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0. Introduction

Let N be the additive semigroup of positive integers with the discrete
topology, rn (N) the space of bounded real-valued functions on N with the
usual sup norm, andm (N)* the conjugate Banach space of m (N). e m (N)
is a mean if ’ 1, and (’, f) _> 0 whenever f >_ 0. A mean is said to be
invariant if (’, f) (’, rf) for each f e m(N), where rf m(N) is defined
by (rf (n ) f (n -t- 1 ), n e N. The set of all invariant means on N is denoted
by M’. It is well known that M’ is non-empty, convex and weak* compact
(Day [2]).
The structure of M’ as a set is already known. There are various descrip-

tions of how to get the set of invariant means on re(N), e.g., Jerison [5],
and Raimi [8]. In 3 we study a geometrical property of the set M’. Namely,
we show that extreme points of the convex compact set M’ are insufficient in
the sense that there exists ’ e M’ such that ’ is not a countably convex com-
bination of extreme points of M’. This answers a question asked by R. G.
Douglas.
As is well known [10], N may be embedded densely into BAr, is Stone-Ceeh

eompaeifieaion, and m (N) and C (fiN), he space of real-valued continuous
functions of N, are isomorphic as Banaeh spaces. Any ,’ e M’, as a functional
on C (N), is represented, by the Ries Represengagion Theorem, as a measure.
In 1 and 2 these measures are studied, eonginuing work begun in [9]. In
particular, since extreme points of M’ are represented by ergodie measures on

N (relative to the homeomorphism of fin into N induced by he ransla-
ion on N), it is quie natural to ask whether he support of an ergodie measure
is a minimal seg (definigion 1.1). The answer turns out to be negative; this
is the main result of 2.

1. Invariant means and invariant measures

The continuous mapping n n -t- 1, n e N, of N into the compact space
/N has a unique continuous extension to/N. We will denote this extended
mapping by r. If ,;,’e m(N)*, then r corresponds to a Borel measure
on N. The correspondence is characterized by (’, f) fr] d,;,, where

f e m (N) and ] denotes its continuous extension to N. In the sequel, for
,p’e m(N)*, will always denote the corresponding measure. If ’e M’,
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then is a probability measure, i.e., is positive and (N) 1, and is
invariant in the sense that (r) (B) for each Borel set B c N. We
denote by M the set of invariant probability measures corresponding to M’.
It is easy to see that if e M then supp c fin \N . (For a measure ,
the support of is denoted by supp .
DEFINITION 1.1. A subset X of - is said to be invariant if rX X. A

set K . is said to be minimal if K is closed, non-empty, invariant, and
minimal with respect to these three properties.

It is an easy consequence of Zorn’s Lemma that each non-empty, closed
invariant set in contains a minimal set.

DEFINITION 1.2. The orbit of a point o e 2 is the set

o,
The orbit closure of 0 e is the closure of o (o) in 2 and we denote it by

Rudin [11] showed that for each 0 e AT, r ro if i j. Thus o(o) is an
infinite set and hence is not closed, since a closed infinite subset of 2 contains
2 points [10]. (Here c denotes the cardinality of the continuum.) If K
is a minimal set then K (o) for each 0 e K.

DEFINITION 1.3. (Raimi [8]) For each subset A c N we define the upper
and lower densities as follows"

(A) sup{(,x) ’ M’}

d_(A) inf {(’, xa) ’ eM’}.

Here xa denotes the characteristic function on N of the set A.
The following lemma has appeared in several different forms. For our

convenience, we quote the one in [8].

LEMMA 1.1. Given A N,

8(A) limsupsupmN (l/n) Card {A n {m,m + 1, ...,m + n 1}};

d_(A) liminfinfmN (l/n) Card {A n {m, m + 1, ..-, m + n 1}}.

The above lemma is, indeed, a simple consequence of the Krein-Milman
Theorem.
A set A c N is said to be relatively dense if there exists a p e N such that

for each n e N,
{n,n -4- 1, ,n A-p 1} nA 13.

DIITIO 1.4. A point e 2 is said to be almost periodic if for each
neighborhood U of o the set {n e N" ro e U} is relatively dense (c.f. Gott-
schalk-Hedlund [4]). The set of all almost periodic points is denoted by A.
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A point e is said to be r-discrete if o () is a discrete space in its sub-
space topology. The set of r-discrete points is designated by D.
A point e is sid to be strongly r-discrete it there exists a neighborhood

U of 0 such that rU n rmU 0 for m n. The set of strongly r-discrete
points is denoted by SD. Clearly, SD c D.
A subset A c N is said to be thin if A n rnA is a finite set for ech positive

integer n.

As usual, if A c N, we denote fl clan A n . fl is closed and open in
nd sets of form fl form topological basis for . It is also true that sets
of form fl, A N, are the only open nd closed subsets of _. fl is empty if
nd only if A is a finite set. (All of these facts are in [10].)

PROPOSITION 1.2. (1) If A is a thin set, then (A O.

(2) SD [J A a thin subset of N}.
(3) SD is dense in .
Proof. (1) Note that asetA Nisthinif and only iffi rfi 0

for each n e N. Let A be a thin set and let e M be given.

1 () > (t u u (i) + (i) +
but (fi) (rfl) Thus (fi) 0, but is an rbitrary element in
M, we conclude that (A) 0.

(2) Obvious.
(3) Let B be an arbitrary infinite subset of N. By induction, we con-

struct n infinite subset A /a, a, of B such that a,+ a, > n + 1.
But, then the set A is thin, indeed, Crd (A n rA) n. This sys that for
each non-empty clopen subset/ of there exists a non-empty clopen set
such that fl / nd such that A is a thin set. Combining this with (2)
nd the fact that clopen sets form a topological basis of 2, we conclude that
SD is dense in .
As in Raimi [9, p. 3], we set K cl [[J {supp e M}]. We have the

following characterization of the set K-gLEMMA 1 3. For e 2, o e if and only if whenever e we always have
3(A) >0.

KProof. Let o e and suppose e fl. Since fl is open, by the definition
of K, there exists e M such that fl n supp 0. By the definition of supp
we conclude that (fl) > 0, Id hence (A) > 0.

Conversely, if for ech clopen eighborhood fl_ of , 3(A) > 0, then there
exists a e M such that (fl) > 0. This implies that fl n supp
Thus e K.
COROLLARY 1.4. K n SD 0.

Proof. Apply Lemma 1.3 and Proposition 1.2.
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The following corollary is Theorem 2.7 of Raimi [9]. Our proof is easier
and completely different from his proof.

COaOLLARY 1.5. K is nowhere dense in

Proof. Follows from Corollary 1.4 and Proposition 1.2.

A point e is called a P-point of if it has the property that whenever
U} is a sequence of neighborhoods of o then 1=1 U. is again a neighborhood

of . We denote by P the set of all P-points of

PROPOSITION 1.6. P SD.
Proof. Let o e P. For each n, choose a neighborhood U of such that

r’o U. (We can do this since r0 .) Then V0 =1 U is a neighbor-
hood of o and r Vo for n e N. Since ro, n 1, 2, are also P-points,
by induction, we ca find V, i 0, 1, 2, ..., such that

(1) V is a neighborhood of r,i 0, 1,2, ....
(2) VV. 0ifij.
(3) For each i, r Vif n i.

Let V Vor-V’" ar-Vn.... Then Vis
aud it can be directly checked that if n m, then rV n rV 0. Thus
o SD.
COROLLARY 1.7. ([9, Theorem 2.11]) P

Proof. Follows from Corollary 1.4 and Proposition 1.6.

Although the set K is invariant and nowhere dense, it is very scattered s
the following proposition shows. In particular, we give a negative answer
to the following natural question" Does there exist any e M such that
supp K*? We need the following characterization of sets with upper
density 1 which is contained in Mitchell [6, p. 258].

LEMM 1.8. Let A N. The following are equivalent.

(1) 3(A)- 1.
(2) There exists M such that supp q c fl.
(3) For each n N, there exists m N such that

{m, m - 1, ..., m-{-n- 1} c A.

Mitchell obtained this as a corollary of a theorem concerning general ame-
nable semigroups. However, it is worth mentioning that we can prove this
lemma by applying Lemma 1.1.

PROPOSiTiON 1.9. For each A N with (A 1 there exist c many dis-
joint clopen subsets . such that (B 1, d (B O, and (B A rB 0
for each e N.
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Proof. Assume that 3 (A) 1. Choose/cl e A and set A1 {/1}. Assume
that we have constructed A1, ..., A such that

(1) A {/,/c, - 1, ...,/c + i 1}

for some/teeN and AicA(i 1,2, ...,n);

(2) k > /c;_ - 2i 1, i 2, ..., n.

Now3(A) l implies that 3(A\{1, 2, ..., /c -t- 2n}) 1. Applying
Lemma 1.8 to the set A \ {1, 2, ,/c -t- 2n}, we find a kn+ e N such that

{/n+, kn - 1, ...,/cn+ + n} c A \ {1, 2, ...,/c -t- 2n}.

It is clear that A1, ..., A, A+ also satisfy (1) and (2) for n - 1. By
induction we construct a sequence of subsets A of A such that (1) and (2)
are true for all n e N. If I is an infinite subset of N and B U, A, then
it is not hard to see that (B) 1, d_ (B) 0, and 3 (B A rB) 0, by apply-
ing Lemma 1.1.
Now let 0 be a one-one mapping of N onto the set of rational numbers.

For each irrational number r, choose a fixed sequence of increasing rationals,
s (r), converging to r. Note that if r and r are two different irrational num-
bers then s (r) s (r2) for all large n. Set

I(r) {O-(s,(r))’n 1,2, ...}

for each irrational r, I (r) is an infinite subset of N and if r, r2 then
I(r,) n I(r) is finite. Let E be the set of irrationals. For r e E, set
A (r) U<) A. Then A (rl) ^n A (r)^ 0, if r r. Since each of the
set A (r) ^ is of the form B mentioned earlier, A (r) ^ r e E} is the family of
clopen sets we wanted. Note that the last step of our proof is similar to
[3, Problem 6Q].

COOLLAnY 1.10. If 3(A 1 and , n 1, 2, ..., is a sequence of
probability measures, then

cl [U:= supp ] :b K n

Proof. Let A (r)^, r e E, be a family of mutually disjoint clopen sets con-
structed as in Proposition 1.9, for the set A. For ech n, supp , intersects
at most countably many A (r)^. Thus there is an A (r0) such that

A (r0) ^ supp q 0 for 11 n.

Now A (r0) ^ is open and

A(r0)^K* and A(r0)^cl[U=supp] 0.

The results follows.
The above corollary says that, in some sense, the set K is very scattered.
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2. The existence of an ergodic measure with non-minimal support
As usual, measure e M is sid to be ergodic if whenever Borel set

B stisfying(BAr"B) 0forallneN, then(B) 1or 0. It
is well known [4, Theorem 2] that e M is n ergodic measure if-and only if
is an extreme point of M. The support of an invarint measure is closed
and invariunt. If, in addition is ergodic, then supp cannot be divided
into two measure theoretically non-trivial sets. On the other hand, it follows
easily from the Markov Fixed Point Theorem and the Krein-Milman Theorem,
that for euch nimal set K, there exists ergodic such that supp K.
With these facts, one is quite natural to conjecture that the support of each
ergodic measure is miMmal. The min purpose of this section is to show that
the conjecture is not true. We ll also show that cl A K, i.e., that the
almost periodic points of are not sufficient to generate all support sets for
members of M.

Notation. If e fiN, 11 denote the element in m(N)* defined by
(, f) ](), where f e m (N), and ] is the continuous extension of f to N.

If K is subset of vector space, ex K denotes the set of all extreme points
of K.
Suppose B N and k 1. B is called a k-chain if whenever p and q are

two consecutive numbers of B, [q p] k. (Thus 1-chain is a set of
consecutive numbers of N.) A 1-chain ll be called connected. Clearly, B

0=0 rB is connected. We knowis a k-chain, alternatively, if and only if -(Lemma 1.8) 3 (A) 1 if and only if A contains connected subsets of un-
bounded length. An easy consequence of this result is the follong

LEMMA 2.1. Let A be a subset of N and a positive integer. T

(=0 rA) 1

if and only if A contains k-chains of unbounded length.
Note that every k-chain in a set A N is contained in a maAmal k-chain,

and so A is partitioned into k-components A, A, ..-, which are sjoint
maximal k-chains.

If A is u subset of N and 3 (A) > 0, one ght think of extending Mitchell’s
result to say that there exists some > 0 such that

3(A u rAu u -IA) 1.

But this is not true:

PROeOSTON 2.2. There exists a set Ao N such that

(pl) 3(A0urA0u u r-*Ao) < 1, torteN,
(p2) (A0) > 0,

are satisfied.

Proof. We shall construct such a set A0 by induction. Let A 1, 2, 3}.
Assume that we have constructed A, A, A,. Set



MINIMAL SETS AND EIGODIC MEASURES FOR N\N 783

a Card A,,

Then define,

b, Card (ll, 2, ..., sup A} \As).

An+l A, u [a, + b, -t- n -t- A,J u [2a - 2b -t- 2n -And, finally, set
Ao AtuA:u....

A0 satisfies (pl). Let/c e N and let B1, B2, be the/- components of A0.
By the construction of the set A0, it is obvious that Card (Bi) ak,
i 1, 2, .... Thus, by Lemma 2.1,

3(A0 u rA0 u u rk--1A0) < 1.

A satisfies (p2).
tion"

It is easy to see that the a,’s satisfy the following equa-

an+ 3 a, n 1, 2, ....
But a 3, hence a, 3". The b,’s satisfy the following equation:

b,+l 3b, -+- 2n, b O.

Thus b, 1/2 (3"+1 3) n. Let ’ be a weak* limiting point of the se-

2(.) + + + (3"+ 1/2 (3"-- 3) (n- 1))- + 1/2 (3- ) (n )

n- 1,2, ..-.

It is directly calculated that ’ e M’. Now note that the numerator in (*) is

i’ - 2’ + + (a, + b,)’

and that exactly a, of these numbers lie in A0. Thus

3(,x0) lim,3,+ (3"- 3) (n- 1) 5
Thus 3(A0) > 0.

Recall that A is the set of almost periodic points of (Definitioa 1.4)
and K is the set of e such that if e then 3 (A) > 0 (Lemma 1.3).

PROPOSITION 2.3. cl A K.
Proof. If e A and A N such that e , thea {n r" e } is relatively

dense. Let ’ be wek* litig poiat of {’, (’ + (r)’)/2, }; rhea
3(A) (’,x) > 0. ThusAK. Kisclosed,henceclACK. To
prove they ure not equM, let A0 c N satisfying (pl) and (p2) of Proposition
2.2. We assert

(1) Ano 0,
(2) Kno0.

quence
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Since/T_0 is open, (1) implies cl A n fl-0 0. Thus if (1) and (2) are true
then cl A c K.
Assume that (1) is false a.cl let e n -0 then by the definition of almost

periodic point, In rn 0} is relatively dense in N. This equivalent to the
existence of ] e N such that the orbit

o () 0 u 0 u u W0.
But 0 u r0 u u r-l0 is closed, hence

(CO) 0 U 7"0 U U fk--lo (Ao u rAo o u ’*-IAo) ^.

Thus (Ao u rAo u u :Ao) contains a closed invarint set; hence

(Ao u u -Ao) 1,

denying (pl). Thus/o n A 0.
(2) is true. By (p2), c (Ao) > 0, hence Ao n K 0. Indeed, if A is any

subset of N such that 3 (A) > 0, then there exists q’ e M’ such that (’, x) > 0,
i.e., q (fl_) > 0. Because A is open some point co e A is in the support of .
Hence o e K*.
To prove the next proposition, we need n essentiully known result.

LEMMA 2.4. A [ e is contained is some minimal set}.

Proof. implies that o is contained in some minimal set is proved
implicitly in Rudin [11, Theorem 3]. The converse statement is proved by
Gottschalk and Hedlund [4, p. 32].

PROPOSITioN 2.5. There exists an ergodic measure with non-minimal support.

Proof. Let A0 be a set satisfying (pl) and (p2). Since c (A0) > 0, there
exists e e M such that (0) > 0; hence there exists an ergodic measure k
such that k(0) > 0. Then/T_0 supp k 0. Thus by Lemma 2.4, supp
contains a point which is contained in no minimal set and is therefore not mini-
mal.

By a similar argument, we have

PoPosoN 2.6. The closed convex hull of invariant measures with minimal
support is properly contained in M.

3. Countably convex combinations of ergodic measures

Let {c,}: be sequence of non-negative rel numbers such that
7’= c 1 and let {}= be a sequence of probability measures on .. It
is easy to see that --c,/ 1, 2, , is a Cauchy sequence with respect

kto the total variation norm. Thus =c converges in norm to a Borel
measure on 2. We will denote this measure by=ce and call it a count-
ably convex combination of {n} (with coefficients {c} ). Note that the sum-
mation is absolute in the sense that for each permutation 7 of N, we have

n---1 Cr(n) r(n) ’n=l Cn n
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If all the 9’s are in M, then since M is weak* closed and convex, we see that
E n-----1 Cn n 6. M.
We will denote the set of all countbly convex combinations of a set X by

cco (X), whenever it is defined.
Since M is convex and weak* compact, by a combination o the Krein-

Milman Theorem nd the Riesz Representatioa Theorem, each e M is
represented by a probability mesure defined ou the weak* compact set
cl (ex M) in the weak* sense, that is to say that for ech] e C (), we hve

f
l(exM)

(Phelps [7, Proposition 1.2]).
It is then quite natural to ask whether we can improve the above result to

show that each e M is represented by a discrete measure on cl (ex M).
(A measure is said to be discrete if it is concentrated on a countable set.)
R. G. Douglas asked whether each can be represented by a discrete measure
on ex M itself. The answer to our question (and hence to Douglas’ weaker
question) turns out to be negative. Note that e M can be represented by
a discrete measure on cl (ex M) if and only if e cco (cl (ex M) ).

DEFINITION 3.1. A subset A of N is said to be nearly invariant if
(A A rnA 0 for each n e N.

LEMMA 3.1. If e cl (ex M) and A is nearly invariant then supp fi_ or
supp (N \ A )^.

Proof. Let A be nearly invariant. Then for each e M, (fl_ A r 0
for all n e N. If, in addition, e ex M, then is an ergodic measure, hence
(fi_) lor((N\A)^) 1. Butand (N\A)^ are closed sets. Thus
suppcflorsupp (N\A)^.

Now let be an arbitrary element in cl (ex M). Choose a net , in ex M
such that , - q in weak* topology. Thus , (fl) converges to q (fl), since
x is continuous. But , (fl_) either equals 1 or equals 0 for each a. Thus
(I) lor0.

Notation. For each w e fiN, the set of cluster points of the net,

(1/n)(w q (r0) +. q- (Tn--i0)t), T 1, 2,’’",

will be denoted by Q. It is known and easily calculated, that Q’ 0 and
Q c M’. As usual, the set of measures corresponding to Q’ will be denoted
by Q.

PIOeOSITION 3.2. Q1 fl cco (cl (ex M) 0

Proof. Given m N, set



786 CHING CHOU

N {i} o{m-[- 2i- 1, m + 2i}

o.-. o[(m/2)(n- 1)n + (i- 1)n - 1,-.-,

(m/2) (n 1)n - in}
..., i= 1, 2, ,m.

Note that

(1) [J= N N, nd hence [J .
It is esily clculted that the Cesro mesa of the sequence x equals 1/m

for ech 1 <_ i _< m. This implies that (by the definition of the set Q’)
(2) for ech ’ Q, nd for ech i N, i _< m, we hve (’, x) 1/m.

Now note that for ech j e N nd ech i <_ m, N\rN is of the form

FoAoA, o

where F is finite set nd for n e N,
A, {/c,,/, + 1, ,/, zTj- 1}

with/c,+ > /c, -t- j 1 nd/,+ /c, --+ s n - . Using Lemm 1.1,
we conclude that 3(N\rN) 0 for 1 _< i _< m nd j e N. Similarly,
(rN\N) 0 for 1 _< i _< m nd j e N. Thus

(3) for ech 1 _< i __< m, N is nearly inwrint.

Now to prove the proposition, suppose that there were

e q cco (cl (ex M) ),

sy, ".:= c ,, with :_ c 1, c >_ 0 nd, cl (ex M). Fix n e N.
By (1), supp 2 0 for some i _< m. By Lemm 3.1 nd (3) bove,
suppl,. Hence by (2), 1/m () >_ c,q,(]) c,. Butmis

pre-fixed constant, which is independent of n. Thus we hve c, 0.
Again, n is rbitrry, i.e., c, 0 for ll n e N, in other words, 0. This is

contradiction.
A modification of the proof of Proposition 3.2 will led us to the following,

PROPOSITION 3.4. If o e D (Definition 1.4), then

Q cco (cl (ex M) 0.

DProof. Let o e nd let m e N be given. Set

cl{r’nN}, i 1, 2, m,

where N is as in the proof of Proposition 3.2. Since o () is discrete in the
subspace topology, we can construct by induction a disjoint sequence of sub-
sets A, n 1, 2, of N such that r e. Define f e m (N) us follows"



MINIMAL SETS AND ERGODIC MEASURES FOR N\N 787

f(1) i if leU{A,,’neN}, i 1,2,...,m;

f(1) 0 if Ic U {A" neN}.
Denote by ], the continuous extension of f to N. Then if n e N, we have
](r) i. This implies

(1) ink ifi .
Since the sets re closed nd mutually disjoint, we cn find m mutually

disjoint clopea sets such that for ll i. Now, since the Cesro
mean of x hs vlue l/m, nd since x is continuous on N, if e Q, we
hve () l/re. Now note that support of 6(). It follows esily
that

(2) if e Q, then () l/m, i 1, 2, m.

Again since o (w) is discrete, n elementary rgument tells us that

cl {r%" j e N,rN,} u cl {r j e r N,N,}.
Thus

(3) (iArnft) 0, for eachCeM, neN, andi_< m.

But since the collection {} can be separated by the clopea set 17, by an
argument similar to Lemma 3.1, we see that if e el (exM), and supp

(), then () 1 or 0.

Now assume that

’:=1 ceq n cco (cl (ex M) ).

We may assume that supp c 5 (0). Then using the facts we developed
above, it follows as in Proposition 3.2 that 0, a contradiction.

Remarks. (1) Let Q (J {Q" e 2}. Jerisor [5] showed that M c- Q
(= the closed convex hull of Q). A look at his proof shows that it is not hard
to see that we can extend it to say that

M c- (U {Q" eg’}).

But by Proposition 2.6, M c--g (U {Q" 0 e A’} ).
Jerison asked whether the set Q is closed. By the Krein-5![ilman Theorem,

if the set Q is closed then all the extreme points of M are contained in Q.
Thus to show that Q is not closed it would be more than sufficient to show that
Q doesn’t contain any ergodic measure. We have already shown that if

D"e then Q contains no ergodic measure (Proposition 3.3). But for the
general case it seems very hard to prove, perhaps not true. However, by
Proposition 2.5, to show that Q is not closed we need only to show that if

A then Q contains no ergodic measures. It appears to us that we could
refine Theorem 6 of Rudin [11] to get this result.
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(2) Nearly invariant sets are insufficient in the following sense. There
exists a set A such that d (A) 1, d_ (A) 0 but A cannot be written either as

(i) A A t A, A nearly invariant and 3 (A) < 1, or as
(ii) A A\A., A nearly invariant and 3 (A) < 1.

Indeed, let e e exM such that supp e is not minimal. Choose e supp e A.
(Such an o exists since the closed invariant set supp e contains a minimal set
and points in minimal sets are almost periodic. Since supp e is not minimal
there exists 0 e supp \5 (). Now we can find a subset A N such that
5 () fi, fl and I avoids 5 (), where is an almost periodic point not
in 5 (o). (It follows from Proposition 1.9 that there exist at least c minimal
sets.) Since fl contains the closed invariant set 5 (), 3 (A) 1. On the
other hand, since .l 5 (0) 0, d_ (A) 0. We claim the set A cannot have
the form (i) or (ii). If we can write A AuA. as in (i), then since
3 (A.) < 1, some r I, for if o () fl. then 3 (A) 1. Thus some
r e. Now A is nearly invariant and I1 fl supp e 0 we must have
supp I (Lemma 3.1). This is a contradiction, since I, but

e supp e. Similarly, we can show that (ii) is impossible.
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