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1. Introduction
Higman and Sims [3] describe their group as a permutatio group of rak

3 and degree 100, in which the stabiliser of a point is a Mathieu group M.,
and has orbits of lengths 1, 22 and 77. Here we shall exhibit what is pre-
sumably the same group as a doubly transitive permutation group of degree
176, in which the stabiliser of a point is an extension by a field automorphism
of the projective unitary group PSU(3, 52). (We shall denote this extension
by PZU(3, 52).)
We shall construct a "geometry" of which the group is the automorphism

group. We shall call the objects of the geometry points, conics and quadrics,
since these seem o be the simplest objects of ordinary geometry which could
possibly realize the required configuration; though I do not know that it can
be realized in any projective space. The geometry has the following prop-
erties.

(i) There are 176 points, 1100 conics and 176 quadrics.
(ii) Each quadric contains 50 points, and each point is on 50 quadrics.
(iii) Each conic contains 8 points and lies on 8 quadrics.
(iv) Through any two points there pass just two conics; any quadric

through both points contains at least one of the conics; and just two quadrics
contain both conics.

(v) On any two quadrics there lie just two conics; any point on both
quadrics lies on at least one of the conics; and there are just two points lying
on both conics.

(vi) A conic S determines a one to one correspondence between the points
q on it and the quadrics Q through it, such that, if q corresponds to Q,

(a) The conics S’ meeting S in two points, one of which is q,
lie on Q;

() The conics S’ lying on two quadrics through S, one of
which is Q, contain q.

The automorphism group of the geometry is transitive on conics, on incident
point-quadric pairs, and on non-incident point-quadric pairs, and doubly
transitive on points and on quadrics. Thus the stabiliser of a point permutes
the quadrics in orbits of lengths 50 and 126. On the orbit of length 50, it is a
rank 3 group with suborbits of lengths 1, 7 and 42, and so by a result of D. G.
Higman [2] is either PSU(3, 5), of order 126,000, or PZU(3, 5) of order
252,000. However, the stabiliser of a point-pair is fairly easily seen to have
order 2,880, being isomorphic to Z X Aut (A), which implies that the stabi-
liser of a point has order 252,000, and that the whole group has order
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44,352,000. It is almost trivial that the group either is simple or has a simple
subgroup of index two, and the second possibility is not hard to rule out.
That the group is isomorphic to the Higman-Sims group I have not actually
proved, but it seems very likely. Not only are the orders of the groups the
same, but there is a one to one correspondence between their conjugacy classes
preserving the orders of centralisers, and the groups have the same character
table. Moreover the outer automorphism, which in the Higman-Sims repre-
sentation extends the outer automorphism of M, is in this representation
realized by a polarity of the geometry.

Evidently either the conics or the quadrics of the geometry may be taken
as the blocks of a design (in the sense of Hall [1]). Either design determines
the geometry, so that the automorphism group of the design is the auto-
morphism group of the geometry. My first proof of the existence of this
doubly transitive group used only the unsymmetric design formed by the
conics: I owe to D. R. Hughes the suggestion that there ought also to be a
symmetric design with 50 points to a block; and the discovery of this design
has eliminated much tedious calculation from the proof. An obvious remain-
ing question is whether there exist other similar geometries, say satisfying
(iv), (.v) and (vi), but with other numbers in (i), (ii) and (iii), and, if so,
what their automorphism groups are. Also, it is clear from conditions (iv)
and (v) that if P and Q are sets with 176 elements there is a one to one map
0 of the set P() of unordered pairs of elements of P onto Q(), which is not
induced by a one to one map of P onto Q, but is nevertheless highly symmet-
rical, in that the group of pairs (,/) of permutations of P and Q such that
()0 0() is transitive. This situation, too, might be worth trying to
generalise.

2. Description of the geometry
We recall first that the symmetric group $6 has an outer automorphism,

which interchanges the classes (142) and (23), (133) and (3), and (1 2 3) and
(6), and leaves the other classes unchanged. If A is a set with 6 elements,
we denote by A* a set also with 6 elements, such that the symmetric group on
A acts on A* also, but in the fashion suggested by the outer automorphism.
More precisely, and furthermore, if C is the category whose objects are sets
with 6 elements and whose morphisms are one to one mappings, is to be a
functor from C to C. Then, in particular, if a is a permutation of A, a* is a
permutation of A*, and if p is a one to one map from A to A*, the map carry-
ing a to pa*p-1 is an endomorphism of the symmetric group on A" we require
this endomorphism to be an outer automorphism. Of course, A* can be
thought of more concretely as the set of distinct ways in which A can be
given the structure of a projective line over GF(5), but we shall make no use
of this.
Now let B be a set with 8 elements, and for a b in B, write

[ab] for B\{a, b}. If we assume, as we may, that the 28 sets lab]* are dis-
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joint from one another and from B, then

P Be [J[ab]*
is a set with 176 elements, which will be the points of the geometry. The
symmetric group $8 on B acts as a permutation group on P; if belongs to
$8, restricted to [ab] is a one to one map ,b of lab] onto [a, b], and so
Tab lS a one to one map of [ab]* onto [a, b]*; putting these maps together for
different a, b, with the natural action of on B, gives a permutation of P
which we also denote by . We shall define the set Q of quadrics as

where, for a e B,

and, for x e [ab]*,

Q {L; ueP}

L. B u Ub. [ab]*

L, {a, b} u [ab]* u {x(ac); c e [ab]} u {x(bc); c e [ab]}

u {x(ac)(bd);c d, c, d e [ab]}.

(Here (ac) is the transposition interchanging a and c, etc.) We shall not
describe the conics explicitly; they are the images of B under the automorphism
group of the design (P, Q).

It is clear that this automorphism group contains Ss, and the notation has
been chosen precisely to make it clear. To exhibit other automorphisms, we
translate the description of the geometry into another notation. We choose
two elements of B and call them oo and 0. We write D for [oo0] and so D*
for [oo0]*. If z e [0a]*, for a e D, we write z (a, z( ooa))l, thus identifying
[Ja [0a]* with a copy (D >< D*)I of the cartesian product of D and D*. Simi-
larly we identify [Ja [ooa]* with a second copy (D >< D*) of the cartesian
product, by writing z (a, z(Oa))3, for z e [ooa]*. Finally, for z e [ab]*,
a, b e D, we want to identify z with (a, b, x, y), where x z(ooa)(Ob), y
z(oob) (0a). However, since a, b are unordered, this requires us at the same
time to identify also (a, b, x, y) with (b, a, y, x). We notice also that x, y
are elements of D* such that y x(ab)*. So we define E0 to be the subset of
D X D >< D* >< D* consisting of elements (a, b, x, y) such that a # b and
x, y are interchanged in (ab)*, and E to be the set obtained from E0 by identi-
fying (a, b, x, y) with (b, a, y, x). Then the set of points, in our new nota-
tion, is

P {0, }uDuD*u(D XD*)lu (D XD*)uE.
The notation is designed to bring out the symmetry between D and D*.

It is for this reason that we retain the redundant notation (a, b, x, y) for ele-
ments of E0, though any three of a, b, x, y determine the fourth. For the
same reason we shall identify D** with D, as is certainly possible, in such a

**way that for any permutation a of D, a a. The defining condition for
E0 is then symmetric" if x, y are interchanged in (ab)* then a, b are inter-
changed in (xy) *.
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It remains to translate into the new notation the definitions of the quadrics
L. We find:

(i) Lo {0, } oDuD*u (D X D*),
L, {0, o} uD oD*u (D X D*)2.

(ii) ForaeD,
L,, {0, 0} t D o (a X D*) (a X D*)2 o ((a X D X D* X D*) r E0);

for x e D*,
L {0, } uD*u (D X x)lu (D X x)2u ((D X D X x XD*)hE0).

(iii) Lca.)l {0, a,x} u (a XD*)lu (D X x)2
u {(b, y), (a, b, z, y) e E0, i 1, 2}
u (b, c, y, z) (a, b, x, y) eEo and (b,c,y,z) .Eo}

L(a.) , a, x} t (D X x) t (a X D*)2
u I(b, y) (a, b, x, y) eE0, i 1, 2}
u (b, c, z, y) (a, b, x, y) eE0 and (b,c,y,z) eE0}.

(iv) L(a.,.) {a, b, x, y} J (C, Z) (a, c, x, z) eEo or (c,b,z,y) eE0}
t{(c,z)2;(a,c,z,y) eEo or (c,b,x,z) eEo}

((a X b XD* XD*) nEo)
t (D X D X x X y) nEo)
{(a,c,u,v); (c,b,x,u) eEo

t (c, b, u, v) (a, c, v, y) eEo
{(d,e,x,z); (a,e,z,y) eEo
{(d,e,z,y); (d,b,x,z) eEo

and (a,c,u,v) eEol
and (c, b, u, v) e E0}
and (d, e, x, z) e

and (d, e, z, y) e Eo}.

For the most part these come by straightforward and reasonably short calcu-
lation, but in one or two places some manhandling is necessary to get the re-
sults into the symmetric form we require. Suppose, for instance, that
w (a, b, x, y), and consider the elements w(ad)(be) of L, where d, e eD.
A direct calculation gives w(ad)(be) (d, e, u, v) where

u x(ad) (be)* y(aebd)*,
v x(aebd)* y(ad)(be)*.

Now choose notation for the complement of {a, b} in D so that (ab)(ij)(kl)*
is the transposition (xy). If d i, e j then (ad)(be)* belongs to the class
(1222) and commutes with (xy). Thus it either fixes x and y or interchanges
them. So w(ad)(be) (d, e, u, v) belongs to (D X D X x X y) hE0.
But if d i, e /c, then (ad)(be)* belongs to the class (12) and
(xy).(ad)(be)* (aejbde)* belongs to the class (123). Thus (ad)(be)*
fixes one of x, y, say x. Then u x, and

v u(de)* x(de)* y(ab)(de)* y(abed)(ae)*.

But since (ad)(be)* fixes x, (ae)(bd)* fixes y x(ab)*, and so (abed)* also
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fixes y. Thus v y(ae)*. Thus w(ad)(be) (d, e, u, v) belongs to

l(d, e, x, z); (a, e, z, y) e E0 and (d, e, x, z) e E0}.

Similarly, one verifies that all elements of Lw belong to the set written down,
and, by counting, nothing else does.

3. The automorphism group
We begin our consideration of the automorphism group G of the geometry

by showing that the symmetric group $8 on B is the stbiliser of B ia G; that
is, that if 0 in G stabilises B poiatwise then 0 1.

First the elements of [ab]* ca be chracterised among the elements of
P\B by the fact that through them there pss more than 4 qudrics (in fact,
8 quadrics) through a and b. This is unultered by application of 0, so 0
stabilises each [ab]*. Let be the restriction of 0 to [ab]*. Again, if x e [ab]*
and y e [bc]*, there are more tha 3 qudrics through a, x, and y only
if y x(ac), which it is more convenient now to write y x*(ab, bc), where
(ab, bc) is the unique one to one mp of [ab] onto [bc] which is the identity
on their intersection. If there are more than 3 quadrics through a, x, y there
are more than 3 through a, xO, y0, so that

O,,,*(ab, bc) *(ab, bc)Obc.

It is easy to see thut any permutation of lab] ca be written as the composi-
tion of a sequence of mps i(de, el) and repeted application of the lst equ-
tio then shows that commutes with * for 11 . Thus 1, ad 1
s required.

Next, consider the stbiliser ia G of the point pir {0, }, in the notation
of the second description of the geometry. Obviously the stbiliser contias
S, the symmetric group on D (or oa D*). It lso coat,ins a involution r
which interchanges 0 nd , stbilises D nd D* poiatwise, interchanges
(a, x) nd (a, x), ad interchanges (a, b, x, y) ad (a, b, y, x). r ceatrlises
S, nd (r) X S is the intersection of the stbfiiser of 0, with the stbiliser
Ss of B {0, D. Now let be one to one mp from D to D*, so that
* D* *mps to D. If x, y re interchanged in (ab)* the *, y re iter-

changed in (b)*. That is, if (a, b, x, y) belongs to E0, so does
(x*, y*, , b). From this it follows immediately that there is a uto-
morphism of the geometry, which we shll lso cll , which fixes 0 ad ,
mps a on nd x oa x*, for a e D, nd x e D*, (a, x) oa (*, ), (a, x)
on (x*, ), nd (a, b, x, y) on (x*, y*, , b). It is clear that cen-
trlises r, nd normlises S, inducing a outer utomorphism in it, so that
(, r, S) is isomorphic to Z X Aut(S), nd so is of order 2880.

This is the whole stbiliser of [0, }. For the points ia D D* re the
only points u such that there re more thn 4 qudrics through 0, ad u;
nd if a, b e D the qudrics through 0, nd a nd through 0, ad b re

D*.the sme, wheres derent ones go through 0, nd x for x e Thus a
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element of the stabiliser of {0, } either stabilises D and D* or interchanges
them. Thus if there is an element of the stabiliser not in (, r, $8) there is
an element not 1 stabilising {0, } u D B pointwise, which we have seen
is not so.

Notice next that .for all u, v in P, u e L is equivalent to v e L,. That is,
the map interchanging u and L is a polarity, and so induces an automorphism
of G, which interchanges the stabiliser of a point with the stabiliser of quudric.
Since the stabiliser of a point fixes no quadric, this is an outer automorphism.
Evidently it centralises $8, but it is easy to see that it transforms into v.
The double transitivity of G, on points or on quadrics, is now easy to check.

The orbits of $8 on P are B and P\B, and intercharges the subsets D of B
and D* of P\B, so the group is certainly transitive on points. The stabiliser
$7 of in S has orbits }, B\{ }, [Ja [a]*, and [Ja, [ab]* on P, and, which also stabilises , interchanges Dia B\{ } with D* in (J [a]*,
and a]*, where a 0, in (J0 a]* with [0a]* in (J. [ab]*. This proves
the double transitivity.

It now follows, of course, that the order of G is 44,352,000, and he order of
stabiliser of a point 252,000. The properties (i) to (vi) of the geometry,
mentioned in the introduction, can also now be checked simply; and since we
make no use of them, we leave this to the reader.

Since Ss acts on quadrics in the same way that it does on points, the orbits on
Q of the stabiliser $7 of in Ss are

and
{L}, {L, aeB\{}}, {L; xe[a]*, aeB\{}}

{L; x e[ab]*, a, beB\{}}.
But acts differently on the quadrics; in particular, it interchanges L0 and
L, and maps La, a 0, , on L,. Thus the stabiliser of permutes
transitively the elements of the first three orbits, that is, permutes transitively
the 50 quadrics containing . The remaining orbit under S consists of the
126 quadrics not containing . Thus G is transitive on incident point-
quadric pairs and on non-incident point-quadric pairs.
The stabiliser of the pair , L} contains S, and by calculating its order

we see that it is S. Its orbits on the set of quadrics through , as described
in the previous paragraph, have lengths 1, 7, 42. That is, the stabiliser of
acts on this set as a rank 3 group with these suborbit lengths. By a result of
D. G. Higman [2] and our knowledge of its order, it is PZU(3, 5).

Finally, to prove simplicity, assume that N is a minimal normal subgroup of
G. The N is transitive. Being characteristically simple, it cannot have
order 176, so it has non-trivial intersection with the stabiliser PZU(3, 5) of
a point. This intersection, being normal, must be either PZU(3, 5) itself
or PSU(3, 5). Ia the first case hr G and G is simple, so we assume that
the second holds, so that N is of index 2 ia G. Then hr is unique and so char-
acteristic, and is doubly transitive. The intersection of hr with the stabiliser
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of the point pair {0, *} is of index 2 ia the stabiliser, which, we recall, is
(r) X Aut (A6). As before we denote by 9 aa element of Aut (A6) not ia S,
and we now denote by an element of S not ia A. Then r$ is an even
element of Ss and so belongs to hr. We recall that the polarity of the geometry
induces an outer automorphism of G which centralises (z} X S and maps 9
on 9. This automorphism normalises N, so that if N contains an element
a where a () X $6 it cotains also a, and therefore contains r, whence
the intersection of N with the stabiliser of {0, } cannot be of index 2 ia the
stabiliser. Thus the stabiliser of {0, } ia N is (r) X S, which stabilises
each of the conics {0, u D and {0, u D* through {0, }. Now the
double transitivity of N on either conic ensures that if any element of N trans-
forms one conic into the other, aa element of the stabiliser does. Thus hr
permutes the 1100 conics in two orbits of length 550 each, the two conics
through any point-pair being in different orbits. It follows that if
$1, S., ..., S, $1 is a closed chain of conics, in which any two consecutive
conics have a point pair ia common, then n is even. But it is easy to verify
that not only B but also B (a, b} u [ab]*, for a, b e B, and

Ba, {a, x} o Ix(ac) c e [ab]},

for a e B and x e [ab]* are conics, and, if x e [ab]* and y x(ac), then B, B,b,
Ba, Bc, Boa, B is such a chain with n 5. Hence G has no normal subgroup
of index 2, and hence G is simple.
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