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1. Introduction

DEFINITION 1. For each positive integer n, let C(n) be the following
statement of set theory: "For every nonempty set X whose elements are
n-element sets, there is a function f with domain X such that f(x) e x for
each x e X."

The axioms C(n) ([n] in the original notation) were introduced by Mostow-
ski in [8]; we shall refer to these as the axioms of choice for finite sets. Mostow-
ski investigates implications of the form

(1) (C(ml) & C(m) & & C(m)) ---> C(n)

which are vulid in set theory (without the xiom of choice). He finds n
upper bound on n in terms of the maximum of the set [m, m, m}
under the sssumption that (1) is provable in set theory (ibid., Theorem V);
he obtains this result by utilizing Bertrand’s postulate [12, pp. 51-64]:

(2) For x > 7/2 there is prime p stisfying x < p 2x 2.

By considering (2) s well as a modified version of this classical number
theoretic result in connection with Mostowski’s necessary condition (M)
for (1) we strengthen some of Mostowski’s conclusions. We lso utilize
Bertrand’s postulate to prove theorem concerning the sufficiency condition
(S) for (1) (due to Szmielew nd Mostowski) s well us to obtain n inde-
pendence result for specific cse of this implication.

2. Preliminaries
The system of set theory within which we shall work will be the one intro-

duced by Mostowski in [7]; this is a system of the G6del-Bernays type which
does not include the axiom of choice among its axioms and which permits
the existence of urelements (objects, other than the empty set, which are
in the domain but not the range of the e-relation). Throughout the meta-
mathematical part of this paper we shall assume that this system of set
theory is consistent; this is equivalent to the assumption that GSdel’s system
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A, B, C (of [3]) is consistent. (See the discussion in [6, pp. 478-479].) The
first-order predicate calculus with identity will serve as the logical framework
for set theory.

Let 0 be the empty set, let 1 {0}, let 2 1 u {1}, let 3 2 u {2}, etc.
For any such (nonnegative) integer n and any set X, we say that X is an
n-element set if there is a 1-1 mapping of X onto n.
For sets X and Y, we shall use X\Y to denote the relative complement

of Y in X; we note that in case X and Y are both integers with 0 < Y < X
(i.e., 0 e Y eX), then X\Y X Y (here, "-" is the usual arithmetic
operation). Furthermore, we let 6)(X) designate the set of finite subsets
of Z and 6)*(Z) 6)(Z) \I 0}.
For n 1, 2,..., let In denote the set of all integers >_ n, and let

Jn 1, 2, n}. Let II represent the set of prime numbers. The letters
i, j,/, l, m, n, p, q, r, s, t, z, N will always refer to integers.

6)*For Z e (I1) we let C(Z) denote the conjunction of the statements
C(z) for z e Z; since positive integers are not subsets of I1, no confusion
will ensue if we write C(z) in lieu of C({z}) for z e I. (We shall also omit
the braces in various conditions to be defined.)
We shall write an implication such as "C(Z) - C(n)" when we intend

the metamathematical statement" ’C(Z) -- C(n)’ is a theorem of set theory."

3. The function (n)
We begin by introducing several notions.

DEFINiTiON 2. Let s >_ 1 and let ml, m2, m, be distinct integers >_ 2.
Forj e 2 define Lin Comb(m, m, m) to be the set of all integers >_ 2
of the form zm z2m - zm, where each z >_ j for i <_ s.

We shall write Lin CombO(M), j e 2, for Lin Comb’(m, m, m,)
when M Imp, m, .--, m} e6)*(I1). Clearly, for each M e6)*(I1),
Lin Combl(M) Lin Comb(M), and if n(M) > 1, this inclusion is proper.

DEFINITION 3. For n >_ 1 and P e (II), we say that P is a prime decom-
position of n if n e Lin Comb(P) we let z(n) be the set of prime decomposi-
tions of n.

Clearly r(n) is finite for each n >_ 1; r(n) 0 iff n 1. Moreover,

(3) (n)

___
(/n) for all/, n >_ 1.

DEFINITION 4. Z(e 6)(I)) and n(e I1) satisfy condition (M) if for every
P e r(n), Z n Lin Comb (P) 0.

Using group theoretic as well as set theoretic techniques, 5/[ostowski shows

A set A is finite iff every nonempty set of subsets of A has a maximal element with
respect to inclusion; otherwise, A is infinite. For the relationship between various
definitions of "finiteness" in set theory without the axiom of choice, see [5].
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condition (M) to be necessary for any implication of the form C(Z) ---. C(n)
[8, Theorem IV].

DEFINITION 5. Let p(1) 1; for n >_ 2, let

t(n) max {min P" P e (n)}.

Thus for n >_ 2, t(n) is the greatest prime p such that n is expressible as
the sum of primes not less than p.

The second formulation of this definition (with dom # Is) is due to
Mostowski; he introduces it because various cases of the implication
C(Z) -- C(n) can be expressed in terms of #(n). In particular, he shows
([8], p. 163, (1) that

(4) (C(J,,) -- C(n)) (m >_ t(n)), m, n eI2.

We note that

(5) if C(Z) -- C(n) and if m max (Z), then C(J,,) C(n)
and m (n).

Mostowski mentions the following additional properties of the function
t(n) (ibid., (2), (3), (4); we modify these to suit our definition at n 1).

(6) %/(n/2)/2 < t(n)

_
n, n >_ 1.

(7) Letn_>__ 2; then(n) eIi, andt(n) niffneII.

(8) If n 1, 2, or 4, then p(n) > 2.

The aim of this section is to obtain further estimates of t(n).

LEMMA 1. For nl, n

THEOREM 1. If m(_2) is such that (t) > p for m <_ t < 2m, then
t(n) > p for all n >_ m.

Proof. Suppose t(]) > p for m

_
] < 2m and let n _> 2m.

Thenn (m- t) sin, wheres >_ 1 and0

_
, m. Using (3) and

Lemma 1, we conclude that (n) > p.
We observe that Theorem 1 yields an alternative proof that t(n) 2

only if n 2 or 4 (because t(n) > 2 for 5

_
n < 10).

THEOREM 2. (0) If n is composite, then 2

_
t(n)

_
n/2.

(b) For n

_
2, 2 < t(n) < n/2 iff n is neither a prime nor twice a prime;

if n is twice a prime, then it(n) n/2.
(c) If n is odd and composite, then 3

_
(n)

_
n/3.

In addition,
(i) if n is not thrice a prime, then 3 < t(n) < n/3;
(ii) if n is thrice a prime, then (n) n/3.
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Proof. (a) If n is composite, p P e r(n), and p > n/2, thei there must
be some q e P such that q < n/2.

(b) follows from (7), (8), part (a), and the observation that {n/2} e r(n)
iff n/2 is prime.

(c) follows from similar considerations. Here we note that if n is an
odd composite, then there must be a prime decomposition consisting solely
of at least three (not necessarily distinct) odd primes, at least one of which
is less than or equal to n/3. Moreover, by theorem 1, t(n) > 3 if n > 9;
hence if n is odd but is neither a prime nor twice a prime, then t(n) > 3.

Theorem V of [8] together with (5), above, assert that n < Sty(n) . This
result depends upon the form (2), above, of Bertrand’s postulate. In order
to reduce this upper bound on n we note that the prime number theorem
[4, pp. 229-263] has the following consequence.

LEMMA 2. For every p > 1, there is an N(p) such that for x >_ N(p), there
is always a prime between x and px.

Much of the explicit computation of N(p) has been carried out in [9].

LEMMA 3. For every p > 1, n < pt(n) with finitely many exceptions.

Proof. Givenp > 1, let z ’p, and letN(z) be as inLemma2. By
(6), for n sufficiently large, n _> (n) >_ N(z). Suppose that for any such
n, n >_ (n).
We apply Mostowski’s method of Theorem V of [8], but with the stronger

version of Bertrand’s postulate given in Lemma 2, above.

There are primes p and q such that

(9) (u) < p < (n) < q < J(n)
and there are integers s and such that ps + qt 1. Let sn and let

tn. Thenpk+ ql n.
k and cannot both be negative. Suppose, for example, that/ > 0 and
< 0. Let z be the least positive integer such that + zp >_ O. Then

0 <_ l+zp < p. If/- zq <_ O, then

n p(k zq) + q(l + zp)

_
q(1 + zp) < pq < pt(n) ,

contradicting the hypothesis. Hence k zq > 0, and nonnegative integers
k’ (= tc zq) and l’ (= + zp) exist which satisfy p]c’ -t- ql’ n. Thus
(n) >_ p; this contradicts (9).

TnOnEM 3. For all n _> 1, n 1.178 (n) .
Proof. N(1.056) 212 in Lemma 2 (for details, see [13, pp. 33-38]);

by Lemma 3, n 1.178 t(n) for t(n) >__ 212. Now (n) > 211
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for 672

_
n 1344; by Theorem 1, (n) > 211 for all n > 672. For n < 672

the inequality indicated in the statement of the theorem can readily be
calculated. (See Table 1 of [13].)

COOLLAIY. For all n >_ 1, (n) > .93%/n.
Other properties of #(n) and of a related prime-valued function are given

in [13].

4. Condition (S)
DEFINITION 6. Z(e 6)(I1)) and n( >__ 1) satisfy condition (S) if for every

P e r(n) there is some p e P and r >_ 1 such that rp e Z.

Condition (S) is sufficient for the implication C(Z) -- C(n). Clearly,
for any Z e (P*(I1) and n _> 1, if Z and n satisfy (S), then they satisfy (M).
Moreover, the direction of this implication cannot be reversed; take n 5,
P /2, 3}, and Z /5}. This, of course shows that condition (S) is not
necessary for the implication C(Z) -- C(n); (S) is "almost totally un-
necessary" in a sense which will be explained in the corollary of Theorem 4,
below.

LEMMA 4. Let m and n be relatively prime integers

_
2. Then

Imn+ Lin Comb (m, n) (equivalently, I(,_.)(,_)

_
Lin Comb (m, n)).

(This is a well-known result which is mentioned in [2].)

LEMMA 5. For all n, tc >_ 1, C(nlc) -- C(lc).

(A proof of this lemma is given in [10, p. 99, Theorem 2].)
Henceforth, we let P(n) be the set of prime factors of n.

THEOIEM 4. For every n 5 or n >_ 7 there are distinct primes p, q which
are not factors of n for which {p, q} e r(n).

Proof. Let n >_ 5, let

q rain (II\P(n)) and q min (II\(P(n) u {q})).

Then, in fact, if n e I\/6, 18, 30}, we have {ql, q} e r(n). For n > qq.,
this follows from Lemma 4; otherwise, n <_ qtq <_ 77 and there are only
finitely many cases to check. Finally, {7, 11} e r(18) and {11, 19} e (30).

CoIoLsav. For every n 5 or n >_ 7, condition (S) fails for C(n) -- C(n).

Remark. By Lemma 5, this implies that condition (S) fails also for impli-
cations C(m) -- C(n), where n 5 of n >_ 7, and where m is any multiple
of n.

Different proofs of the sufficiency of (S) are given in [1, Theorem 8], in [8, Theorem
II], in [11, Theorem 2], and in [16, Theorems 1 and 2].
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5. An independence theorem

From Lemma 5 it follows that for all n >_ 2, C(n) --, C(P(n) ). Moreover,
C(P(4)) --, C(4) (see [8, p. 138]) and C(P(6)) -- C(6) (ibid., Theorem
VI). In contrast, we have the following.

THEOREM 5. If n is a composite greater than 6, then C(n) is independent
of C(P(n) ).

Proof. Let n( > 6) be composite and let p be the greatest prime divisor
of n. In the first two cases we show that condition (55) fails for P(n) and n.

Case 1. n is odd. By (2), there is uprime q satisfying p < q < 2p;
hence q 1 < n. Thus n eLin Comb(2, q), by Lemma 4, whereas
P(n) n Lin Comb (2, q) 0.

Case 2. n is even and square-free. Then n 2]cp and p >_ 5. Let q
be a prime such that p < q < 2p- 2. It follows thatn-- q > 1; letq:
be a prime divisor of n q. q cannot divide n because then q would also
divide q--hence would equal q. But as u prime divisor of n, q would
be _< p < q. Thus P(n) Lin Comb(q, q) 0, whereas obviously
n e Lin Comb(q, q).

Case 3. n 8or12. I)(8) J,(8) 3; 1)(12) J,(12) 5.
The result follows from (4).
By Lemma 5, these are the only cases which need be considered.
Applications of this theorem are made in [14] and in [16].
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