SPECTRA OF ALGEBRAS OF HOLOMORPHIC GERMS

BΥ

HORACIO PORTA AND LÁZARO RECHT

1. Introduction

If X is an analytic complex manifold, the space $\mathcal{O}(X)$ of all analytic functions defined on X can be given the locally convex topology defined by uniform convergence on compact sets (a thorough study of this topology can be found in The ordinary product of functions makes $\mathcal{O}(X)$ into a topological algebra [4]).and this structure has been exploited by Rossi (cf. [6]) in order to produce the envelope of holomorphy of X, when X is a Riemann Domain. If $K \subset X$ is a subset of X, the space H(K) of germs on K of holomorphic functions defined on neighborhoods of K can be identified with the inductive limit $H(K) = \operatorname{ind} \lim \mathfrak{O}(U)$ where $K \subset U \subset X$, U is open and if $U \subset V$, the mapping $\mathcal{O}(V) \to \mathcal{O}(U)$ is given by restriction to U of functions in $\mathcal{O}(V)$. Consequently, H(K) can also be given a locally convex topology, namely the inductive limit of the topologies in $\mathcal{O}(U)$ (cf. [4]). Thus, properties that are preserved under inductive limits are inherited by H(K) from the O(U). If K is compact, denote by C(K) the Banach algebra of all continuous functions on K under the norm $||f||_{\kappa} = \sup \{|f(x)|; x \in K\}$ and by A(K) the closure in C(K) of the set of germs in H(K). The canonical map $H(K) \to A(K)$ is obviously continuous and A(K) is also a Banach algebra. Therefore the spectrum $\mathfrak{M}(A(K))$ of A(K) is contained in the spectrum $\mathfrak{M}(H(K))$ of H(K). On the other hand, the evaluations at points of K are characters of A(K) and then we have $K \subset \mathfrak{M}(A(K)) \subset \mathfrak{M}(H(K))$. Rossi (cf. [5]) has shown that $K = \mathfrak{M}(H(K))$ if K is meromorphically convex in X. Our aim is to furnish a description of $\mathfrak{M}(H(K))$ in the particular case where X is a Riemann Domain (Prop. 3.5) and show that under suitable hypothesis, $\mathfrak{M}(H(K))$ can be identified with K, whence it will follow that $\mathfrak{M}(A(K)) = K$ Therefore Cor. 3.7 below generalizes Th. 2.12 in [5]. Moreover it is also. shown that if K is the closure of a domain D, then the "Nebenhülle" $\mathfrak{R}(D)$ of D (cf. [1]) can be injected in $\mathfrak{M}(H(K))$.

2. Notations

If X is a topological space, $Y \subset \subset X$ means that $Y \subset X$ and that the closure \overline{Y} of Y is compact. If A is any (complex) topological algebra with identity, the *spectrum* $\mathfrak{M}(A)$ of A is the set of all continuous homomorphisms of algebras (called *characters*) $\chi: A \to \mathbb{C}$ (\mathbb{C} is the complex field) that preserve the identities. $\mathfrak{M}(A)$ will be topologized by simple convergence on the elements of A. By a *Riemann domain* (see [3]) we shall understand a pair (X, φ) where

Received May 3, 1967.

X is an analytic complex manifold of dimension n and $\varphi : X \to \mathbb{C}^n$ is a holomorphic mapping such that (1) $\mathfrak{O}(X)$ separates points in X; (2) $\varphi : X \to \mathbb{C}^n$ is locally biholomorphic. If (X, φ) is a Riemann domain, $(E(X), \hat{\varphi})$ will denote its envelope of holomorphy ([3]). It is known (cf. [3]) that there is an isomorphism $f \to \hat{f}$ between $\mathfrak{O}(X)$ and $\mathfrak{O}(E(X))$ whose inverse is the mapping defined by restriction $g \to g|_X$, $g \in \mathfrak{O}(E(X))$. Also ([3], [6]), if (X, φ) is a Riemann domain, E(X) can be identified with the spectrum $\mathfrak{M}(\mathfrak{O}(X))$ of $\mathfrak{O}(X)$ as follows: $z \in E(X)$ corresponds to the character $f \to \hat{f}(z)$.

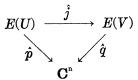
In general, we refer the reader to [3] for definitions and results in the theory of several complex variables.

We shall also use the notions of direct (= inductive) and inverse (= projective) limits in the categories of topological spaces and locally convex spaces (to be denoted by ind $\lim_{\alpha \in \Lambda} X_{\alpha}$ and proj $\lim_{\alpha \in \Lambda} X_{\alpha}$, where $\{X_{\alpha} ; \alpha \in \Lambda\}$ is a direct or inverse system, respectively). The reader is referred to *Les Éléments* of N. Bourbaki. Also, if f is a function defined near a point x of a topological space X, the germ of f at x will be denoted $\gamma_x(f)$. Finally, if F is a complex locally convex space, F' will denote its dual space, i.e., $F' = \{\Psi : F \to \mathbb{C}; \Psi \text{ is} \text{ linear, continuous}\}$

3. Spectra

All throughout this section we shall assume that (X, φ) is a Riemann domain of dimension n. Let $U \subset V$ be two open submanifolds of $X, j: U \to V$ the natural injection and $p: U \to \mathbb{C}^n$ and $q: V \to \mathbb{C}^n$ the restrictions of φ to Uand V. Denote by $J: \mathfrak{O}(V) \to \mathfrak{O}(U)$ the map $J(f) = f \circ j$. Clearly J is a continuous homorphism of algebras. Its transpose $J: \mathfrak{O}(U)' \to \mathfrak{O}(V)'$ preserves the multiplicative functionals and therefore induces a map $j: \mathfrak{M}(\mathfrak{O}(U)) \to \mathfrak{M}(\mathfrak{O}(V))$. Since $\mathfrak{M}(\mathfrak{O}(U)) = E(U)$ and $\mathfrak{M}(\mathfrak{O}(V)) =$ E(V), we have (cf. [2]):

3.1. LEMMA. If $(E(U), \hat{p})$ and $(E(V), \hat{q})$ are the envelopes of holomorphy of U and V, then the following diagram is commutative



and therefore \hat{j} is holomorphic (and in fact, locally biholomorphic). Moreover $\hat{j} = j$ on $U \subset E(U)$.

Remark. \hat{j} is not necessarily an injection; example: $V = X = \mathbf{C}^n$, U a domain with non-schlicht envelope of homolorphy.

If we assume furthermore that $U \subset \subset V$, then \overline{U} can be considered as a compact subset of E(V). Denote by $\Delta(U, V)$ the holomorphic hull of \overline{U} in

E(V), i.e.:

$$\Delta(U, V) = \{ z \in E(V); |f(z)| \leq ||f||_{\bar{\upsilon}}, \text{ for all } f \in O(E(V)) \}.$$

3.2. LEMMA. Assume that $U \subset \subset V$ and let A(U, V) be the closure in $C(\overline{U})$ of the algebra of restrictions to \overline{U} of the functions in O(V). Then A(U, V) is a Banach algebra whose spectrum $\mathfrak{M}(A(U, V))$ can be topologically identified with the holomorphic hull $\Delta(U, V)$ of \overline{U} in E(V).

Proof. The algebra of restrictions to \overline{U} of functions in $\mathcal{O}(V)$ coincides with the algebra of restrictions of functions in $\mathcal{O}(E(V))$, because $f|_{\overline{v}} = \hat{f}|_{\overline{v}}$ for every $f \in \mathcal{O}(V)$. Therefore, since E(V) is a Stein manifold, it follows from Theorem 2.3 in [5] that $\mathfrak{M}(A(U, V)) = \Delta(U, V)$, Q.E.D.

Consider now three open submanifolds U, V, W of X such that

 $U \subset \subset V \subset \subset W \subset \subset X.$

Let $k: V \to W$ be the natural injection.

3.3. LEMMA. If $\hat{k} : E(V) \to E(W)$ is the mapping induced by $k : V \to W$ (as in Lemma 3.1), then $\hat{k}(\Delta(U, V)) \subset \Delta(V, W)$.

Proof. If $h \in \Delta(U, V)$ is considered as a homomorphism $h : \mathfrak{O}(V) \to \mathbb{C}$ and $f \in \mathfrak{O}(E(W))$, we have

$$|[\hat{k}(h)](f)| = |h(f \circ k)| \le ||f \circ k||_{\bar{v}} = ||f||_{k(\bar{v})} \le ||f||_{\bar{v}}$$

and therefore $\hat{k}(h) \in \Delta(V, W)$, Q.E.D.

It is clear that the transpose ${}^{t}\gamma$ of $\gamma : A(V, W) \to A(U, V)$ defined as $\gamma(f) = f|_{\bar{v}}$ coincides with \hat{k} on $\mathfrak{M}(A(U, V)) = \Delta(U, V)$.

Suppose now that $K \subset X$ is a compact subset of X and choose a fundamental system of open neighborhoods $X \supset \bigcup U_1 \supset \bigcup U_2 \supset \bigcup \cdots$ of K.

3.4. LEMMA. There are topological algebraic isomorphisms (for each n):

ind $\lim A(U_{n+1}, U_n) = \inf \lim O(U_n) = H(K).$

Proof. It is easy to see that $\operatorname{ind} \lim \mathfrak{O}(U_n) = H(K)$ [4, Chap. I, §1]. Moreover the restriction mappings

$$A(U_{n+1}, U_n) \to \mathcal{O}(U_{n+1}), \qquad \mathcal{O}(U_n) \to A(U_{n+1}, U_n)$$

are certainly continuous. The lemma follows.

Let us observe that if $\{A_n, \psi_{n,m}\}$ is a direct system of topological algebras with homomorphisms $\psi_{n,m}: A_n \to A_m$ for $n \leq m$, and $\mathfrak{M}_n = \mathfrak{M}(A_n)$. Then the spectrum $\mathfrak{M} = \mathfrak{M}(A)$ of the inductive limit $A = \operatorname{ind} \lim A_n$ can be identified to the projective limit $\mathfrak{M} = \operatorname{proj} \lim \mathfrak{M}_n$ of the spaces \mathfrak{M}_n (with mappings $\eta_{n,m}: \mathfrak{M}_m \to \mathfrak{M}_n$ defined as the transposes of the $\psi_{n,m}$). The proof of this fact readily follows from the definitions. From this remark and Lemmas 3.2, 3.3 and 3.4 we conclude:

3.5. PROPOSITION. Let $K \subset X$ be a compact subset of a Riemann domain X and $X \supset \bigcup U_1 \supset \bigcup U_2 \supset \supset \cdots$ a fundamental system of neighborhoods of K. Denote by K_n the holomorphic hull of \overline{U}_{n+1} considered as a compact subset of the envelope of holomorphy $E(U_n)$ of U_n and let $\hat{j}_{n,m} : E(U_m) \to E(U_n)$ (for $n \leq m$) be the holomorphic mapping induced by the injection $j_{n,m} : U_n \to U_m$. Then $\hat{j}_{n,m}(K_m) \subset K_n$, and $\mathfrak{M}(H(K))$ can be naturally identified as a topological space with the projective limit proj $\lim_{n \to \infty} K_n$ of the compact spaces K_n (with the mappings $\hat{j}_{n,m}|_{K_m}$).

3.6. Proposition. $\mathfrak{M}(H(K)) = \mathfrak{M}(A(K)).$

Proof. Clearly (see §1) $\mathfrak{M}(A(K)) \subset \mathfrak{M}(H(K))$. So let $\varphi \in M(H(K))$ and $f \in H(K)$. We need to show that $|\varphi(f)| \leq ||f||_{\mathcal{K}}$. But if this inequality does not hold then $g = f - \varphi(f)$ has these contradictory properties:

(i) g is invertible in H(K)

(ii) $\varphi(g) = 0$.

Proposition 3.6 was suggested to us by the referee.

4. The "Nebenhülle"

The system $\{E(U_m), \hat{j}_{n,m}\}$ in Prop. 3.5 is a particular case of the following situation. Let $\{X_{\alpha}, \varphi_{\alpha,\beta}\}, \alpha, \beta \in \Lambda$ be an inverse system of topological spaces and assume that

(a) each X_{α} is a Riemann domain of dimension n (with projection denoted π for all α),

(b) for all $\alpha \leq \beta$, $\varphi_{\alpha,\beta} \colon X_{\beta} \to X_{\alpha}$ commutes with the projections (and is therefore a locally biholomorphic mapping)

One such system might be called an inverse system of Riemann Domains.

The universal property of inverse limits implies the existence of a projection π : proj lim $X_{\alpha} \rightarrow \mathbb{C}^{n}$.

To every open set $U \subset \mathbb{C}^n$ we can associate now the set F(U) of all families $\{h_{\alpha}\}_{\alpha \epsilon \Lambda}$ of holomorphic functions $h_{\alpha} : U \to X_{\alpha}$ that satisfy: if $\alpha \leq \beta$, then $\varphi_{\alpha,\beta}h_{\beta} = h_{\alpha}$. It is well known (see [2]) that F is a presheaf that generates an analytic sheaf, denoted \mathfrak{R} in the following. Let $w = \{z_{\alpha}\}_{\alpha \epsilon \Lambda}$ be an element of proj lim X_{α} and $z_0 \epsilon \mathbb{C}^n$ the point $z_0 = \pi(w)(=\pi(z_{\alpha}), \text{ all } \alpha)$. If $U \subset \mathbb{C}^n$ is open and $z_0 \epsilon U$, define $h_{\alpha} : U \to X_{\alpha}$ by $h_{\alpha}(z) = z_{\alpha}$. Clearly $\{h_{\alpha}\} \epsilon F(U)$ and therefore w determines an element $j(w) \epsilon \mathfrak{R}$ such that $\pi(j(w)) = z_0$, (namely the family of germs of the h_{α} at z_0). The mapping j: proj lim $X_{\alpha} \to \mathfrak{R}$ is continuous and commutes with projections. On the other hand, if $\gamma \epsilon \mathfrak{R}$, then there exist functions h_{α} defined on some neighborhood of $\pi(\gamma)$ with values in X_{α} such that γ is the family of germs of the h_{α} at $\pi(\gamma)$. The family $j'(\gamma)$ of all values $h_{\alpha}(\pi(\gamma)), \alpha \epsilon \Lambda$, is of course an element of proj lim X_{α} . It is

518

clear that $j': \mathfrak{N} \to \text{proj} \lim X_{\alpha}$ is continuous, and j'j is the identity on proj $\lim X_{\alpha}$. Moreover if $j'_{\alpha}: \mathfrak{N} \to X_{\alpha}$ is the composition of j' with the canonical mapping proj $\lim X_{\alpha} \to X_{\alpha}$, then j'_{α} is holomorphic and commutes with projections.

If $C \subset \text{proj} \lim X_{\alpha}$ is any non-empty set, the *intersection relative to* C of the Riemann domains X_{α} is defined to be the union of the connected components of \Re that intersect j(C) (cf. [2]). It is not hard to see that it is the inverse limit of the X_{α} in a suitable category.

In particular, if $D \subset \mathbb{C}^n$ is a bounded open set and U_{α} is the family of all open sets in \mathbb{C}^n that contain the closure \overline{D} of D, then the envelopes of homomorphy X_{α} of the U_{α} form an inverse system of Riemann domains (with the obvious mappings, see Lemma 3.1). The intersection $\mathfrak{N}(D)$ of the X_{α} relative to D is called (in [1]) the "Nebenhülle" of D. It can be proven [1] that it is enough to consider a fundamental system U_1, U_2, \cdots of neighborhoods of \overline{D} , which can of course be chosen to satisfy also $U_1 \supset \supset U_2 \supset \supset U_3 \supset \supset \cdots$ Therefore the situation is exactly the same as in §3 and it is very natural to compare $\mathfrak{M}(H(\overline{D}))$ with $\mathfrak{N}(D)$.

All throughout this section $D \subset \mathbb{C}^n$ will denote a fixed open bounded set, $\mathbb{C}^n \supset \bigcup U_1 \supset \bigcup U_2 \supset \supset \cdots$ a fundamental system of neighborhoods of the compact set \overline{D} , $\{E_n, \hat{j}_{n,m}\}$ the inverse system of the envelopes of holomorphy $E_n = E(U_n)$ and \mathfrak{R} the sheaf constructed as above with the E_n as data. It follows from the definition that $\mathfrak{N}(D)$ is an open set of \mathfrak{R} . The mappings j: proj lim $E_n \to \mathfrak{R}, j': \mathfrak{R} \to \operatorname{proj} \lim E_n$ and $j'_n: \mathfrak{R} \to E_n$ will have the same meaning as above. We want to prove that j' is one-to-one on N(D). For that, consider the set $V \subset \mathfrak{R}$ of all elements in \mathfrak{R} that are sequences $\{\gamma(s_n)\}$ of germs of *local sections* s_n of the Riemann domains E_n .

4.1. LEMMA. V is open and closed in \Re .

Proof. It is clear that V is open in \mathfrak{N} . Let us show that it is also closed. Suppose that $\gamma \in \mathfrak{N}$ and let $\{h_n\}, n = 1, 2, \cdots$ be a family of holomorphic functions $h_n: U \to E_n$ such that $\gamma = \{\gamma_z(h_n)\}$, where $z = \pi(\gamma)$. We can assume that U is an open policylinder. Now the set W of all sequences $\{\gamma_t(h_n)\}$ with $t \in U$ is an open neighborhood of γ . Therefore, if γ belongs to the closure of V, there exist a point $w \in U$, an open set $U' \subset \mathbb{C}^n$ and sections $s_n: U' \to E_n$ such that $\gamma_w(s_n) = \gamma_w(h_n)$. But this implies $s_n = h_n$ on some neighborhood of $w \in U$ and U being a policylinder it follows that h_n is a section of E_n on U. Therefore $\gamma \in V$ and V is closed.

4.2. COROLLARY. $\mathfrak{N}(D) \subset V$.

Proof. Since $j(D) \subset V$ and V, being open and closed, is a union of components of \Re , the inclusion $\Re(D) \subset V$ follows.

Remark. $\mathfrak{N}(D)$ is in fact a union of components of V (or \mathfrak{R}).

According to Lemma 3.4, there is a topological identification proj lim $E_n = \mathfrak{M}(H(\bar{D}))$ and therefore j' induces a map $j'' : \mathfrak{R} \to \mathfrak{M}(H(\bar{D}))$.

4.3. PROPOSITION. j'' is one-to-one on V.

Proof. Assume j''(v) = j''(v') where $v, v' \in V$. It follows that $\pi(v) = \pi j''(v) = \pi j''(v') = \pi(v')$. Denote $\pi(v) = \pi(v')$ by z. Now if s_n , s'_n are local sections of E_n such that $\{\gamma_z(s_n)\} = v, \{\gamma_z(s'_n)\} = v'$ it follows that $\{s_n(z)\} = j''(v) = j''(v') = \{s'_n(z)\}$ or $s_n(z) = s'_n(z)$ for all $n = 1, 2, \cdots$. But since s_n and s'_n are sections we can conclude that $\gamma_z(s_n) = \gamma_z(s'_n)$ and therefore v = v' as desired.

4.4. THEOREM. If $D \subset \mathbf{C}^n$ is open and bounded, there is a natural one-toone mapping $\mathfrak{N}(D) \to \mathfrak{M}(H(\overline{D}))$.

4.5. COROLLARY (cf. Rossi, [5, Th. 2.14]). If $D \subset \mathbb{C}^n$ is bounded and closed a necessary condition for \overline{D} to be the spectrum of $H(\overline{D})$ is that $D = \mathfrak{N}(D)$.

Remark. The condition $D = \Re(D)$ implies that D is a domain of holomorphy, but is in general stronger.

Under suitable conditions one can prove that $\mathfrak{N}(D) = V$ or that j''(V) is dense in $\mathfrak{M}(H(\overline{D}))$. Details will be given elsewhere.

References

- 1. H. BEHNKE AND P. THULLEN, Theorie der Funktionen mehrerer komplexer Veränderlichen, Eg. d. Math., vol. 3, Springer, Berlin, 1934.
- 2. H. CARTAN, Séminaire 1951-1952, École Normale Sup., Paris.
- 3. R. GUNNING AND H. ROSSI, Analytic functions of several complex variables, Prentice Hall, Englewood Cliffs, 1965.
- 4. A. MARTINEAU, Sur la topologie des espaces de fonctions holomorphes, Math. Ann., vol. 153 (1966), pp. 62–88.
- H. Rossi, Holomorphically convex sets in several complex variables, Ann. Math., vol. 74 (1961), pp. 470-493.
- On envelopes of holomorphy, Comm. Pure Appl. Math., vol. XVI (1963), pp. 9– 17.

UNIVERSITY OF ILLINOIS URBANA, ILLINOIS MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS