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Our object is to indicate how lrge classes of finite simple groups, specifically
those iItroduced by Chevlley [5], Suzuki [21], Ree [14], ad us [16], ca be
studied profitably with the id of the theory of linear lgebric groups. We
shll refer to these groups as groups of Chewlley type, the first-mentioned s
untwisted, the rest s twisted.

First we recall some fcts bout linear lgebric groups, ll tken from [7].
Assume given a lgebriclly closed field k. A (liaer) lgebric group is
subgroup of some GL,(k) which is t the sume time a Mgebric set (i.e. the
complete set of solutions of set of polynomials) ia the spce determined by
the n mtric coefficients. The Zriski topology, iI which the closed sets re
the lgebric sets, is used. Aa lgebric group is sid to be simple if it is
connected, hs only discrete, i.e. finite, aoatriviM aormM (Mgebric) sub-
groups, ad is Iot Abelia. The simple lgebric groups hve been classified
by Chewlley [7] in. the Killiag-Crta tradition. Thus there re the classical
types A, B, C, D nd the five exceptional types E, E, Es, F ad G.
As examples we my mention the groups PSL or SL, (of type A), SO, or
Spia (of type B or D depending oI the prity of n), Sp, (of type C),
the group of utomorphisms of the Cyley lgebr (of type G).
The connection between simple algebraic groups ad simple finite groups

comes from the fct that muay of the ltter, 11 of those mentioned ia the first
sentence bove, rise s fixed-point groups of eadomorphisms of the former.
The bsic tool for studying the ltter with the id of the theory of lgebric

groups is the following exteisioa of result of Lag [13].

(A) Let G be connected linear lgebric group ad a (Mgebric)
endomorphism of G onto G such that G, the group of fixed points, is finite.
Then the mp G -- G defied by x x(x- is suriective.

This is proved ia [20]. Here we will sketch proof ia u special cse, ia which
x x, the result of replacing ech entry of x by its q power, it being
ssumed that this operation mps G onto itself. Here q is power of p, the
characteristic of k, ad is ssumed to be greter tha 1. From the rules of
differentiation, the differential t y 1 of the mup y -- y(y- is the sme s
that of y -- y, hence is surjective. It follows that the map covers aa open set
in G. The sume holds for the map z .---> zgaz- with g aa urbitrary element of
G. Since G is connected, it is irreducible as aa lgebraic set [7, Exp. 3]. Thus
the preceding open sets intersect" yzy- zgzz- for some y, z. Then g x
with x z-y, which proves (A), ia this special case.
Aa immediate consequence of (A) is that if i is any inner automorphism,

then i is conjugate to z if g xox-, then i i "-. For the study of
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G this means that z may be altered by an arbitrary inner automorphism and
thus be brought to a form in which G can be analyzed exactly. In particular,
we get [20]-

(B) If G and a are as in (A), then every composition factor of G is either
cyclic or of Chevalley type.

As a second application of (A) let us consider the conjugacy classes of Go.
In an ideal situation we would have’

(C) (1) Every class of G fixed by a contains an element fixed by a.

(2) Every such class meets G, in a single class.

Here (1) is true. Let C be the class. If y e C, then gayg-1 y for some
g e G, whence, writing g xax-1 by (A), we conclude that fixes x-lyx C.
On the other hand (2) is in general false. Assume however that C is such that

(.) G is connected for each x e C.

Then (2) holds" if x, y e C and g e G are such that gxg- y, then
--1o-g.x.ag y, whence g-ag G g-og hah- with h e G by (.) and (A)

applied to G, and x is conjugate to y under gh G, which yields (2).
The condition (.), hence also (2), holds in a special case, important for

representations in characteristic p, viz. when C is semisimple, i.e. consists of
diagonalizable elements, and the group G is simple and simply connected (we
will not define this term, but remark that SL, has to be taken rather than
PSL,, and Spin rather than SO,) (see [7, Exp. 23]), the connection with
representations coming from the fact that in this case p must be nonzero and
the diagonalizable elements of G are those of order prime to p. It leads to a
complete survey of the semisimple classes of the finite simple groups of Cheval-
ley type (see [19]). For arbitrary classes, no such survey has as yet been
given, except for the classical groups and one or two other types.
One of the most important structural properties of a simple (or more gen-

erally connected) algebraic group G is its decomposition into double cosets
relative to a Borel (i.e. maximal connected solvable) subgroup, and this
carries over to G, (as in (A)), basically by (A), where it becomes the decom-
position into double cosets relative to the normalizer B of a p-Sylow subgroup
P (p is the characteristic of ]). In SL,, for example, the essence of the
decomposition is that a system of representatives of the monomial subgroup
modulo the diagonal subgroup is also a system of representatives of the double
cosets relative to the superdiagonal subgroup. Tits [22] has abstracted the
essence of this (Bruhat) decomposition in his theory of B-N pairs. His
methods yield a very simple proof of simplicity, i.e. of"

(D) If G and are as in (A) and G is simple and simply connected, then
G is simple over its center, with a finite number of exceptions which can be
listed.
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The simple finite groups obtained this way are of course just the groups of
Chevalley type. Henceforth G and will be as in (D).
The above decomposition leads to a rather uniform determination of the

automorphisms of our groups (cf. [17]), as follows. Let a be an automor-
phism. By Sylow’s theorem the group B above may be taken to be fixed by
a, and so may some conjugate of P which intersects B trivially, as may easily
be proved. By now the situation is quite rigid and the possibilities can be
analyzed. In SL2, for example, the subdiagonal and superdiagonal subgroups
are both fixed. Here one knows that a is the coniugation by a diagonal ele-
ment of GL. composed with an automorphism of the base field, and this is the
case to which much of the discussion can be reduced. The Schreier conjec-
ture, that the group of outer automorphisms of a simple finite group is always
solvable, is verified in every case.
We may also determine the possible isomorphisms among our groups, by

extending a method of Artin [3], as follows. The abstract group Go usually
determines p, the characteristic of ], as the prime making the largest contribu-
tion to its order, thus also the p-Sylow subgroup P, its normalizer B, and ghe
numbers of elements in the double cosets relative to B. It rarely happens
that these numbers are the same for two choices of Go, so that the possible
isomorphisms can be severely limited and then analyzed. In some exceptional
cases p does not make the largest contribution to the order of Go and further
argument is necessary.
The Bruhat decomposition leads to a simple presentation of Go in terms of

generators and relations, at least if Go is not twisted, which can be used to
study its Schur multiplier and thus the connection between its projective and
linear representations (see [18]). The result is that SL,,
F, G, and the simply connected versions of E and E7 all have trivial Schur
multipliers, if a finite number of cases are excluded (see [18]; the true excep-
tions and their exact nature has not been completely worked out yet). With-
out exception the Schur multiplier is a p-group, since in our presentation each
relation either is confined to a p-group or else expresses the conjugacy of two
p-elements; hence it causes no trouble for representations in characteristic p.
A number of the twisted cases have been treated by Grover [12], and the
Suzuki groups by Alperin and Gorenstein [2]. There remain the groups
SU.,+I and the Ree groups.
The above ideas are also important in the representation theory of Go as

far as it has till now been developed.
In characteristic p the theory is in pretty good shape (see [19]). The ir-

reducible representations have been classified, in terms of "highest weights",
certain characters on the group B above, and a tensor product theorem, ex-
pressing all of them in terms of a few, pr (r rank G dimension of a maxi-
mal diagonalizable subgroup), has been proved. Contributors here have been
Brauer and Nesbitt [4], Chevalley [7, Exp. 20], and Wong [24]. The informa-
tion, however, is incomplete, and it is not even known what the degrees of the
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representations are, except in a few scattered cases. Each representation
can be realized in the decomposition of the reduction rood p of a corresponding
representation of an algebraic group of characteristic 0, where essentially
all is known, by Weyl’s character formula [23, p. 389], but the exact nature of
the degeneracy that occurs in this reduction is not known. Curtis [8], using
the theory of B-N pairs, has presented a more elementary version of the
classification, by a construction in the group algebra itself. His approach,
however, does not yield the tensor product theorem mentioned above, or,
e.g., the degrees.

For representations over the complex field, in contrast, the theory is in poor
shape. Aside from the groups GL,,, whose characters have been determined
by Green [11], only a few cases, of small dimensions, have been treated. Gel-
fand and Graev [10] have announced the following theorem.

(E) Assume that G is untwisted. Let r be a one-dimensional representa-
tion of P (a p-Sylow subgroup, as above) such that

(**) r has a nontrivial restriction to each one-parameter subgroup of P
corresponding to a simple root.
Then the induced representation R of G is multiplicity-free.

This is proved in [10] for SL,,, and in a parallel fashion in [25] for all the
groups, however with an oversight, since the proof uses the fact that, in the
notation of [25], the group U is the derived group of U, which fails in some
(a finite number of) cases. A version of (E) is undoubtedly true for the
twisted groups as well. It seems to us that the determination of the irreduci-
ble components of R would be a major step in the construction of a representa-
tion theory for G, and that if the same were done without the condition (**)
on r then the result would be decisive. A second theorem announced in [10],
and proved there for the groups SL,,, states that the components thus obtained
contain a complete set of irreducible representations of G, i.e., by Frobenius
reciprocity, the restriction to P of every representation of G contains a one-
dimensional representation. This is in general false. As M:. Kneser has
observed, the representation of the group of type C. over a field of 3 elements
onto the group of elements of determinant 1 in the Weyl group of type E
ia its usual representation as a reflection group provides a counter-example.
It would be useful to know for which groups the theorem holds, for which it
fails.

If we induce from larger subgroups than P we can expect the decomposition
into irreducible components to be easier. In this connection we would like to
mention two results.

(F) Let B PT be a semidirect product decomposition of the normalizer
B of P, r a one-dimensional representation of B which is trivial on P, and R
the induced representation of G,. If the restriction of r to T is not fixed by
any non-identity element of the Weyl group W (of G, relative to T), then R
is irreducible.
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This follows from a theorem of Mackey (see [9, p. 51]). At the other ex-
treme we have:

(G) If r in (F) is the trivial representation, then the multiplicities of the
irreducible components of R are just the degrees of the irreducible representa-
tions of W. Or, equivalently, the algebra of complex-valued functions on
G which are invariant under left and right translations by the elements of
B is isomorphic to the group algebra of W.

This is proved in [1, p. 81].
We will close our discussion by presenting a formula for the orders of the

groups G. Let T be a maximal torus of G (a torus is a group isomorphic to a
product of GL’s, e.g. the diagonal subgroup of SL,), taken to be fixed by a,
which is permissible by (A), and of dimension r (the rank). Then X, the
character group of T, is isomorphic to Z. The Weyl group W N(T)/T
(of G, not of G) acts on T, hence on X, on the latter as a reflection group
(see [7, Exp. 11]). By a result of Chevalley [6], the algebra of invariants
under W in the symmetric algebra on X extended to the reals is generated by
r homogeneous elements I, I2,..., I of uniquely determined degrees
d, d, ..., d. acts on T, hence on X, and there may be written qa
with q positive and a of finite order, a normalizes W, hence acts on the
invariants, and may be assumed to reproduce the I’s with scalar factors
,2,...,. ThenlGl= q.[X(q- ),withd= (d- 1). This
can be proved by a method of Solomon (see [15] and [20]). The groups
SL,(q) and SU,(q2), for example, can be obtained from SL,(k) by taking a

in the first case the q power operation, in the second case its composition
with the inverse transpose. Taking T to be the diagonal subgroup, we get

to be 1 (the identity) in the first case, -1 in the second. Now -1 acts
as 1 on a homogeneous invariant of even degree, as -1 on one of odd degree.
Thus we can convert the formula for the order of SLy(q) into that of SU,,(q)
by simply replacing the factor q" 1 by q" -t- 1 whenever j is odd. It is
suspected that a similar replacement (basically q - -q) will convert the
formulas for the degrees of the irreducible representations, in fact all of the
entries in the character table, of the first group into those of the second.
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