA 2.1. G is transitive on C and A.

Proof. Choose P such that dim a(P) is maximal. Then Lemma 2 of [3]
tells us that G hs an orbit of centers containing P and all centers off a(P).
Since G is irreducible there cannot be a second orbit. Likewise for A.

IEMMA 2.2. If P e C and a(P is not a hyperplane then G SL( V).

Proof. Choose P e C and suppose S is another center on a(P). By Lemma
4 of [3] we have a center Q off a(P) and a(S). Let K be a hyperplaae over
Q + a(P). Since K

_
a(P), K is an xis for P. Then using Lemma 2 of

[3] we see K is an axis for Q and then K is an axis for S. Thus all points on
P + S are centers. Since G is irreducible, C spans V and consequently every
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point of VisinC. Now letHbean axis forP. IfQHandQa(P)
then Q is a center for H (again Lemma 2 of [3]). Hence c(H) H. Now
dualize the remarks at the beginning of the proof and see that every hyper-
plane is an axis. Lemma 3 of [3] completes the proof.
These two lemmas are valid for arbitrary irreducible groups generated by

subgroups of root type.
From now on we suppose G # SL(V). Then for P C, a(P) is a hyper-

plane, P, and for H A, c(H) is a point, H’. We also are assuming that the
ground field is F and consequently for each P e C there is a unique transvec-
tion rp with center P, axis P’. These involutions form a single coniugate
class--which generates G. If P and Q are two centers then rp rq has order
1, 2, or 3 according as P Q, P # Q P’, Q P. For P e C, A(P) will
be the centers P lying onP and F(P will be the centers off P’-.
LEMMA2.3. P+ ’A(P) P’.

Proof. Choose Q e r(P); it will suffice to show that all centers are on
P + Q + A(P). Suppose R e r(P) r(Q). Then (R + Q) n P
S is a center and

R c..C_. Q W S C__. Q W P + -A(p).
If R e F(P) n A(Q) let T be the third point on P + R. Then

TeF(P) nr(Q) so RP+TQ+P+ A(P).
The same sort of argument yields"

LEMMA 2.4. If P e C and Q e r(P) then G is generated by r, re, and those
with S e A(P ).

COIOLLAI:. G is primitive on C.

ForifP eCandGv cM c_ G, therwehave n(P) # P. Then v(P’) # P
and by Lemma 2.3. there will be a center S P" with Q (S) P’.
Butr r eMsoM G.

LEMMA 2.5. G2, is transitive on r(P).

Proof. If R, Q r(P) and R e r(Q) then P n (Q + R) S is a center,
rseGand rs(Q) R. IfReA(Q) let T be the third point on P + R;
then T and R are in the same G-orbitas are T and Q.

LElVIMA 2.6. Let G* (rs S e h(P)); then G*e is transitive on h(p).

Proof. Suppose R, S e A(P) are in different Ge-orbits. Then T e A(R)
or T e A(S) for otherwise (, rr, rs) moves R to S (via T). In particular
ReA(S) so we can choose QeF(R) n F(S). IfP R + SthenP
Q n (R + S) and Q e A(P)--against the above remark. Hence P + R + S
has dimension 3 and

Q r(P) n r(R) n F(S).
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Let X (P - S) n Q’, Y (P - R) Q’, Z be the third point oa X + Y,
and U be the third point on P -t- Z. Now {re, r, rR, r} fixes X and moves
P to R. Hence G moves S to U and U e C. The dual of Lemma 2.3 tells us
that for some TeA(P), X T’. Then S T soR T. But now

U T’so S and U are m" the same Gp-orblt.* Symmetry will finish the
argument.

COROLLARY. f P e C and for some S e A(P) the third point on P - S
is in C then G Sp V ).

For this will then be true for each S in A(P) and consequently the third
point on the line joining any two centers is a center. V C so all points
of V are centers. Then all hyperplanes are axes and the corollary follows
from Lemma 3 of [3].

LEMMA 2.7. The dimension of V is at least 4.

Proof. Recall that we are now supposing G SL(V) so certainly n > 2.
If >_- 3 then h(p) is not empty by Lemma 2.3. If n 3 and S e a(p) then
P S -[- P S" against our hypothesis that each axis has a unique center.

If P e C and S e h(p) then rs induces a traDsvection on P’-/P with center
P - S/P and axis P" S’/P. Let G(P) be the subgroup of SL(P’/P)
generated by all such transvections.

2.8. G(P ) is an irreducible group.

Proof. Suppose X/P is stable for G(P). Then for S e A(P), rs fixes X
so either S X or S’

_
X. Using Lemmas 2.6 and 2.3 we have S X

implies X P" and S X implies X P.

COROLLARY. The centers for G(P) are precisely the S PIP with S h(p ),
and the dual statement for axes.

For G(P is transitive on this set of centers and being an irreducible group
it is transitive on its full set of centers.

LEMMA 2.9. If n > 4 then G(P) SL(P’/P).

Proof. If G Sp(V) this is certainly so. Otherwise by the corollary to
Lemma 2.6 we know that for S e A(P), the third point on P -t- S is not a
center. If G(P) SL(P’/P) then G* is doubly transitive on h(p), so for
S A(p) Gp. is transitive on A(p) {S}. Then if (P) A(S) is not
empty A(p) S} A(S) and we find P’- S--a contradiction. If
n > 4 so dim P" > 3 then we can choose R, S, T in A(p) so P R "t- S -t- T
and dim (R W S - T) 3. The preceding remarks tell us that distinct
centers on R W S -t- T are not perpendicular and consequently all points on
R - S - T are centers. On the other hand S a (R W S - T)is a line
thru S in S" and so contain at most two centers. This contradiction finishes
the proof.
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3. Construction of the polarity
V continues to be a vector space of dimension n

___
2 over F and G is an

irreducible subgroup of SL(V) which is generated by traasvections. We
suppose each member of C has a unique axis and each member of A has a
unique center. We refer to this correspondence between C and A s the
partial polarity deterned by G.

LEMMA 3.1. The partial polarity determined by G extds uniquely to a null
polarity on the subspaces of V.

Proof. We go by induction on n. For n 2 there is noting to do; tke
n > 2. By Lemm 2.7 we know n 4 nd Lemms 2.8 ad 2.9 tell us that
the group G(P) stisfies the hypotheses of the lemm. Hence the prtial
polarity deterned by G(P) extends uniquely to null polarity oa the sub-
spces of P’/P. We proceed to ssemble some fcts wch ll llow us to
build the desired polarity.

(1) IfPeCndX= {r(P) thenX= 0.

X is stable for Ge so S e A(P) implies S X or S X. By Lemm 4
of [3], S X so S X. Thus X is on ll xes nd X 0.

(2) If X is point then X P" for some P e C.

Suppose flse, choose P e C nd let Y be the trd point on P X. If
Q e r(P) then Y Q n (P + X) ginst (1).

(3) IfXisapointndY= {HeAHX}thenY=X.
Choose P e C so X P; an induction hypothesis tells us that

P+X= {HeAHPTX}.
It suffices then to produce Q e r(P) with Q" x. If such does not exist
we arrive at a contraction as in the proof of (2).

(4) If P, S, S e CndP StheaP S.
Suppose false for some mal m. If all S S we By suppose, by

induction, that P" , S/S (S a S)/S. Then

p" N(S
So we suppose . The ll hree pois o + re eeerd

PT++... +
where T is oe of he pois on + . yhemyof m,

P" Tn n n .
orionnd he seme ise for ll m.
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(5) If X is a point then H {P e C! P X} is a hyperplane con-
raining X.
We first note that if Q e C and Q" X then by (4), Q H. Thus H V.
Now choose P e C with P X and X P’. By induction we have

P + Z:{s a(P) lS"
is a hyperplane ofP which contains P -[- X. Thus it suffices to find Q e r(P)
with Q

___
X add (3) tells us such Q exist.

If X C then the hyperplane determined in (5) is just X’; if X is any point
we now write X" for the hyperplane determined in (5). We can then im-
prove (4).

(6) If X is a point, S e C and X

___
S then X’

_
flS.

The argument is, as in (4), by induction.

(7) If X and Y are points with X

___
Y then Y X’.

Since Y" {S e C S" Y}, (6) says

x; n{H A IH Y}

by (3).
With (7) we’ve fiished tbe proof of the lemma--we have a one-one map

from the points of V onto the hyperplanes of V which behaves properly with
respect to incidence. Such a map extends uniquely to a polarity. We have
X

_
X" for all points X so we have a null polarity

4. G(P) is the symplectic group

We keep the assumptions of 3. Then G Sp(V).

LEMMA 4.1. If G c Sp(V) and G(P) Sp(P’/P) then G is one of the
orthogonal groups.

Proof. We have n >- 4 and for P e C, each line through P on P" contains
exactly one other center. Define Q on V by Q(0) 0 and for x 0, Q(x) 1
or 0 according as (x) is a center or not. Then Q((x) Q(x) for all a e G and
all x e V. Choose x, y distinct in V and different from 0. We want to show

Q(x) + Q(y) -k-Q(x + y) 0 or 1

according as (x) (y)" or not. If (x) e C then our relation comes directly
from the definition of Q. We suppose then that x and y are not centers. If
(x)

___
(y)" then x, y and x -t- y are mutually perpendicular so x -k- y is not a

center and our relation holds. Now suppose (x) (y)’ and choose a center
(z) (y). Letf be an alternate form on V which yields our polarity. Then
f(y -t- z, x -t- z) 1 -k- f(z, x) and we see (x + z)

___
(y -k- z) if and only

if (x y) is not a center. Hence in either case (x + y) is a center and we
have the desired relation. Thus Q is a quadratic function belonging to f and
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G

_
O(Q). Since G contains all the orthogoaal transvectious G O(Q).

(We cannot be in the situation n 4, Q of maximal index, because there the
subgroup of O(Q generated by transvections is not irreducible).

5. G(P) is s,mmetdc 9mP
The irreducible symplectic representation of degree 2k over F. of the sym-

metric groups of degree 2/ -4- 1 and 2k -4- 2 is described in [1].

LEMMA 5.1. If n >= 6 and G(P is the symmetric group of degree n or n 1
then G is the symmetric group of degree n -4- 2 or n "4- 1.

Proof. For this and the remaining lemma we will need some of the nu-
merical relations on the parameters of a primitive group of rank 3. These are
developed in [2] and we use the notation of that paper. We use m for either
n or n 1. Our assumptions tell us some of the parameters immediately.
Thus

h IA(p) nA(S)I (m--2 2)
(here S e A(p)). We want to determine

r(P) add A(p) n A(Q)

for Q e r(P). In r(P) we have Q, the k
A(p)) and the 1 -4- k g elements consisting of the third point on Q -4- S as
S runs over the centers on P" and off P n Q. So 2(1 -4- k tt). From
[2] we have the relation gl k(/ X 1 so

-(+)+1/2(-x-)=0.

From the known values of k and X we obtain g m or
From [2] we know thatd= (X-g +4(k-g)isasquare. If#= m,

d d(m) 1/4(m- 1)2(m- 6) -t- 2m(m- 3).

We see d(5) 24, d(6) 36, arid d(7) 65. The parameters coming from
m 6, g 6 are those of U4(2) on the cosets of Sp4(2), however we can
ignore m 6 here since $6 Sp(2)--a case disposed of in the previous sec-
tion. Thus we may assume that if g m then m > 7.
We now count the lines full of centers on P--call such lines h-lines. If

S e A(P), there are 2(m 2) members of A(P) which are not on S’-. Hence
there are m 2 h-fines through S on P’. So if h is the number of h-lines on
Pwe have 3h ()(m 2).

Choose Q e r(P) and let Ei be the orbits of Gp, on z(P) n A(Q). Set
g Eil and s h-lines onP n Q passing through an SinEl.
Since each h-line on P" is either on P" n Q" or meets P n Q" ia a point we
have

1 E t# s + g(m 2-- si)
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,(m- 2)- E,,s,.
Hence

3 () + (2/(.,- 2)) F , ,.
In particular, 3

_
() so if m then m 7. Hence we may suppose that

) and then 2m. Thus each center is on exactly m h-nes. If
we choose S e A(P), there 11 be just 2 h-lines through S and off P. Take
T in A(P) A(S) and R in A(P) off S and T. If X is the trd center on
S W R then T W R and T W X are the 2 h-lines through T and off Seach
lies in P. Now keep S e A(P) and choose Q e r(P) a r(S). The above
remark shows that T e A(P) a A(S) implies that T e h(P) a A(Q).
We have S e A(P), i 1, 2, m 1 such that if r rs then r r+

has order 3 and all other pairs commute. Choose Q e r(P) r(&) and put
r,r r. Ifrandrdonotcommutereplacerbyrrr. One

way or the other we see that G is generated by the involutions , r, r,
r where the product of adjacent members in this fist has order 3 and all
others commute. Thus G S+that is G S+ or S.

6. G(P) is an orthogonal group
We will have a proof of the theorem if we prove

LEMMA 6.1. G(P is an orthogonal group only when it is a symmetric group.

Proof. We suppose n 2m -> 6 and that G(P) is one of the orthogonal
grouos of degree 2(m 1). Then we know

k 2m-2(2m-l- C) and ), 22(m-) 1.

(Here c +/-1 according as the form for G(P) has maximal index or not.)
As in 5 we have -- (k+ 1) +1/2k(k-- k-- 1)= 0.

Hence (k W 1 ) 2k(k ), 1 is a square--say y. Then

y- 1 k(2k+4-- k)

2-(2- )(2 + 2-)
2-1(2-- e)(1 + e2-3).

If e --1 then m 3 and G(P) is the symmetric group of degree 5.
suppose e 1, set x m 1 and then

y- 1 2(2- 1)(2- + 1).

We

Since the orthogonal group of maximal index in dimension 4 is not generated
2by transvections we have x -> 3 If y -: 1 (4) then y a + I for some

a and we have

a(a.2" + 1) (2’- 1)(2"- + 1) and a: m -1(2’-).
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Writea 1. Thena > lso 1,2, or3. We can rewrite our
condition as

a(a 1 )2-2 (2- -b 1)(2 (a -b 1))

(2- -b 1)2-(4- fl).

Hence a(a 1 )/2 (2- -k 1 (2 /2) and 2. This determines
x 3 and G(P) is the symmetric group of degree 8. Finally suppose y 1
(4)--sayy-b 1 a2-. Thena(a2-2- 1) (2- 1)(2- q- 1) and
a f. 2- q- 1. Then a > 1 and consequently a

_
4. This forces x 3

which this time is a contradiction.

7. Concluding remarks
The well-known identifications of the Weyl groups of type E ca be read

from our list. Let V be a vector space of dimension n over F. and let (A)
be the Caftan matrix for E.. Choose a base {xi} for V and let G be the sub-
group of SL(V) generated by the mappings r given by ri x xi -t- A x.
The are transvections with center (x). If f is the alternate bilinear on V
whose matrix with respect to the given base is (A) then G is in the group of
f. For n 6 and 8, f is non-singular and for n 7, f has a radical, (x), of
dimension 1. Thus if W is the Weyl group of E. we have a homomorphism
from W into Sp(V ) in the first two cases and into Sp(V (x)) in the latter case.
For n 7 and 8, -1 e W so -1 is in the kernel of our homomorphism in
these two cases. Since W is transitive on the roots, the image of our homo-
morphism will be an irreducible group (generated by transvections). Since
W is finite the kernel of our homomorphism is a 2-group. Knowing the order
of W and scanning our list for the possible images of W we see W 0( 1, F.)
atn 6, W/(-1) -Sp(F.)atn 7, and W/(-1) -----O(1, F)atn 8.
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