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1. Introduction
The material in this paper is a generalization of the work of Maeda [15]

which in turn generalized the work of Foias [8], C. Ioneseu Tuleea [10], and
Dunford [6].
Throughout the paper the symbol N will denote the set [0, 1, 2, -..}, Z

the set of integers, R the set of real numbers, R or C the Euclidean (complex)
plane, and T the unit circle in R considered as a one-dimensional manifold.
For any subset S of R, (S) will be the set of all compact subsets of R con-
gained in S; will denote (R).
For a non-empty open subset Q of C the algebra 5c(Q) of complex-valued

functions holomorphic on Q will be endowed with the topology of uniform
convergence on compact subsets of Q. A holomorphic function over K is a
function holomorphie over some open neighborhood of K. Two holomorphie
functions f and g over K are equivalent if f Q g Q for some neighborhood
Q of K. The set 3e(K) of equivalence classes of functions holomorphie over
K is considered as an algebra in the natural way. When endowed with the
van Hove topology (the inductive limit topology induced by the natural
mappings of 5e(Q) into 3e(K)), (K) is a topologiel algebra with unit 1.
The symbol X(X e C) will denote the element Xl of (K); the symbol z, the
identity function of R onto itself considered as an element of 3C(K). Simi-
larly, for X e CK C\K), the function kx defined by the equation kx (z)
1/(X z) is the inverse of (X z) in 5C(K). The basic properties of 5c(Q)
and 3(K) are discussed in [21].

All vector spaces will be over the complex field C. If E and F are vector
spaces, let g* (E, F) be the set of linear mappings of E into F; if E and F are
topological vector spaces, let g(E, F) be the set of continuous linear
mappings of E into F. Whenever E is a separated locally convex space,
:(E)( =(E, E)) will be assumed endowed with the topology of uniform
convergence on sets of a family of bounded sets in E. 2(E) is an algebra
whose identity element will be denoted by I. Let E’ J(E, C), the (topolog-
ical) dual of E.

If T e g* (Dr, E) where Dr is a subspaee of E, one says that T is a trans-
formation or mapping defined in E. A transformation T in E is said to have
the single-valued extension property [6] if, for any open subset Q of C and any
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analytic function h" Q -- Dr such that (X T)h(X) 0 for every X e Q,
h 0. If T has the single-valued extension property, then, for each z e E,
there exists a maximally defined analytic function f" or(x) -- Dr such that
(X T)f(X) x for every X e or(x). The complement of pr(x) in C is called
the spectrum of x with respect to T and is denoted by spr(x). For F c C,
NZ(T, F) {x e EI spr (x) c F}.
Suppose now that E is u separated locally convex spce nd thut T is

transformation defined in E. The resolvent set of T [21], [14], denoted by p(T),
is the set of all h0 e C U (the Riemnn sphere) with the following property"
there is a neighborhood G of X0 in C U such that (1) for any X e G\( },
there exists R(h)e2(E)such that (X- T)R(h)= R(h)(X- T)= I, and
(2) {R(X) X e G\( }1 is bounded in g(E). The set sp(T)
(C U {I)\p(T) is called the spectrum of T. It is obvious that sp(T) is
compact. T is called regular if sp(T) C. One sees easily that, if T has the
single-valued extension property, spr(x) c2_ sp(T) for every x e E.

2. Basic definitions
J[)EFINITION. A commutative algebra ( together with a family (aK)K

of ideals and, for each K e , a bilinear map (, a) --, e X Ka Of 3C(K) X (
into aK is called a distributional system if

(1) a= {0},anL= anaLforeveryKe,Le;
(2) if K e ,L , and K c L, thene X a X e for every e e(L),

aeag;
(3) for any K e , a e (, b e aK, e 3c(K), e 3c(K),

() Xa= X (bX a), X (ab) ( Xa)b, 1 X :a =a.

The subscript K on , will be omitted from here on since, by (2), no ambiguity
can result.
Let ( be a distributional system. For K e an element u e ( will be called

aK-unitofaifua aforevery aea. The set of K-units ofawillbe
denoted by tK. For S R define

Write also ac (c An element u a is one over S c R if u e e for some
neighborhood Q of S.
We collect here some definitions which will be used in different parts of this

paper. A distributional system a is called separating if, for any K e and
any neighborhood Q of K, t n ae 0; ( is said to have partitions of unity
if for any K e and any finite open cover 0 of K, there exists an element
(be)ev of 1-Iev ae such that e,v be e t. One sees that a distributional
system with partitions of unity is separating. ( is modular if, for any closed
subset F of R and any u e a one over F, a-ua e (c for every a e (c.

Let a be a distributional system, E a separated locally convex space, and
U a representation of a into (E). A net (b,) of elements of a is an approxi-
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mate identity for U if the net (U(b,)) converges simply (pointwise) to I in
2(E). U is an (-spectral representation if (1) there exists an approximate
identity for U, and (2) for any K e , a e aK, the mapping --+ U( X a) of
(K) into 2(E) is continuous. A closed subset F of R is said to support U
if U(u) I for every u e ( which is one over F.

PROPOSITION 2.1. Let ( be a modular distributional system, U an (-spectral
representation, and F a closed subset of R2. 1 ) If U(a) 0 for every a acF
then U is supported by F (2). If ( is separating and F , then U is supported
by F if and only if U(a) 0 for every a (c

Proof. (1) Let (’b,) be an approximate identity for U. If u is one over F,
then b, ub, e acF for every a and therefore I lim,U(b.) lim,U(ub,)
U(u) (the limit taken in the simple topology).

(2) IfaeacF, thenaeaMforsomeMe(CF). LetL be acompact
neighborhood of FwithL aM 0andletuetLn ac. Then U(a)
U(u)U(a) U(ua) 0 since ua e ac n a acn a {0}.
Suppose now that a is a distributional system and that U is an a-spectral

representation. For an open subset Q of R define

(U,Q) IU(a)xlaea,xeE};
for K e let

(U, K) f’l {(U, Q) IQ an open neighborhood of

PROPOSITION 2.2. Let ( be a separating distributional system; let K and
x E. Then x 9( U, K) if and only if U(u)x x for every u ( which is
one over K.

Proof. If x e(U, K), L is a neighborhood of K, and u eL,
then x U(a)y for some y eE, a e (L. Therefore U(u)x U(ua)y
U(a)y x. To show the converse result, let Q be any open neighborhood of
K, and let u e n a. Then x U(u)x e ( U, Q). By the arbitrariness
of Q, xe(U,K).

COROLLARY 1.
each U(a)(a e ().

COROLLARY 2.

COOLhnY 3.

CoroLlarY 4.

for every a e (cK.

Each (U, K) is a closed subspace of E invariant under

Ira e a then U(a)(E) (U, K).

iff(U, c U: 9(U, K) is dense in E.

If ( is modular, then x e (U, K) if and only if U(a)x 0

Proof. If x e i)( U, K) and a e ac, then, since a is assumed separating,
x U(b)yforsomeyeE, beawithab O. ThusU(a)x U(ab)y O.
Conversely, let u e a be one over K, and let (b,) be an pproximate identity
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for U. For each o, b ub e(c by modularity of (, so that
U(b ub)x O. Therefore x limU(b)x lim U(ub)x U (u)x.

3. d-spectral and d-scalar transformations
In this section we assume that a is a separating modular distributional sys-

tem, E is a separated locally convex space, and T is a transformation defined
in E with domain Dr

DEFINITION. T is an a-spectral transformation if there exists an a-spectral
representation U such that (1) (U, ) c Dr, (2) TU(a) i(U, )
U(a)TI(U, ) for every a ea, (3) T’U(a) e(E) for every n eN,
a e a ,nd (4) sp(TI (U, K)) K for every K e such that I(U, K)
101. U is then called an a-spectral representation for T.

DEFiNiTiON. T is n a-scalar transformation if there exists an a-spectral
representation Usuchthat (1) )(U, ) Dr, and (2) U(z X a) TU(a)
for every a e a. U is then clled an a-scalar representation for T.

Remark. An a-sclr representation for T is an (-spectrl representation
for T. Therefore, n a-scalar transformation is n a-spectral transformation.

POPOSTON 3.1. If T is an a-spectral transformation, and U is an (-
spectral representation for T, then U is supported by sp( T). If T is a regular

a-scalar transformation and U is an a-scalar representation for T, then any
F supporting U contains sp(T).

Proof. Let K e (Csp(T)), a e a and suppose that U(a) O. Then
5( U, K) {0} (Corollary 2 of Proposition 2.2) from which one concludes
that

sp(T (V, K)) K sp(T) ,
contradiction. By Proposition 2.1, U is supported by sp(T).
To prove the second assertion, fix X e CF and let Q be a compact neighbor-

hood of X such that Q n F . Since a is separating, there exists a compact
neighborhood L of X, a compact neighborhood M of sp(T) u Q, u e L (,
and v e t n ac. Since a is modular, (v uv) e aclx so that (v uv)
is well-defined element of (. A sample calculation shows that

(X T)U(x X (v uv) U(v)(I U(u) ).

U(v) I since sp(T) supports U, and U(u) 0 by Proposition 2.1. Thus
x p(T).

LEMM 3.1 Let T be an a-spectral transformation, and let U be an a-
spectral representation for T such that TU(a)x U(a)Tx for all a e (
x e Dr If y e Dr and X e C are such that (X T)y O, then y e ( U, IX} ).
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Proof. Let K e be such that k K, and let a e aK. Since

U(a)y e (U, K) and sp(T (U, K)) c K,

there exists R e (1)(U, K)) such that R(k T)U(a)y U(a)y from
which one concludes

U(a)y- R(k- T)U(a)y RU(a)(k- T)y O.

Corollary 4 of Proposition 2.2 is now used to show that y e ( U, {h} ).

THEOREM 3.1 Let T be an a-spectral transformation. Suppose there exists
an (-spectral representation U for T such that TU(a)x U(a)Tx for all
a eac,x Dr. (This condition holds ifT 2(E) or if(U, ) Dr.)
Then T has the single-valued extension property.

Proof. Let Q be an open subset of C and h, an analytic function from Q
into Dr such that(h-- T)h(h) Oforall},eQ. Fixh0eQ. LetLe(Q)
be a neighborhood of h0, M e (Q), a neighborhood of L, and u e L n (M

By Lemma 3.1, h(X) e i)( U, {},} for each }, e Q.
For e Q\M, U(u)h(h) 0 (Corollary 4 of Proposition 2.2). Since

X U(u)h(h) is an analytic function from Q into E which is 0 on a non-
empty open subset of Q, U(u)h(h) 0 for every }, e Q. In particular h(h0)
U(u)h()o) O. Since },0 is arbitrary, h 0.

THEOREM 3.2. Let T be an a-spectral transformation and let U be an a-
spectral representation for T such that U(a)Tx TU(a)x for every a e ac,
x Dr Then, for each K e , ( U, K) )( T, K).

Proof. Suppose x e (T, K). Let a e aM, M e (CK), and let
h CK - Dr be the analytic function such that () T)h()) x for all
h e CK. Define

f(,) U(a)h(,) if X e CK
and

f()) ((X T) (U M))-U(a)x if heCM.

To see that f is well defined, write

(1) U(a)x U(a)(,- T)h(X)= (,- T)U(a)h(X)

for h e CK n CM. Since U(a)x (U, M), the desired result follows by
multiplying both sides of 1 by ((), T) ( U, M) )-.
f is un entire function, and (), T)f(h) U(a)x for all e C. Siace

sp(Tll)(U, M)) is compact, lim f(h) 0 and therefore f 0. One
concludes thut U(a)x 0. Thus, by Corollary 4 of Proposition 2.1,
x (U, K).
On the other hand, if x e( U, K), the mapping

h X -- (( T) i(U, K))-lx
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is an analytic function of CK into Dr such that (X T)h(X) x for all
XeCK.

The following theorem is basic in the theory of spectral transformations.
The proof is omitted here since it is analogous to the proofs of Theorem 4.1
and Theorem 4.2 of [15] (see Example 1 in Section 6).

THEOREM 3.3. Let a be a modular distributional system having partitions
of unity. Suppose that E is a separated locally convex space, that 2(E), en-
dowed with the topology of uniform convergence on sets of a family of bounded
subsets of E, is sequentially complete, and that T is a transformation in E with
domain Dr

(1) If T is (-spectral, then there exists a closed (-scalar transformation S in
E and Q e 2o* (lz T, such that

(i) Ds 9Z( T, ),
(ii) lim (Qx, x’} [lln 0 for every x e (T, ), x’ e E’,
(iii) T INZ(T, (S + Q) Z(T, ), and
(iv) SQ Nz( T, QS N;( T, ).
(2) Suppose T is a-scalar, U is an a-scalar representation for T, and Q

is a linear mapping defined in E such that
(i) (U, ) c De,
(ii) QV(a) (U, U(a)Q (U, for every a e (,
(iii) Q U a e 2 E for every a e a n e N, and
(iv) limno (qx, x’) / 0 for every x e lz( U, ), x’ e E’.

Then T Q is an a-spectral transformation.

4. Topologies on

DEFINITION. Let ( be a distributional system. A topology on the under-
lying algebra of a is admissable if, for every K e , a e a, the mapping- X a of (K) into ( is continuous. The final topology, r,, on a is
the finest admissable topology on ( [1, pp 32-34]. The final Michael topology,
r, is the supremum of all topologies, r, on a coarser than the final topology
and such that (a, r) is a Michael algebra. (A Michael algebra [18] is a
topological algebra such that there exists a fundamental system of neighbor-
hoods of 0 consisting of convex, idempotent (GG G) sets.)

Let a be a distributional system, r an admissable topology on a, and E
a separated locally convex space. A representation U of a into g(E) is an
((, r)-spectral representation if 1 there exists an approximate identity for U,
and (2) U is continuous when ( is endowed with the topology r. One then
defines (6:, r)-spectral transformation and ((, r)-scalar transformation in the
natural way.

PROPOSITION 4.1. Let ( be a distributional system, E a locally convex
space, and U a representation of ( into 2(E). Then the following assertions
are equivalent: (1) U is an a-spectral representation; (2) U is an (, r )-
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spectral representation for some admissable topology - on ( (3) U is an (, ’I )-
spectral representation.

Remark. Let U be an a-spectral representation, and let (b) be n p-
proximate identity for U. Then the initial toplogy r induced on a by U
[1, p 30] is dmissble; in addition (b) is n pproximte identity for (a, r).

COrOLLArY. Let ( be a separating distributional system, E a separated
.locally convex space, and T a transformation in E. Then the following asser-
tions are equivalent: 1 T is an a-spectral [(-scalar] transformation; (2) T is an
((, -)-spectral [((, r)-scalar] transformation for some admissable topology - on
a; T is an a, ’s )-spectral [((, rs)-scalar] transformation.

The remainder of this section is concerned with transformations defined
in Bnch spce. If a is n lgebr endowed with topology r0, let m(r0)
be the finest of topologies r on a corser thn r0 such that (a, r) is Michael
lgebr.

LEMMA 4.1. Let ( be an algebra endowed with a topology ’o, a’ a normed
algebra, and U a representation of ( into a’. Then U is to-continuous if and
only if U is m( ’o)-continuous.

Proof. Since re(r0) r0, every m(r0)-continuous mapping is r0-continu-
ous. On the other hnd, suppose U r0-continuous. Define semi-norm s

on 0 by the equation s(a) II U(a) II (a a). One sees that, for ny e > 0,
{a e a ls(a) -<- e} is n m(r0)-neighborhood of 0 in a which is mpped into
{ae (’ II a II -<- e} by U.

PROPOSITION 4.2 [11]. Let a be a distributional system endowed with an
admissable topology to. Suppose that E is a Banach space and that 2(E) is
endowed with the ordinary norm (uniform) topology. Then a representation of
( into 2(E) is (a, -o)-spectral if and only if it is ((, m(to) )-spectral.

COROLLARY 1. Let ( be a distributional system, E a Banach space, and U a

representation of ( into 2(E) having an approximate identity. Then U is an
a-spectral representation if and only if U is an a, r,)-spectral representation.

COROLLARY 2. Let ( be a separating distributional system, E a Banach
space, and T a linear transformation in E. Then T is a-spectral [a-scalar]
if and only if T is a, r)-spectral [((, rm )-scalar].

5. -spectral operators and decomposable operators
on Banach spaces

Let E be Bnch spce and T (E). Foils [9] hs defined spectral
maximal space to be closed subspce D of E invrint under T nd such
that, if Z is closed subspce of E inwrint under T such that sp(Ti Z)
sp(TID), then Z D. T is decomposable if, for any finite open cover X) of
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sp(T), there exists a family (D)v of spectral maximal spaces such that
(i) sp( T Do) Q for each Q e x), and (ii) E

THEOREM 5.1. Let ( be a modular distributional system having partitions
of unity. Let E be a Banach space, and let T 2(E) be (-spectral. Then T
is decomposable.

Proof. For every K e , (T, K) is a spectral maximal sub-space and
sp(TlE(T, K)) K [5, Lemma 5]. Suppose that is a finite open cover
of sp(T). Let K be a compact neighborhood of sp(T) contained in (Jv Q,
and let (b)ov be an element of l-Iov ao such that vb e tK. One
sees (using Proposition 3.1 and Corollary 2 to Proposition 2.1 that the family
(E(T, K(Q)))ov (bo aK()) has properties (i) and (ii) in the definition
of decomposable operator.

6. Examples of distributional systems
Example 1. The basic algebras of h/.[aeda [15] are made into distributional

systems by defining

(2) (K {fe a supp(f)

and, for e (K), f e a

(3)
( X f)(z) ,p(z)f(z) if z eK

=0 if zK.
These systems are separating (by assumption) and modular.

Example 2. Let a be a basic algebra of Maeda, and let S R. Define

a(S) {f S f e a}, a(S)K {g e a(S) supp(g) g},

and X (f IS) ( Xf) lSforge,eac(g),flSea(S). ( Xf
is as in (3) above.) The importance of this example lies in the fact that,
if a is a basic algebra, U is an a-spectral representation supported by some
K e , and S is a bounded neighborhood of K, then there exists a unique
a(S)-spectral representation U’ such that U’(flS) U(f) for every

f e a. ((S) has a unit element, and z can be considered as an element of
a().
This example generalizes the algebras C"(A) of [12].

Example 3 [13]. Let p (p,) be a two-sided sequence of real numbers
such that 1 <= p+, <= P,nP,, for all m e Z, n e Z, and p, 0(I n q) (I n --for some q e N. Define

(t {f e C(T) -,P,
where c, is the n Fourier coefficient of f. Define (t by (2), and X by (3).
One concludes, from the Riemann-Lebesgue Lemma, that C(T
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Thus a is a modular distributional system having partitions of unity.

Example 4. Let A e . Using the notation of [19], we consider
a I-/ll __<n C(A) with the usual vector space structure and with multiplica-
tion defined by the equations

(fg), _,+=, C fag, (I P <= n)

forf (f)ll _<n, g (g)ll =<- any two elements of a.
Define supp(f) Uli_<_n supp(f). One sees that supp(f-t- g) c

supp(f) u supp(g), supp(),f) supp(f) if ), # 0, and supp(f) if and only
if f 0. One can therefore define ideals aK by (2) above. For K e ,

e C(K), f e aK, define

( X f),(z) _,+,.-_, Cq(Dq(z))f,(z)

if z e K n A and ( X f)(z) 0 if z AK. With these definitions a be-
comes a modular distributional system having partitions of unity.

Example 5. Let A e , n e N. The mapping f (Dfl A) z, is a ho-
momorphism of C (R) (the algebra of n-times contuously differentiable
functions on R) into the algebra a of Example 4. Let C(A) be the image
of C (R) under this homomohism, and define C (A) C (A) n a(ax

in Example 4) for K e . To define X simply note that, if e (K),
a e C(A), then X a, as defined in Example 4, is an element of C(A).
C(A) is a modular distributional system havg partitions of unity.
These algebras were characterized by Whitney [22]. See [20] for more

details.

T RExample 6 [16], [17] A mapping is a C%curve (n e N u
if can be extended to an injective mappg of a neighborhood of T onto a
neighborhood of (Tx) such that both and - are n-times continuously
differentiable. Given a C%cue , one makes C’(T) into a distributional
system C() by defining

C() {re C(T1) supp(f) -(K (T))}
for K e and

( X f)(z) ((z))f(z) if z e-(g (T1))
0 if zeT-(K(T)),

C Ce (K) f e () () is modular and has partitions of unity.
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