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In this paper we study the following problem" given a finite group G of order
r and period (m 1 in cohomology, together with a generator of Hm+l (G, Z),
does there exist a finite CW-complex Y with fundamental group isomorphic to
G, universal cover homotopically equivalent to S and Eilenberg-MacLane in-
variant 1? (At least up to sign this invariant is equivalent to the first/c-in-
variant of a Postnikov system, and is defined in [2].) The problem is moti-
vated by the following result of R. G. Swan; see [7].

THEOREM. Let G be a finite group of order r and let d (r, (r) ), being
the Euler function. Suppose G has cohomological period m d- 1. Then there is
a finite simplicial complex ’ of dimension n d(m d- 1) 1 having the
homotopy type of S’, and on which G acts simplicially without fixed points.

With the orbit complex Y 2/G we can associate an Eilenberg-M:acLane
invariant 1, which together with G defines its homotopy type. Our aim is to
vary the constructioa of Y so as to obtain different generators of Hn+l (G, Z)
as/-invariants, and hence homotopically distinct G-actions. Ia particular we
shall show that when G has cyclic Sylow subgroups, every generator of
H+ (G, Z) can be geometrically realised as an /-invariant. We emphasise
that our results are only of interest in the category of finite CW-complexes,
without this restriction Swan himself notes that d can be replaced by 1 and all
abstract homotopy types easily realised.
The author wishes to express his gratitude to Professor P. J. Hilton for his

help and encouragement at all stages of the preparation of this pper.

1. Simplifying Swan’s construction

Throughout we work with complexes of finitely generated, projective left
Z (G )-modules. If the modules are free, the complex can be geometrically
realised as a CW-complex--indeed as a polyhedron--provided that its trunca-
tion in dimension two defines the chains of a 1-connected complex admitting
G as a group of free operators. Under this assumption purely algebraic argu-
ments have an immediate geometric interpretation for the polyhedral realisa-
tions.

Following [7] we define a periodic projective (free) resolution of length v for
G to be an exact sequence of projective (free) G-modules,

0-- Z- W-i --* --* W0-- Z --0.

Received October 13, 1967.
Work on this oaper was supported by a National Science Foundation grant.

616



HOMOTOPICALLY DISTINCT ACTIONS OF FINITE GROUPS 617

Construct a proiective resolution for Z over Z (G) by starting with the chain
complex of the universal cover of a 2-complex with G as fundamental group,
and extending to higher dimensions by takng kernels. Truncate this resolu-
tion in dimension m

0 -- A Cm -- Cm-1 - - Co -- Z --* 0. (a)

The crucial step in Swan’s argument is the proof that there exists a projective
module P such that A W Z (G) ----- Z -t- P. Using this isomorphism we re-
place (a) by

0 -- Z C,, (O,g) C,,_I + P (0,0) co zo (

Here Z (G) has been absorbed into C, and g is a G-retraction of (new) Cm
onto P.
Let/o (G) be the projective class group of the group ring Z (G). Since G

is finite,/o (G) is finite, see [6, Proposition 9.1]; denote the exponent of/ (G)
by c.

LEMM.A_ 1.1 There exists a periodic free resolution for G of period c (m - 1 ).

Proof. Let Q be a projective inverse to P. Splice together c copies of
and form an exact sequence of length c (m -t- 1). Define families of exact
sequence /i.,} {’i} as follows" i., is the trivial exact sequence of length
c(m - 1) having all terms except the (i 1, i) pair trivial. For i odd this
pair is id tP tP, and for i even id Q -- tQ.

-2 % direct sum of
_

and

where t(m+ 1) 2_ i_ (t-t- 1)(m+ 1)- 3"

All we are doing is alternately adding copies of P and Q to , in order to make
the terms free. Eventually we reach

.(,+)_ 0 Z C,, C,_ - cP -- lower dimensional terms.

But [cP] c[P] 0 in/o (G), because c is the exponent. ([ denotes the
stable equivalence class of P.) Therefore there are finitely generated free
modules F, F such that cP - F’ --- F. Define a last direct sum of complexes"

0 -- Z --* C -t- F’ -- C_ - F -- --. Co - Z --* 0

] will be our basic periodic free resolution for the group G.
The argument of Lemma 1.1 shortens the construction of a periodic free

resolution for G of finite type in [7] considerably, but at the price of replacing
r or d (r, q (r)) by the usually larger integer c. However this makes no
difference, if our primary concern is to construct a compact polyhedron with
/-invariant defined by a given generator of H+1 (G, Z).
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2. Resolutions over subgroups of G
LEMMA 2.1. Given a subgroup H c G, and a free resolution of Z over Z (H

admitting geometric realisation, the resolution can be embedded in a G-resolution
also admitting geometric realisation.

Proof. Take the orbit space of the 1-connected 2-dimensional complex de-
fined by the given H-resolution truncated in dimension two, and assume with-
out loss of generality that there is only one 0-cell. This complex gives a
presentation of H, the 1-cells defining the generators and the 2-cells the rela-
tions. Furthermore the truncated chain complex in the universal cover co-
incides with that defined using the free differential calculus on this presentation
of H, see Reidemeister [5].

There is a presentation of G which includes the presentation of H we have
just defined. A subset of the relations added describes how H embeds in G.
Use this presentation to construct a free Z (G )-resolution of Z. The boundary
homomorphisms can be considered finite matrices with entries from Z(G),
write the original boundary matrices as 21-1. [The entries in 2r-1 are now
considered to lie ia Z (G) rather than in Z (H).] Since we are worldng with
modules over a non-commutative ring, a little care is necessary in writing the
operations. Both the scalar multiplication and the abstract boundary map
0h: CA -- Ck_ are written on the left, but the matrix M- operates on the
right. This corresponds to making Z (G) a left module, when the map "right
multiplication by v" is a module homomorphism.

Formally the G-resolution is started using the free differential calculus, and
continued by taking, kernels repeatedly. The first two boundary matrices
are

M and 2M

1N describes the generators of G outside H. 2N refers to the differentiation
on the new relations with respect to the new generators, and2P to differentiation
with respect to the old. The 0 block matrix in the lower left corner of :M
comes from the fact that relations inside H are functions only of the generators
of H. M2, aM3, are defined by taking C3, C4, to be the free Z (G)-
modules generated by the kernels at steps C., C, .-.. At each stage the
boundary map can be written in the form

The block submatrix P- is needed to cover that part of ker (-12-)defined
by elements of Z (G) outside Z (H), and to kill cross terms originally intro-
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duced at stage two by the embedding relations for H. Since the right hand
end of this algebraic complex is defined using the free differential calculus,
there is a geometric realisation.
Remark. The existence of the embedding given by this lemma is stated

without proof in [4, page 658]. The same paper contains a brief treatment of
the free differential calculus.

If we apply the first step of the Swan argument to the resolution iust con-
structed, we obtain a periodic projective resolution of the form below.

(,)

Let h embed P as a direct summand of the "m-chains". Suppose that the
long spliced sequence of length c (m -t- 1 has been made free as in Lemma 1.1;
a fortiori the algebraic complex is a periodic free H-resolution, in which the
direct summands Ck, 0 _< k _< m are replaced by direct sums of copies of
themselves indexed by the cosets G/H.

Recall that the Eilenberg-MacLane invariant 1"+ is defined to be the pri-
mary obstruction to extending an equivariant chain map from the n-skeleton
of a reference acyclic complex W to a given chain complex C.Y equivariantly
over the (n -4- 1)-chains of W. cz+1)-1, as constructed above, has an Eilen-
berg MacLane invariant with respect to both G and H. Denote these by

b "-1+1 Hn+l (G,H,F) and

a 1+1elln+l(H,Hn), n c(m-4- 1)- 1.

If g H -+ G denotes inclusion, g. b a.
The embedding construction of the lemma can be performed simultaneously

for any family of pairwise disjoint subgroups H1, H2, Hh of G. For
clarity consider two subgroups H1, H2 such thatH n H2 1}. The matrices
of the G-boundary homomorphisms will have the form

kMk-1

where the upper left and lower right blocks are defined by H- and H-resolu-
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tions. After we have completed the Swan construction, there are three
/-invariants related by

/. b a, i 1, 2.

3. Resolutions for cyclic groups
In this short paragraph we collect together vrious facts nd notations for

cyclic groups, which we need for the main theorem. Different peroidic free
resolutions of Z over Z () are given by the equivariant CW ldecompositions
of S (m odd) which describe the Lens Spaces. Thus L(p; q, 1, 1)
gives

q-- 1 N -- 1
0-* Z --. C C_ ;C_ C0Z--, 0.

Here (p, q) 1, N 1 + + + -1 is the norm element in Z(Z()).
Suppose qq’ --- 1 mod p. If we use L (p; 1, 1, to define the refer-
ence complex W, direct computation shows that the cocycle

+I(L(p; q, 1, -.., 1))

equals
In Z (Z ()) write

1 +q+ + q(q’-l) and o’ 1 + + +-1.
One easily verifies that

(i) (-- 1) - 1, ’(- 1) -- 1, nd
(ii) o.o/ 0’.o I+N.

4. Embedding resolutions for cyclic subgroups

By means of an intuitively simple but computtionally messy argument we
prove:

THEOREM 4.1. Let Z, ( be a cyclic subgroup of G, a finite group with cohomo-
logical period m + 1. Then there exists a periodic free resolution of Z over Z (G
of dimension c (m + 1 1 n with Eilenberg-MacLane invariant b, such that
..b restricts to any chosen generator in Hn+ (Z(), Z).

Observe first that if Z is equivariantly embedded in a free Z (G)-module on
/ generators, then the image of 1 is u multiple of the normNo. We distinguish
carefully between the norm No of the whole group G, and the norm N of
some cyclic subgroup. With Z() H apply the embedding construction of
2, using first the periodic free resolution for Z () defined by L (p; 1, 1, 1
and second that defined by L (p; q, 1, ..., 1). Truncation in dimension m
gives
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Om--1

Am1

O }-- 1 N

A* (0*, O) + (v, 0) ), etc. and A1 the kernel at stage m in (1) is gen-
erated by pairs (x, y) such that, either

(i)
(ii)
(iii)

and both vy 0, 0 y 0, or
0andy 0, or

-t-vy 0and0y 0, butvy 0.

If Xl is the submodule of Z (G). g,,, spanned by the x satisfying (iii), X1 does
not meet the submodule generated by N. (Otherwise 0 x 0 and we do not
have a cross term.) Let Aq and Xq be the corresponding modules in (q),
again Xq does not meet N. Because of the two void intersections, X and
Xq are isomorphic to Xx and X respectively in the quotient module Z (G)/
Z (G).N. Relation (ii) at the end of 3 implies that postmultiplication by
and ’ in Z (G) defines inverse automorphisms in Z (G)/Z (G).N and relation

(i) that ) o’ .x. Since A n Cm Aq n C and kernel ( 1) kernel
(q 1) in Z(G).g, it follows that A1 -- A. Hence the same projective
module P with its retraction g can be used for the modification of both (1)
and (q). Both periodic projective resolutions are described by the diagram
(.) from 2. The embedding of Z is the same in both cases, since the only
way in which they might differ is through mixed terms vl @ m in g (9 C.
But there can be none such, for Z is equivariant, and (q 1) and ( 1)
both kill all normed elements.
We next compute a chain obstruction which is effectively the same as the
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Eilenberg-MacLane invariant. By an abuse of notation we shall refer to it as
such, even though as yet because of the module P, there is no geometric
realisation. The proof makes clear that the eventual replacement of P by a
free module using the method of 1 will not change either the chain map or to
obstruction to extending it.

LMM 4.2. Using the resolution for Z over Z, ( defined by L (p; 1, ...,
1, as a reference complex, let the projective complex (1) have 1+ a over
Z. Then the complex (q) has 1m+l q’.a over Z.

Proof. Carry out the construction of a chain map from/ (p) to (1). Up
to dimension (m 1 the identity embedding will do, but in dimension m we
must take care of the retraction g. If Am and ’Am are the boundary homo-
morphisms in the modified and unmodified complex, see (,),

If h embeds P in the "m-chMns", h followed by Am maps P’, the part of P
over C @ Cm to zero, because P’ c A1 Ker zX. So in dimension m define
the chain map by --. gm- hg,. The primary obstruction to extending this
map is a.

If we replace (1) by (q) as image complex, the new chain map in dimension
m is -- (g hggm), co, where co.is the same element from Z (Z ()) as before.
Since N .co is multiplication by q’ (qq’ 1 mod p), the new obstruction is
q’. av.
Form a free periodic resolution of length c (m + 1) n -t- 1 by splicing

(c 1) copies of (1) onto the left hand end of (q). Since the critical pro-
jective module in dimension (m 1) is P in boh cases, the argumen of 1

Y, which has trueapplies. The long resolution defines a GW-complex -Eilenberg-MacLane invariants over G and Zv (). Compute the Zv ()-
invariants using Lemma 4.2; clearly we obtain (av) and q’. (av). This
concludes the proof of the theorem.

5. Groups with cyclic Sylow subgroups
LEMMA 5.1. Let H G be a subgroup of a group with cohomological period

m + 1. A fortiori H has period m + 1, and the restriction map

/z* Hm+l (, Z) --, Hm+ (H, Z)
is epic.

to dimension (m + 1).
[1, Chapter XII].

Use the periodicity isomorphism to lift the epimorphism

/ (G, Z) --/ (H, Z)

Here the symbol (^) refers to Tare cohomology, see
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THEOREM 5.2. Let G be a finite group having all its Sylow subgroups cyclic.
A periodic free resolution of Z over G can be constructed with dimension
c (m -+- 1 1 n and 1-invariant defined by any generator of H’+1 (G, Z).

Proof. It is a standard result in finite group theory, [3, page 146], that G has
a presentation:

/, " 1, -1 t, (p, r) 1, 1 (mod p), (t 1, p) 1}.

Apply Theorem 4.1 to the disioint subgroups generated by and 7, and con-
struct with /-invariant b in H"+1 (G, Z). Identify this group with Zr,
when b is such that

b q+up, (p,q) 1 and b s+vr, (r,s) 1.

Here q is the /-invariant of L"(p; q’,., ..., 1) and s the /-invvriant
of L (r; s’, 1, 1 ), whose chain complexes have been used to define that of. The pair of equations defines b uniquely in Zr, and any generator arises
from a pair (q, s).
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