SPECTRAL REPRESENTATIONS FOR A GENERAL CLASS OF OPERATORS ON A LOCALLY CONVEX SPACE

BY

STEPHEN PLAFKER¹

1. Introduction

The material in this paper is a generalization of the work of Maeda [15] which in turn generalized the work of Foias [8], C. Ionescu Tulcea [10], and Dunford [6].

Throughout the paper the symbol N will denote the set $\{0, 1, 2, \dots\}, Z$ the set of integers, R the set of real numbers, R^2 or C the Euclidean (complex) plane, and T^1 the unit circle in R^2 considered as a one-dimensional manifold. For any subset S of R^2 , $\Re(S)$ will be the set of all compact subsets of R^2 contained in S; \Re will denote $\Re(R^2)$.

For a non-empty open subset Q of C the algebra $\mathfrak{IC}(Q)$ of complex-valued functions holomorphic on Q will be endowed with the topology of uniform convergence on compact subsets of Q. A holomorphic function over $K \in \mathfrak{R}$ is a function holomorphic over some open neighborhood of K. Two holomorphic functions f and g over K are equivalent if f | Q = g | Q for some neighborhood Q of K. The set $\mathfrak{IC}(K)$ of equivalence classes of functions holomorphic over K is considered as an algebra in the natural way. When endowed with the "van Hove topology" (the inductive limit topology induced by the natural mappings of $\mathfrak{IC}(Q)$ into $\mathfrak{IC}(K)$), $\mathfrak{IC}(K)$ is a topological algebra with unit 1. The symbol $\lambda(\lambda \in C)$ will denote the element $\lambda 1$ of $\mathfrak{IC}(K)$; the symbol z, the identity function of \mathbb{R}^2 onto itself considered as an element of $\mathfrak{IC}(K)$. Similarly, for $\lambda \in \mathbb{C}K(=\mathbb{C}\backslash K)$, the function ψ_{λ} defined by the equation $\psi_{\lambda}(z) =$ $1/(\lambda - z)$ is the inverse of $(\lambda - z)$ in $\mathfrak{IC}(K)$. The basic properties of $\mathfrak{IC}(Q)$ and $\mathfrak{IC}(K)$ are discussed in [21].

All vector spaces will be over the complex field C. If E and F are vector spaces, let $\mathfrak{L}^*(E, F)$ be the set of linear mappings of E into F; if E and F are topological vector spaces, let $\mathfrak{L}(E, F)$ be the set of continuous linear mappings of E into F. Whenever E is a separated locally convex space, $\mathfrak{L}(E)(=\mathfrak{L}(E, E))$ will be assumed endowed with the topology of uniform convergence on sets of a family of bounded sets in E. $\mathfrak{L}(E)$ is an algebra whose identity element will be denoted by I. Let $E' = \mathfrak{L}(E, C)$, the (topological) dual of E.

If $T \in \mathfrak{L}^*(D_T, E)$ where D_T is a subspace of E, one says that T is a transformation or mapping defined in E. A transformation T in E is said to have the single-valued extension property [6] if, for any open subset Q of C and any

Received September 25, 1967.

 $^{^{\}rm 1}$ This research was partially supported by a grant from the National Science Foundation.

analytic function $h: Q \to D_T$ such that $(\lambda - T)h(\lambda) = 0$ for every $\lambda \in Q$, h = 0. If T has the single-valued extension property, then, for each $x \in E$, there exists a maximally defined analytic function $f: \rho_T(x) \to D_T$ such that $(\lambda - T)f(\lambda) = x$ for every $\lambda \in \rho_T(x)$. The complement of $\rho_T(x)$ in C is called the spectrum of x with respect to T and is denoted by $sp_T(x)$. For $F \subset C$, $\mathfrak{M}(T, F) = \{x \in E \mid sp_T(x) \subset F\}$.

Suppose now that E is a separated locally convex space and that T is a transformation defined in E. The resolvent set of T [21], [14], denoted by $\rho(T)$, is the set of all $\lambda_0 \in C \cup \{\infty\}$ (the Riemann sphere) with the following property: there is a neighborhood G of λ_0 in $C \cup \{\infty\}$ such that (1) for any $\lambda \in G \setminus \{\infty\}$, there exists $R(\lambda) \in \mathfrak{L}(E)$ such that $(\lambda - T)R(\lambda) = R(\lambda)(\lambda - T) = I$, and (2) $\{R(\lambda) \mid \lambda \in G \setminus \{\infty\}\}$ is bounded in $\mathfrak{L}(E)$. The set $sp(T) = (C \cup \{\infty\}) \setminus \rho(T)$ is called the *spectrum* of T. It is obvious that sp(T) is compact. T is called *regular* if $sp(T) \subset C$. One sees easily that, if T has the single-valued extension property, $sp_T(x) \subset sp(T)$ for every $x \in E$.

2. Basic definitions

DEFINITION. A commutative algebra \mathfrak{A} together with a family $(\mathfrak{A}_{\kappa})_{\kappa \in \mathfrak{R}}$ of ideals and, for each $K \in \mathfrak{R}$, a bilinear map $(\varphi, a) \to \varphi \times \kappa a$ of $\mathfrak{K}(K) \times \mathfrak{A}_{\kappa}$ into \mathfrak{A}_{κ} is called a *distributional system* if

(1) $\alpha_{\phi} = \{0\}, \alpha_{\kappa \cap L} = \alpha_{\kappa} \cap \alpha_{L} \text{ for every } K \in \Re, L \in \Re;$

(2) if $K \in \mathfrak{R}, L \in \mathfrak{R}$, and $K \subset L$, then $\varphi \times {}_{\kappa}a = \alpha \times {}_{L}\varphi$ for every $\varphi \in \mathfrak{SC}(L)$, $a \in \mathfrak{C}_{\kappa}$;

(3) for any $K \in \Re$, $a \in \Omega_K$, $b \in \Omega_K$, $\varphi \in \mathfrak{K}(K)$, $\psi \in \mathfrak{K}(K)$,

 $(\varphi\psi) \times_{\kappa} a = \varphi \times_{\kappa} (\psi \times_{\kappa} a), \qquad \varphi \times_{\kappa} (ab) = (\varphi \times_{\kappa} a)b, \qquad 1 \times_{\kappa} a = a.$

The subscript K on \times_{κ} will be omitted from here on since, by (2), no ambiguity can result.

Let α be a distributional system. For $K \in \mathbb{R}$ an element $u \in \alpha$ will be called a *K*-unit of α if ua = a for every $a \in \alpha_{\kappa}$. The set of *K*-units of α will be denoted by \mathfrak{U}_{κ} . For $S \subset \mathbb{R}^2$ define

$$\alpha_{s} = \bigcup_{\kappa \in \Re(s)} \alpha_{\kappa}, \qquad \mathfrak{U}_{s} = \bigcap_{\kappa \in \Re(s)} \mathfrak{U}_{\kappa}.$$

Write also $\alpha_c = \alpha_c$. An element $u \in \alpha$ is one over $S \subset R^2$ if $u \in \mathfrak{U}_Q$ for some neighborhood Q of S.

We collect here some definitions which will be used in different parts of this paper. A distributional system α is called *separating* if, for any $K \in \Re$ and any neighborhood Q of K, $\mathfrak{U}_{K \cap} \alpha_{Q} \neq \emptyset$; α is said to have partitions of unity if for any $K \in \Re$ and any finite open cover \mathfrak{V} of K, there exists an element $(b_{Q})_{Q\in \mathfrak{V}}$ of $\prod_{Q\in \mathfrak{V}} \alpha_{Q}$ such that $\sum_{Q\in \mathfrak{V}} b_{Q} \in \mathfrak{U}_{K}$. One sees that a distributional system with partitions of unity is separating. α is modular if, for any closed subset F of R^{2} and any $u \in \alpha$ one over F, a-ua $\in \alpha_{CF}$ for every $a \in \alpha_{c}$.

Let α be a distributional system, E a separated locally convex space, and U a representation of α into $\mathfrak{L}(E)$. A net (b_{α}) of elements of α_{c} is an *approxi*-

mate identity for U if the net $(U(b_{\alpha}))$ converges simply (pointwise) to I in $\mathfrak{L}(E)$. U is an \mathfrak{A} -spectral representation if (1) there exists an approximate identity for U, and (2) for any $K \in \mathfrak{R}$, $a \in \mathfrak{A}_K$, the mapping $\varphi \to U(\varphi \times a)$ of $\mathfrak{K}(K)$ into $\mathfrak{L}(E)$ is continuous. A closed subset F of \mathbb{R}^2 is said to support U if U(u) = I for every $u \in \mathfrak{A}$ which is one over F.

PROPOSITION 2.1. Let \mathfrak{A} be a modular distributional system, U an \mathfrak{A} -spectral representation, and F a closed subset of \mathbb{R}^2 . (1) If U(a) = 0 for every $a \in \mathfrak{A}_{CF}$, then U is supported by F(2). If \mathfrak{A} is separating and $F \in \mathfrak{R}$, then U is supported by F(f) = 0 for every $a \in \mathfrak{A}_{CF}$.

Proof. (1) Let (b_{α}) be an approximate identity for U. If u is one over F, then $b_{\alpha} - ub_{\alpha} \in \mathfrak{A}_{CF}$ for every α and therefore $I = \lim_{\alpha} U(b_{\alpha}) = \lim_{\alpha} U(ub_{\alpha}) = U(u)$ (the limit taken in the simple topology).

(2) If $a \in \alpha_{CF}$, then $a \in \alpha_M$ for some $M \in \Re(CF)$. Let L be a compact neighborhood of F with $L \cap M = \emptyset$ and let $u \in \mathfrak{U}_L \cap \alpha_{CM}$. Then U(a) = U(u)U(a) = U(ua) = 0 since $ua \in \alpha_{CM} \cap \alpha_M = \alpha_{CM} \cap \alpha_M = \alpha_{\emptyset} = \{0\}$.

Suppose now that α is a distributional system and that U is an α -spectral representation. For an open subset Q of R^2 define

$$\mathfrak{M}(U,Q) = \{ U(a)x \mid a \in \mathfrak{A}_Q, x \in E \};$$

for $K \in \Re$ let

 $\mathfrak{M}(U, K) = \bigcap \{\mathfrak{M}(U, Q) \mid Q \text{ an open neighborhood of } K\}.$

PROPOSITION 2.2. Let \mathfrak{A} be a separating distributional system; let $K \in \mathfrak{R}$ and $x \in E$. Then $x \in \mathfrak{M}(U, K)$ if and only if U(u)x = x for every $u \in \mathfrak{A}$ which is one over K.

Proof. If $x \in \mathfrak{M}(U, K)$, L is a neighborhood of K, and $u \in \mathfrak{U}_L$, then x = U(a)y for some $y \in E$, $a \in \mathfrak{A}_L$. Therefore U(u)x = U(ua)y = U(a)y = x. To show the converse result, let Q be any open neighborhood of K, and let $u \in \mathfrak{U}_L \cap \mathfrak{A}_Q$. Then $x = U(u)x \in \mathfrak{M}(U, Q)$. By the arbitrariness of Q, $x \in \mathfrak{M}(U, K)$.

COROLLARY 1. Each $\mathfrak{M}(U, K)$ is a closed subspace of E invariant under each $U(a)(a \in \mathfrak{A})$.

COROLLARY 2. If $a \in \mathfrak{A}_{\kappa}$, then $U(a)(E) \subset \mathfrak{M}(U, K)$.

COROLLARY 3. $\mathfrak{M}(U, \infty) = \bigcup_{\kappa \in \mathbb{R}} \mathfrak{M}(U, K)$ is dense in E.

COROLLARY 4. If \mathfrak{A} is modular, then $x \in \mathfrak{M}(U, K)$ if and only if U(a)x = 0 for every $a \in \mathfrak{A}_{CK}$.

Proof. If $x \in \mathfrak{M}(U, K)$ and $a \in \mathfrak{A}_{CK}$, then, since \mathfrak{A} is assumed separating, x = U(b)y for some $y \in E$, $b \in \mathfrak{A}$ with ab = 0. Thus U(a)x = U(ab)y = 0. Conversely, let $u \in \mathfrak{A}$ be one over K, and let (b_{α}) be an approximate identity

for U. For each α , $b_{\alpha} - ub_{\alpha} \epsilon \alpha_{CK}$ by modularity of α , so that $U(b_{\alpha} - ub_{\alpha})x = 0$. Therefore $x = \lim_{\alpha} U(b_{\alpha})x = \lim_{\alpha} U(ub_{\alpha})x = U(u)x$.

3. *Carspectral and Carscalar transformations*

In this section we assume that α is a separating modular distributional system, E is a separated locally convex space, and T is a transformation defined in E with domain D_T .

DEFINITION. T is an α -spectral transformation if there exists an α -spectral representation U such that (1) $\mathfrak{M}(U, \infty) \subset D_T$, (2) $TU(a) | \mathfrak{M}(U, \infty) = U(a)T | \mathfrak{M}(U, \infty)$ for every $a \in \alpha$, (3) $T^nU(a) \in \mathfrak{L}(E)$ for every $n \in N$, $a \in \alpha_c$, and (4) $sp(T | \mathfrak{M}(U, K)) \subset K$ for every $K \in \mathfrak{R}$ such that $\mathfrak{M}(U, K) \neq \{0\}$. U is then called an α -spectral representation for T.

DEFINITION. T is an α -scalar transformation if there exists an α -spectral representation U such that (1) $\mathfrak{M}(U, \infty) \subset D_T$, and (2) $U(z \times a) = TU(a)$ for every $a \in \alpha_c$. U is then called an α -scalar representation for T.

Remark. An α -scalar representation for T is an α -spectral representation for T. Therefore, an α -scalar transformation is an α -spectral transformation.

PROPOSITION 3.1. If T is an α -spectral transformation, and U is an α -spectral representation for T, then U is supported by sp(T). If T is a regula^r α -scalar transformation and U is an α -scalar representation for T, then any $F \in \Re$ supporting U contains sp(T).

Proof. Let $K \in \Re(\mathbf{C}sp(T))$, $a \in \mathfrak{A}_{K}$, and suppose that $U(a) \neq 0$. Then $\mathfrak{M}(U, K) \neq \{0\}$ (Corollary 2 of Proposition 2.2) from which one concludes that

$$sp(T \mid \mathfrak{M}(U, K)) \subset K \cap sp(T) = \phi,$$

a contradiction. By Proposition 2.1, U is supported by sp(T).

To prove the second assertion, fix $\lambda \in \mathbf{C}F$ and let Q be a compact neighborhood of λ such that $Q \cap F = \phi$. Since α is separating, there exists a compact neighborhood L of λ , a compact neighborhood M of $sp(T) \cup Q$, $u \in \mathfrak{U}_L \cap \mathfrak{A}_Q$, and $v \in \mathfrak{U}_M \cap \mathfrak{A}_C$. Since α is modular, $(v - uv) \in \mathfrak{A}_{\mathbf{C}(\lambda)}$ so that $\psi_{\lambda} \times (v - uv)$ is a well-defined element of α . A sample calculation shows that

$$(\lambda - T)U(\psi_{\lambda} \times (v - uv)) = U(v)(I - U(u)).$$

U(v) = I since sp(T) supports U, and U(u) = 0 by Proposition 2.1. Thus $\lambda \in \rho(T)$.

LEMMA 3.1 Let T be an α -spectral transformation, and let U be an α -spectral representation for T such that TU(a)x = U(a)Tx for all $a \in \alpha_c$, $x \in D_T$. If $y \in D_T$ and $\lambda \in C$ are such that $(\lambda - T)y = 0$, then $y \in \mathfrak{M}(U, \{\lambda\})$.

Proof. Let $K \in \Re$ be such that $\lambda \notin K$, and let $a \in \mathfrak{a}_K$. Since

$$U(a)y \in \mathfrak{M}(U, K)$$
 and $sp(T \mid \mathfrak{M}(U, K)) \subset K$,

there exists $R \in \mathfrak{L}(\mathfrak{M}(U, K))$ such that $R(\lambda - T)U(a)y = U(a)y$ from which one concludes

$$U(a)y = R(\lambda - T)U(a)y = RU(a)(\lambda - T)y = 0.$$

Corollary 4 of Proposition 2.2 is now used to show that $y \in \mathfrak{M}(U, \{\lambda\})$.

THEOREM 3.1 Let T be an α -spectral transformation. Suppose there exists an α -spectral representation U for T such that TU(a)x = U(a)Tx for all $a \in \alpha_c$, $x \in D_T$. (This condition holds if $T \in \mathfrak{L}(E)$ or if $\mathfrak{M}(U, \infty) = D_T$.) Then T has the single-valued extension property.

Proof. Let Q be an open subset of C and h, an analytic function from Q into D_T such that $(\lambda - T)h(\lambda) = 0$ for all $\lambda \in Q$. Fix $\lambda_0 \in Q$. Let $L \in \Re(Q)$ be a neighborhood of λ_0 , $M \in \Re(Q)$, a neighborhood of L, and $u \in \mathfrak{U}_L \cap \mathfrak{A}_M$. By Lemma 3.1, $h(\lambda) \in \mathfrak{M}(U, \{\lambda\})$ for each $\lambda \in Q$.

For $\lambda \in Q \setminus M$, $U(u)h(\lambda) = 0$ (Corollary 4 of Proposition 2.2). Since $\lambda \to U(u)h(\lambda)$ is an analytic function from Q into E which is 0 on a nonempty open subset of Q, $U(u)h(\lambda) = 0$ for every $\lambda \in Q$. In particular $h(\lambda_0) = U(u)h(\lambda_0) = 0$. Since λ_0 is arbitrary, h = 0.

THEOREM 3.2. Let T be an α -spectral transformation and let U be an α -spectral representation for T such that U(a)Tx = TU(a)x for every $a \in \alpha_c$, $x \in D_T$. Then, for each $K \in \Re$, $\mathfrak{M}(U, K) = \mathfrak{M}(T, K)$.

Proof. Suppose $x \in \mathfrak{M}(T, K)$. Let $a \in \mathfrak{A}_M$, $M \in \mathfrak{R}(\mathbb{C}K)$, and let $h : \mathbb{C}K \to D_T$ be the analytic function such that $(\lambda - T)h(\lambda) = x$ for all $\lambda \in \mathbb{C}K$. Define

and

$$f(\lambda) = U(a)h(\lambda) \quad \text{if} \quad \lambda \in \mathbb{C}K$$
$$f(\lambda) = ((\lambda - T) | \mathfrak{M}(U, M))^{-1}U(a)x \quad \text{if} \quad \lambda \in \mathbb{C}M.$$

To see that f is well defined, write

(1)
$$U(a)x = U(a)(\lambda - T)h(\lambda) = (\lambda - T)U(a)h(\lambda)$$

for $\lambda \in \mathbb{C}K \cap \mathbb{C}M$. Since $U(a)x \in \mathfrak{M}(U, M)$, the desired result follows by multiplying both sides of (1) by $((\lambda - T) \mid \mathfrak{M}(U, M))^{-1}$.

f is an entire function, and $(\lambda - T)f(\lambda) = U(a)x$ for all $\lambda \in C$. Since $sp(T \mid \mathfrak{M}(U, M))$ is compact, $\lim_{\lambda \to \infty} f(\lambda) = 0$ and therefore f = 0. One concludes that U(a)x = 0. Thus, by Corollary 4 of Proposition 2.1, $x \in \mathfrak{M}(U, K)$.

On the other hand, if $x \in \mathfrak{M}(U, K)$, the mapping

$$h: \lambda \to ((\lambda - T) \mid \mathfrak{M}(U, K))^{-1}x$$

is an analytic function of **C**K into D_T such that $(\lambda - T)h(\lambda) = x$ for all $\lambda \in \mathbf{C}K$.

The following theorem is basic in the theory of spectral transformations. The proof is omitted here since it is analogous to the proofs of Theorem 4.1 and Theorem 4.2 of [15] (see Example 1 in Section 6).

THEOREM 3.3. Let \mathfrak{A} be a modular distributional system having partitions of unity. Suppose that E is a separated locally convex space, that $\mathfrak{L}(E)$, endowed with the topology of uniform convergence on sets of a family of bounded subsets of E, is sequentially complete, and that T is a transformation in E with domain D_T .

(1) If T is α -spectral, then there exists a closed α -scalar transformation S in E and Q $\in \mathfrak{L}^*(\mathfrak{M}(T, \infty))$ such that

(i) $D_s \supset \mathfrak{M}(T, \infty)$,

(ii) $\lim_{n\to\infty} |\langle Q^n x, x' \rangle|^{1/n} = 0$ for every $x \in \mathfrak{M}(T, \infty), x' \in E',$

(iii) $T \mid \mathfrak{M}(T, \infty) = (S + Q) \mid \mathfrak{M}(T, \infty), and$

(iv) $SQ \mid \mathfrak{M}(T, \infty) = QS \mid \mathfrak{M}(T, \infty).$

(2) Suppose T is α -scalar, U is an α -scalar representation for T, and Q is a linear mapping defined in E such that

(i) $\mathfrak{M}(U, \infty) \subset D_Q$,

(ii) $QU(a) \mid \mathfrak{M}(U, \infty) = U(a)Q \mid \mathfrak{M}(U, \infty)$ for every $a \in \mathfrak{A}$,

(iii) $Q^n U(a) \in \mathfrak{L}(E)$ for every $a \in \mathfrak{A}_c$, $n \in N$, and

(iv) $\lim_{n\to\infty} |\langle Q^n x, x' \rangle|^{1/n} = 0$ for every $x \in \mathfrak{M}(U, \infty), x' \in E'$.

Then T + Q is an α -spectral transformation.

4. Topologies on α

DEFINITION. Let \mathfrak{A} be a distributional system. A topology on the underlying algebra of \mathfrak{A} is *admissable* if, for every $K \in \mathfrak{R}$, $a \in \mathfrak{A}_{\kappa}$, the mapping $\varphi \to \varphi \times a$ of $\mathfrak{IC}(K)$ into \mathfrak{A} is continuous. The *final topology*, τ_f , on \mathfrak{A} is the finest admissable topology on \mathfrak{A} [1, pp 32–34]. The *final Michael topology*, τ_m , is the supremum of all topologies, τ , on \mathfrak{A} coarser than the final topology and such that (\mathfrak{A}, τ) is a Michael algebra. (A *Michael algebra* [18] is a topological algebra such that there exists a fundamental system of neighborhoods of 0 consisting of convex, idempotent ($GG \subset G$) sets.)

Let \mathfrak{A} be a distributional system, τ an admissable topology on \mathfrak{A} , and E a separated locally convex space. A representation U of \mathfrak{A} into $\mathfrak{L}(E)$ is an (\mathfrak{A}, τ) -spectral representation if (1) there exists an approximate identity for U, and (2) U is continuous when \mathfrak{A} is endowed with the topology τ . One then defines (\mathfrak{A}, τ) -spectral transformation and (\mathfrak{A}, τ) -scalar transformation in the natural way.

PROPOSITION 4.1. Let \mathfrak{A} be a distributional system, E a locally convex space, and U a representation of \mathfrak{A} into $\mathfrak{L}(E)$. Then the following assertions are equivalent: (1) U is an \mathfrak{A} -spectral representation; (2) U is an (\mathfrak{A}, τ) -

578

spectral representation for some admissable topology τ on \mathfrak{a} ; (3) U is an (\mathfrak{a}, τ_f) -spectral representation.

Remark. Let U be an α -spectral representation, and let (b_{α}) be an approximate identity for U. Then the initial topology τ induced on α by U [1, p 30] is admissable; in addition (b_{α}) is an approximate identity for (α, τ) .

COROLLARY. Let α be a separating distributional system, E a separated locally convex space, and T a transformation in E. Then the following assertions are equivalent: (1) T is an α -spectral [α -scalar] transformation; (2) T is an (α , τ)-spectral [(α , τ)-scalar] transformation for some admissable topology τ on α ; T is an (α , τ_f)-spectral [(α , τ_f)-scalar] transformation.

The remainder of this section is concerned with transformations defined in a Banach space. If α is an algebra endowed with a topology τ_0 , let $m(\tau_0)$ be the finest of topologies τ on α coarser than τ_0 such that (α, τ) is a Michael algebra.

LEMMA 4.1. Let α be an algebra endowed with a topology τ_0 , α' a normed algebra, and U a representation of α into α' . Then U is τ_0 -continuous if and only if U is $m(\tau_0)$ -continuous.

Proof. Since $m(\tau_0) \subset \tau_0$, every $m(\tau_0)$ -continuous mapping is τ_0 -continuous. On the other hand, suppose $U \tau_0$ -continuous. Define a semi-norm s on \mathfrak{a} by the equation $s(a) = \| U(a) \| (a \in \mathfrak{a})$. One sees that, for any $\varepsilon > 0$, $\{a \in \mathfrak{a} \mid s(a) \leq \varepsilon\}$ is an $m(\tau_0)$ -neighborhood of 0 in \mathfrak{a} which is mapped into $\{a \in \mathfrak{a}' \mid \| a \| \leq \varepsilon\}$ by U.

PROPOSITION 4.2 [11]. Let α be a distributional system endowed with an admissable topology τ_0 . Suppose that E is a Banach space and that $\mathcal{L}(E)$ is endowed with the ordinary norm (uniform) topology. Then a representation of α into $\mathcal{L}(E)$ is (α, τ_0) -spectral if and only if it is $(\alpha, m(\tau_0))$ -spectral.

COROLLARY 1. Let \mathfrak{A} be a distributional system, E a Banach space, and U a representation of \mathfrak{A} into $\mathfrak{L}(E)$ having an approximate identity. Then U is an \mathfrak{A} -spectral representation if and only if U is an (\mathfrak{A}, τ_m) -spectral representation.

COROLLARY 2. Let α be a separating distributional system, E a Banach space, and T a linear transformation in E. Then T is α -spectral [α -scalar] if and only if T is (α, τ_m) -spectral [(α, τ_m) -scalar].

5. A-spectral operators and decomposable operators on Banach spaces

Let E be a Banach space and $T \in \mathfrak{L}(E)$. Foias [9] has defined a spectral maximal space to be a closed subspace D of E invariant under T and such that, if Z is a closed subspace of E invariant under T such that $sp(T | Z) \subset sp(T | D)$, then $Z \subset D$. T is decomposable if, for any finite open cover \mathfrak{V} of

sp(T), there exists a family $(D_Q)_{Q\in\mathcal{V}}$ of spectral maximal spaces such that (i) $sp(T \mid D_Q) \subset Q$ for each $Q \in \mathcal{V}$, and (ii) $E = \sum_{Q\in\mathcal{V}} D_Q$.

THEOREM 5.1. Let \mathfrak{A} be a modular distributional system having partitions of unity. Let E be a Banach space, and let $T \in \mathfrak{L}(E)$ be \mathfrak{A} -spectral. Then Tis decomposable.

Proof. For every $K \in \mathbb{R}$, $\mathfrak{M}(T, K)$ is a spectral maximal sub-space and $sp(T \mid \mathfrak{M}(T, K)) \subset K$ [5, Lemma 5]. Suppose that \mathfrak{V} is a finite open cover of sp(T). Let K be a compact neighborhood of sp(T) contained in $\bigcup_{q \in \mathfrak{V}} Q$, and let $(b_q)_{q \in \mathfrak{V}}$ be an element of $\prod_{q \in \mathfrak{V}} \mathfrak{A}_q$ such that $\sum_{q \in \mathfrak{V}} b_q \in \mathfrak{U}_K$. One sees (using Proposition 3.1 and Corollary 2 to Proposition 2.1) that the family $(\mathfrak{M}(T, K(Q)))_{q \in \mathfrak{V}} (b_q \in \mathfrak{A}_{K(Q)})$ has properties (i) and (ii) in the definition of decomposable operator.

6. Examples of distributional systems

Example 1. The basic algebras of Maeda [15] are made into distributional systems by defining

(2)
$$\mathfrak{A}_{\mathbf{K}} = \{ f \in \mathfrak{A} \mid \operatorname{supp}(f) \subset K \}$$
 $(K \in \mathfrak{R})$

and, for $\varphi \in \mathfrak{K}(K)$, $f \in \mathfrak{A}_{\kappa}$

(3)
$$(\varphi \times f)(z) = \varphi(z)f(z) \quad \text{if} \quad z \in K \\ = 0 \qquad \text{if} \quad z \notin K.$$

These systems are separating (by assumption) and modular.

Example 2. Let α be a basic algebra of Maeda, and let $S \subset \mathbb{R}^2$. Define

$$\alpha(S) = \{ f \mid S \mid f \in \alpha \}, \quad \alpha(S)_{\kappa} = \{ g \in \alpha(S) \mid \operatorname{supp}(g) \subset K \},\$$

and $\varphi \times (f \mid S) = (\varphi \times f) \mid S$ for $K \in \Re, \varphi \in \mathfrak{W}(K), f \mid S \in \mathfrak{A}(S)_K$. $(\varphi \times f)$ is as in (3) above.) The importance of this example lies in the fact that, if \mathfrak{A} is a basic algebra, U is an \mathfrak{A} -spectral representation supported by some $K \in \mathfrak{R}$, and S is a bounded neighborhood of K, then there exists a unique $\mathfrak{A}(S)$ -spectral representation U' such that $U'(f \mid S) = U(f)$ for every $f \in \mathfrak{A}$. $\mathfrak{A}(S)$ has a unit element, and z can be considered as an element of $\mathfrak{A}(S)$.

This example generalizes the algebras $C^{n}(\Delta)$ of [12].

Example 3 [13]. Let $\rho = (\rho_n)$ be a two-sided sequence of real numbers such that $1 \leq \rho_{m+n} \leq \rho_m \rho_n$ for all $m \in \mathbb{Z}$, $n \in \mathbb{Z}$, and $\rho_n = O(|n|^q) (|n| \to \infty)$ for some $q \in \mathbb{N}$. Define

$$\alpha = \{f \in C(T^1) \mid \sum \rho_n \mid c_n \mid < \infty\}$$

where c_n is the n^{th} Fourier coefficient of f. Define α_{κ} by (2), and \times by (3). One concludes, from the Riemann-Lebesgue Lemma, that $C^{\infty}(T^1) \subset \alpha$.

Thus α is a modular distributional system having partitions of unity.

Example 4. Let $\Delta \in \mathbb{R}$. Using the notation of [19], we consider $\alpha = \prod_{|p| \leq n} C(\Delta)$ with the usual vector space structure and with multiplication defined by the equations

$$(fg)_p = \sum_{q+r=p} C_p^q f_q g_r$$
 $(|p| \le n)$

for $f = (f_p)_{|p| \leq n}$, $g = (g_p)_{|p| \leq n}$ any two elements of α .

Define $\operatorname{supp}(f) = \bigcup_{|p| \leq n} \operatorname{supp}(f_p)$. One sees that $\operatorname{supp}(f + g) \subset \operatorname{supp}(f) \cup \operatorname{supp}(g)$, $\operatorname{supp}(\lambda f) = \operatorname{supp}(f)$ if $\lambda \neq 0$, and $\operatorname{supp}(f) = \phi$ if and only if f = 0. One can therefore define ideals \mathfrak{a}_{κ} by (2) above. For $K \in \mathfrak{R}$, $\varphi \in \mathfrak{SC}(K)$, $f \in \mathfrak{a}_{\kappa}$, define

$$(\varphi \times f)_p(z) = \sum_{q+r=p} C_p^q(D^q \varphi(z)) f_r(z)$$

if $z \in K \cap \Delta$ and $(\varphi \times f)_p(z) = 0$ if $z \in \Delta \setminus K$. With these definitions α becomes a modular distributional system having partitions of unity.

Example 5. Let $\Delta \epsilon \Re$, $n \epsilon N$. The mapping $f \to (D^p f | \Delta)_{|p| \leq n}$ is a homomorphism of $C^n(\mathbb{R}^2)$ (the algebra of *n*-times continuously differentiable functions on \mathbb{R}^2) into the algebra \mathfrak{A} of Example 4. Let $C^n(\Delta)$ be the image of $C^n(\mathbb{R}^2)$ under this homomorphism, and define $C^n(\Delta)_{\mathbb{K}} = C^n(\Delta) \cap \mathfrak{A}_{\mathbb{K}}(\mathfrak{A}_{\mathbb{K}}$ as in Example 4) for $K \epsilon \Re$. To define \times simply note that, if $\varphi \epsilon \mathfrak{K}(K)$, $a \epsilon C^n(\Delta)_{\mathbb{K}}$, then $\varphi \times a$, as defined in Example 4, is an element of $C^n(\Delta)_{\mathbb{K}}$.

These algebras were characterized by Whitney [22]. See [20] for more details.

Example 6 [16], [17]. A mapping $\gamma : T^1 \to R^2$ is a C^n -curve $(n \in N \cup \{\infty\})$ if γ can be extended to an injective mapping of a neighborhood of T^1 onto a neighborhood of $\gamma(T^1)$ such that both γ and γ^{-1} are *n*-times continuously differentiable. Given a C^n -curve γ , one makes $C^n(T^1)$ into a distributional system $C^n(\gamma)$ by defining

$$C^{n}(\gamma)_{K} = \{ f \in C^{n}(T^{1}) \mid \operatorname{supp}(f) \subset \gamma^{-1}(K \cap \gamma(T^{1})) \}$$

for $K \in \Re$ and

$$\begin{aligned} (\varphi \times f)(z) &= \varphi(\gamma(z))f(z) \quad \text{if} \quad z \in \gamma^{-1}(K \cap \gamma(T^1)) \\ &= 0 \qquad \qquad \text{if} \quad z \in T^1 \setminus \gamma^{-1}(K \cap \gamma(T^1)), \end{aligned}$$

 $\varphi \in \mathfrak{K}(K), f \in C^{n}(\gamma)_{K}$. $C^{n}(\gamma)$ is modular and has partitions of unity.

BIBLIOGRAPHY

- 1. N. BOURBAKI, General topology, Part 1, Hermann and Addison-Wesley, Paris and Reading, 1966.
- 2. I. COLOJOARA, Generalized spectral operators, J. Math. Pures Appl., vol. VII (1962), pp. 459-465.
- 3. , Operatori spectrali generalizati, Stud. Cerc. Mat., vol. 4 (1964), pp. 499-536.

- —, Operatori spectrali generalizati II, Com. Acad. R. P., vol. 9 (1962), pp. 973– 977.
- 5. I. COLOJOARA AND C. FOIAS, Quasi-nilpotent equivalence of not necessarily commuting operators, J. Math. Mech., vol. 15 (1966), pp. 521–540.
- 6. N. DUNFORD, Spectral operators, Pacific J. Math., vol. 4 (1954), pp. 321-354.
- A survey of the theory of spectral operators, Bull. Amer. Math. Soc., vol. 64 (1958), pp. 217-274.
- C. FOIAS, Une application des distributions vectorielles a la theorie spectrale, Bull. Sci. Math., vol. 84 (1960), pp. 47-58.
- 9. ——, Spectral maximal spaces and decomposable operators, Arch. Math., vol. 14 (1963), pp. 341–349.
- C. IONESCU TULCEA, Spectral operators on locally convex spaces, Bull. Amer. Math. Soc., vol. 67 (1961), pp. 125-128.
- 11. C. IONESCU TULCEA AND S. PLAFKER, Dilatations et extensions scalaires sur les espaces de Banach, C.R. Acad. Sci. Paris, vol. 265 (1967), pp. 734–735.
- 12. S. KANTOROVITZ, Classification of operators by means of their operational calculus, Trans. Amer. Math. Soc., vol. 115 (1965), pp. 194–224.
- G. LEAF, An approximation theorem for a class of operators, Proc. Amer. Math. Soc., vol. 116 (1965), pp. 991–995.
- F.-Y. MAEDA, Remarks on spectra of operators on a locally convex space, Proc. Nat. Acad. Sci. U.S.A., vol. 47 (1961), pp. 1052–1055.
- 15. ——, Generalized spectral operators on locally convex spaces, Pacific J. of Math., vol. 13 (1963), pp. 177–192.
- 16. ——, Generalized unitary operators, Bull. Amer. Math. Soc., vol. 71 (1965), pp. 631–633.
- 17. ——, Generalized scalar operators whose spectra are contained in a Jordan curve, Illinois J. Math., vol. 10 (1966), pp. 431-459.
- E. MICHAEL, Locally multiplicatively-convex topological algebras, Mem. Amer. Math. Soc., no. 11, 1952.
- 19. L. SCHWARTZ, Theorie des distributions, Hermann, Paris, 1966.
- 20. ——, Les theoremes de Whitney sur les fonctions differentiables, Seminaire Bourbaki, 3e Annee, 1950/1951, pp. 125–128.
- L. WAELBROEK, Le calcul symbolique dans les algebres commutatives, J. Math. Pures, Appl., vol. 33 (1954), pp. 147–186.
- 22. H. WHITNEY, Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc., vol. 36 (1934), pp. 63–89.

NORTHWESTERN UNIVERSITY

Evanston, Illinois

TULANE UNIVERSITY

NEW ORLEANS, LOUISIANA