MINIMAL SETS AND ERGODIC MEASURES FOR SN\N

BY

Cuing Cuou!

0. Introduction

Let N be the additive semigroup of positive integers with the discrete
topology, m (N) the space of bounded real-valued functions on N with the
usual sup norm, and m (N )* the conjugate Banach spaceof m (N). o em (N)*
isameanif ||¢'|| = 1, and (¢',f) > 0 whenever f > 0. A meanis said to be
invariant if (¢, f) = (¢, 7f) for each fem (N ), where 7f e m(N) is defined
by (=f)(n) = f(n + 1),ne N. The set of all invariant means on N is denoted
by M’. Tt is well known that M’ is non-empty, convex and weak™® compact
(Day [2]).

The structure of M’ as a set is already known. There are various descrip-
tions of how to get the set of invariant means on m(N ), e.g., Jerison [5],
and Raimi [8]. In §3 we study a geometrical property of the set M/’. Namely,
we show that extreme points of the convex compact set M’ are insufficient in
the sense that there exists ¢’ € M’ such that ¢’ is not a ecountably convex com-
bination of extreme points of M’. This answers a question asked by R. G.
Douglas.

As is well known [10], N may be embedded densely into 8N, its Stone-Cech
compactification, and m (N) and C (BN ), the space of real-valued continuous
functions of BN, are isomorphic as Banach spaces. Any ¢’ ¢ M’, as a functional
on C (BN ), is represented, by the Riesz Representation Theorem, as a measure.
In §1 and §2 these measures are studied, continuing work begun in [9]. In
particular, since extreme points of M/’ are represented by ergodic measures on
BN (relative to the homeomorphism of BN into BN induced by the transla-
tion on N), it is quite natural to ask whether the support of an ergodic measure
is a minimal set (definition 1.1). The answer turns out to be negative; this
is the main result of §2.

1. Invariant means and invariant measures

The continuous mapping n — n + 1, ne¢ N, of N into the compact space
BN has a unique continuous extension to BN. We will denote this extended
mapping by 7. If ¢’ em(N)*, then ¢’ corresponds to a Borel measure ¢
on BN. The correspondence is characterized by (¢, f) = f sx f do , where
fem(N) and f denotes its continuous extension to BN. In the sequel, for
¢ em(N)* o will always denote the corresponding measure. If ¢’ e M,
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then ¢ is a probability measure, i.e., ¢ is positive and ¢ (BN) = 1, and ¢ is
invariant in the sense that ¢ (78) = ¢(B) for each Borel set B < BN. We
denote by M the set of invariant probability measures corresponding to M’.
It is easy to see that if ¢ e M then supp e € BN\ N = N. (For a measure y,
the support of ¥ is denoted by supp ¢.)

Derinrrion 1.1, A subset X of N is said to be invariant if 7X < X. A
set K N is said to be minimal if K is closed, non-empty, invariant, and
minimal with respect to these three properties.

It is an easy consequence of Zorn’s Lemma that each non-empty, closed
invariant set in N contains a minimal set.

DeriniTION 1.2. The orbit of a point w e N is the set
0(w) = {t'w:4=0,1,2, «+}.

The orbit closure of w ¢ N is the closure of 0(w) in N and we denote it by
o(w).

Rudin [11] showed that for each w ¢ N, 7% # 7w if ¢ # j. Thus o(w) is an
infinite set and hence is not closed, since a closed infinite subset of N contains
2° points [10]. (Here ¢ denotes the cardinality of the continuum.) If K
is a minimal set then K = 6(w) for each w ¢ K.

Derinrrion 1.3. (Raimi [8]) For each subset A € N we define the upper
and lower densities as follows:

d(A) = sup { (¢, x4) : ¢ e M'};
d(A) = inf {(¢', xa) : ¢" e M'}.
Here x4 denotes the characteristic function on N of the set 4.

The following lemma has appeared in several different forms. For our
convenience, we quote the one in [8].

Lemma 1.1. Giwen A C N,
d(4) = lim, sup supmey (1/n) Card {An{m,m + 1, ---, m + n — 1}};
d(4) = lim, inf inf,ey (1/n) Card {A n {m, m + 1, ---, m + n — 1}}.
The above lemma is, indeed, a simple consequence of the Krein-Milman
Theorem.

A set A C N is said to be relatively dense if there exists a p ¢ N such that
for eachn e N,

fm,n+1,--,n+p—1nd =g

DEerFINITION 1.4. A point we N is said to be almost periodic if for each
neighborhood U of w the set {n e N : 7"w e U} is relatively dense (c.f. Gott-
schalk-Hedlund [4]). The set of all almost periodic points is denoted by A".
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A point w ¢ N is said to be r-discrete if o(w) is a discrete space in its sub-
space topology. The set of r-discrete points is designated by D"

A point w e V is said to be strongly r-discrete if there exists a neighborhood
U of w such that 7"U n 7"U = @ for m ¢ n. The set of strongly 7-discrete
points is denoted by SD’. Clearly, SD™ < D".

A subset A C N is said to be thin if A n 7”4 is a finite set for each positive
integer n.

As usual, if A © N, we denote A = clgy A n N. A is closed and open in N
and sets of form A form a topological basis for N. It is also true that sets
of form A, A C N, are the only open and closed subsets of N. 4 is empty if
and only if A is a finite set. (All of these facts are in [10].)

ProrosiTION 1.2. (1) If A is a thin set, then d(A) = 0.

(2) SD" = U{A : A athin subset of N}.
(3) 8D 1s dense in N.

Proof. (1) Note that a set A © N is thin if and only if A n "4 = @
for each ne N. Let A be a thin set and let ¢ € I/ be given.

l=¢@)>¢e@urdu ) =0@) +o@d)+ -

bute(A) = ¢(rA) = ---. Thuse(A) = 0, but ¢ is an arbitrary element in
M, we conclude that d(4) = 0.
(2) Obvious.

(8) Let B be an arbitrary infinite subset of N. By induction, we con-
struct an infinite subset A = {a, az, - - -} of B such that an41 — an > n + L.
But, then the set A is thin, indeed, Card (4 n 7"4) < n. This says that for
each non-empty clopen subset B of N there exists a non-empty clopen set 4
such that A < B and such that 4 is a thin set. Combining this with (2)
and the fact that clopen sets form a topological basis of N, we conclude that
SD" is dense in N.

As in Raimi [9, p. 3], we set K" = cl [U {supp ¢ : ¢ ¢ M}]. We have the
following characterization of the set K':

LemMa 1.3. For we N, w e K™ if and only if whenever w ¢ A we always have
d(A) > 0.

Proof. Let we K™ and suppose we A. Since A is open, by the definition
of K7, there exists ¢ ¢ M such that A nsupp ¢ > @. By the definition of supp ¢,
we conclude that ¢ (A4) > 0, and hence d(4) > 0.

Conversely, if for each clopen neighborhood A of w, d(4) > 0, then there
exists a ¢ e M such that ¢(A) > 0. This implies that A n supp ¢ # 6.
Thus we K.

CoroLrARY 14. K 'n SD™ = §.
Proof. Apply Lemma 1.3 and Proposition 1.2.
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The following corollary is Theorem 2.7 of Raimi [9]. Our proof is easier
and completely different from his proof.

CoroLLARY 1.5. K is nowhere dense in N.
Proof. Follows from Corollary 1.4 and Proposition 1.2.

A point w e N is called a P-point of NV if it has the property that whenever
{U,} is a sequence of neighborhoods of w then N5_; U, is again a neighborhood
of w. We denote by P the set of all P-points of N.

ProrposrTiON 1.6. P C SD".

Proof. Let we P. For each n, choose a neighborhood U, of v such that
"we¢ U,. (Wecando thissincer"w # w.) Then Vo= N5 U,is a neighbor-
hood of w and 7"w ¢ Vo forn e N. Since 7w, n = 1,2, - -+, are also P-points,
by induction, we can find V;,7 = 0, 1, 2, - - - , such that

(1) V;is a neighborhood of 7w, s = 0,1, 2, --- .
2) VinV;=@if ¢ == j.
(3) TForeach, r"we¢ Viif n £ 4.

Let V.= Vons ' Vin---n7 "Van---. Then V is a neighborhood of w
and it can be directly checked that if n # m, then 7"V n "V = @. Thus
weSD".

CororLrLARY 1.7. ([9, Theorem 2.11]) Pn K" = §.
Proof. Follows from Corollary 1.4 and Proposition 1.6.

Although the set K’ is invariant and nowhere dense, it is very scattered as
the following proposition shows. In particular, we give a negative answer
to the following natural question: Does there exist any ¢ e M such that
supp ¢ = K'? We need the following characterization of sets with upper
density 1 which is contained in Mitchell [6, p. 258].

Levmma 1.8. Let A € N. The following are equivalent.

1) d) =1. R
(2) There extvsts ¢ e M such that supp ¢ C A.
(8) For each neN, there exists m e N such that

fm,m-+1,---,m+n— 1} C A.

Mitchell obtained this as a corollary of a theorem concerning general ame-
nable semigroups. However, it is worth mentioning that we can prove this
lemma by applying Lemma 1.1.

Prorosrrion 1.9.  For each A C N with d(A) = 1 there exist ¢ many dis-
joint clopen subsets B < A such that d(B) = 1,d(B) = 0,and d(BA*B) = 0
for each ke N.
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Proof. Assumethatd(A) = 1. Choosek; ¢ A and set Ay = {k}. Assume
that we have constructed 4;, ---, 4, such that

1) A;={ki,ki+ 1, -,k + 17— 1}
for some k;e N and A, C A@Z=1,2, ---,n);
(2) ki>ki_1+2'i-—1, i=2,-~,n.

Now d(A) = 1 implies that d(4\ {1, 2, -+, k. + 2n}) = 1. Applying
Lemma 1.8 to the set A\ {1, 2, ---, k. + 2n}, we find a k.41 € N such that

{kn+17kn~ll+ ]-) "'7kn+1+n} CA\{1)2’ ""kn+2n}'

It is clear that Ay, -+, 4., Ana also satisfy (1) and (2) forn + 1. By
induction we construct a sequence of subsets A; of 4 such that (1) and (2)
are true for all n e N. If I is an infinite subset of N and B = U, A4;, then
it is not hard to see that d(B) = 1, d(B) = 0, and d (B A 7*B) = 0, by apply-
ing Lemma 1.1.

Now let 8 be a one-one mapping of N onto the set of rational numbers.
For each irrational number r, choose a fixed sequence of increasing rationals,
8, (r), converging to r. Note that if ; and r, are two different irrational num-
bers then s, (r1) # s, (r2) for all large n. Set

I(’I’) = {o_l(sn(r)) tn =12 "'}

for each irrational r, I(r) is an infinite subset of N and if r, # r, then
I(ry) n I(r,) is finite. Let E be the set of irrationals. For r ¢ E, set
A@r) = Uiy A;. Then A (r1) “n A ()" = @,if 1 £ r,. Since each of the
set A (r)" is of the form B mentioned earlier, {4 (r)* : r ¢ E} is the family of
clopen sets we wanted. Note that the last step of our proof is similar to
[3, Problem 6Q].

CoroLLARY 1.10. Ifd(A) = land ¢,, n = 1, 2, ---, is a sequence of
probability measures, then

¢l [Un-1supp ¢,] D K n A.

Proof. Let A (r)*, r ¢ E, be a family of mutually disjoint clopen sets con-
structed as in Proposition 1.9, for the set A. For each n, supp ¢. intersects
at most countably many 4 (r)*. Thus there is an A (r,) such that

A (r)" 0 supp ¢ = 0 for all n.
Now A (r0)” is open and
A@)*"nK # ¢ and A(r)" necl [Unaisupp ¢, = 0.

The results follows.
The above corollary says that, in some sense, the set K’ is very scattered.
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2. The existence of an ergodic measure with non-minimal support

As usual, a measure ¢ e M is said to be ergodic if whenever a Borel set
B c N satisfying ¢ (BA7"B) = 0 for all ne N, then ¢(B) = 1or = 0. It
is well known [4, Theorem 2] that ¢ € M is an ergodic measure if and only if ¢
is an extreme point of M. The support of an invariant measure ¢ is closed
and invariant. If, in addition ¢ is ergodic, then supp ¢ cannot be divided
into two measure theoretically non-trivial sets. On the other hand, it follows
easily from the Markov Fixed Point Theorem and the Krein-Milman Theorem,
that for each minimal set K, there exists ergodic ¢ such that supp ¢ = K.
With these facts, one is quite natural to conjecture that the support of each
ergodic measure is minimal. The main purpose of this section is to show that
the conjecture is not true. We will also show that el A"C« K, i.e., that the
almost periodic points of N are not sufficient to generate all support sets for
members of 1.

Notation. If weBN, o will denote the element in m (N)* defined by
(@', f) = f(w), where fem (N ), and f is the continuous extension of f to SN.

If K is a subset of a vector space, ex K denotes the set of all extreme points
of K.

Suppose B N and k > 1. B is called a k-chain if whenever p and ¢ are
two consecutive numbers of B, |¢ — p| < k. (Thus a 1-chain is a set of
consecutive numbers of N.) A 1-chain will be called connected. Clearly, B
is a k-chain, alternatively, if and only if U=j+’B is connected. We know
(Lemma 1.8) d(4) = 1 if and only if A contains connected subsets of un-
bounded length. An easy consequence of this result is the following

LeEmma 2.1. Lel A be a subset of N and k a positive integer. Then
dUZi74) = 1
if and only if A contains k-chains of unbounded length.
Note that every k-chain in a set A C N is contained in a maximal k-chain,
and so A is partitioned into k-components Ay, 4,, ---, which are disjoint
mazximal k-chains.

If A is a subset of N and d (4 ) > 0, one might think of extending Mitchell’s
result to say that there exists some k > 0 such that

d(AutAdu---ur4) = 1.
But this is not true:
ProrosiTioNn 2.2. There exists a set Ay < N such that

(1) d(4dourdou --- u ™ 40) < 1, for keN,
(P2) d(4o) > 0,
are satisfied.

Proof. We shall construct such a set Ao by induction. Let 4, = {1, 2, 3}.
Assume that we have constructed 4,, 4z, -+-, 4.. Set
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a, = Card 4,, b, = Card ({1,2, -+, sup 4.} \ 4..).
Then define,
A,y = Apufan + by + n + A,] u [2a, + 2b, + 20 + A4.].

And, finally, set
AO = A1 U Az U

Agsatisfies (p1). Let ke N and let By, B,, - - - be the k- components of 4, .
By the construction of the set Ay, it is obvious that Card (B;) = a,
; = 1,2, ---. Thus, by Lemma 2.1,

J(Ao UTAo u---u Tk‘—le) < 1.

Ao satisfies (p2). It is easy to see that the a,’s satisfy the following equa-
tion:
A1 = 3+Cy, n=12 ---.

But a; = 3, hence a, = 3". The b,’s satisfy the following equation:
bnyr = 3b, + 2n, by = 0.

Thus b,yn = 23" — 3) — n. Let ¢’ be a weak™ limiting point of the se-

quence

*) U+ 2 + - +(3 +3@ =3 —(-1)
F+3@—3)—(—-1

n=12---.
It is directly calculated that ¢’ e M’. Now note that the numerator in (*) is
V+2 4+ -+ (a + b))
and that exactly a, of these numbers lie in 4,. Thus
3" _
FFiIE -9 -@w-D

(¢,7 XAo) = limp»e

wi o

Thus d(4,) > % > 0.
Recall that A" is the set of almost periodic points of N (Definition 1.4)
and K’ is the set of w ¢ V such that if w ¢ A then d(4) > 0 (Lemma 1.3).

ProrosiTiON 2.3. ¢l A" C< K.

Proof. If we A" and A C N such that w e A, then {n : 7"w e A} is relatively
dense. Let ¢’ be a weak™ limiting point of {«’, (&' + (rw)’)/2, ---}; then
d(A) > (¢, x4) > 0. Thus A" < K". K'isclosed, hencecl A" < K'. To
prove they are not equal, let 4o C N satisfying (pl) and (p2) of Proposition
2.2. We assert

(1) A"nd, =9,
(2) K'nd,>=8.
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Since A, is open, (1) implies el A" n 4, = @#. Thus if (1) and (2) are true
thencl 4" . K".

Assume that (1) is false and let w € A” n A, ; then by the definition of almost
periodic point, {n : 7"w e A} is relatively dense in N. This equivalent to the
existence of ke N such that the orbit

o) c Ayurdou - ur4,.
But Agu rdou --- u 4, is closed, hence
() C Agurdyu - ur Ay = (Adourdou -+ U T Ap)A
Thus (4o u 74e U - -+ u 7 4y)~ contains a closed invariant set; hence
d(Aeu -~ uT M 4) = 1,

denying (pl). Thus Aon 4™ = 6.

(2) istrue. By (p2),d(4,) > 0, hence Agn K" 5 @. Indeed, if 4 is any
subset of N such that d (A) > 0, then there exists ¢’ € Zl{ " such that (¢, x4) > 0,
i.e., ¢(4) > 0. Because A is open some point w e A is in the support of ¢.

Hence we K'.
To prove the next proposition, we need an essentially known result.

LeMMma 24. A" = {welN : w is contained is some minimal set}.

Proof. we A" implies that w is contained in some minimal set is proved
implicitly in Rudin [11, Theorem 3]. The converse statement is proved by
Gottschalk and Hedlund [4, p. 32].

Prorosrrion 2.5.  There exists an ergodic measure with non-minimal support.

Proof. Let A, be a set satisfying (pl) and (p2). Since d(4,) > 0, there
exists ¢ e M such that ¢ (4,) > 0; hence there exists an ergodic measure ¥
such that ¢(4,) > 0. Then Ao n supp ¢ # @. Thus by Lemma 2.4, supp ¢
contains a point which is contained in no minimal set and is therefore not mini-
mal.

By a similar argument, we have

ProrositioN 2.6. The closed convex hull of tnvariant measures with minimal
support is properly contained in M.

3. Countably convex combinations of ergodic measures

Let {ca}n-1 be a sequence of non-negative real numbers such that
> meicn = 1and let {¢,} 7 be a sequence of probability measures on N. It
is easy to see that Y a—1Cnon,k = 1,2, -+ - ,is a Cauchy sequence with respect
to the total variation norm. Thus D %1 ¢, ¢, converges in norm to a Borel
measure on N. We will denote this measure by i ¢, ¢, and call it a count-
ably convex combination of {¢,} (with coefficients {c,}). Note that the sum-
mation is absolute in the sense that for each permutation = of N, we have

© ©
En=l Cr(n) Pr(n) = Zn=1 Cn Pn -
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If all the ¢,’s are in M, then since M is weak™ closed and convex, we see that
Z:—-:l Cn®n € M.

We will denote the set of all countably convex combinations of a set X by
cco (X), whenever it is defined.

Since M is convex and weak® compact, by a combination of the Krein-
Milman Theorem and the Riesz Representation Theorem, each ¢ e is
represented by a probability measure u defined on the weak™ compact set
¢l (ex M) in the weak™ sense, that is to say that for each f e C (), we have

o= [ v aw)

(Phelps [7, Proposition 1.2]).

It is then quite natural to ask whether we can improve the above result to
show that each ¢ e M is represented by a discrete measure on ¢l (ex M ).
(A measure is said to be discrete if it is concentrated on a countable set.)
R. G. Douglas asked whether each ¢ can be represented by a discrete measure
on ex M itself. The answer to our question (and hence to Douglas’ weaker
question) turns out to be negative. Note that ¢ e M can be represented by
a discrete measure on ¢l (ex M ) if and only if ¢ € ceo (el (ex M)).

DerFintTION 3.1. A subset A of N is said to be nearly invariant if
d(AAT"A) = 0for eachneN.

Lemma 3.1. Ifoecl (ex M) and A is nearly invariant then supp ¢ C A or
supp e € (N\4)".

Proof. Let A be nearly invariant. Then for each o e M, (4 A 7"4) = 0
for all n e N. If, in addition, ¢ e ex M, then ¢ is an ergodic measure, hence
e(A) =1lore((N\A4)") = 1. But A and (N\ A4)" are closed sets. Thus
supp ¢ € A or suppe C (N\ 4)~

Now let ¢ be an arbitrary element in ¢l (ex /). Choose a net ¢, in ex M
such that ¢s — ¢ in weak™ topology. Thus ¢a (A ) converges to ¢ (4 ), since
x4~ is continuous. But ¢, (4 ) either equals 1 or equals O for each . Thus
¢(4) = 1oro0.

Notation. For each w e BN, the set of cluster points of the net,

(l/n)(w, + (Tw)l + -0+ (Tn—lw)’)’ n=12"--,

will be denoted by Q. . It is known and easily calculated, that Q. # @ and
Q. < M’. As usual, the set of measures corresponding to Q., will be denoted
by Q..

ProrosiTion 3.2. @Qincco (cl (exM)) = 0

Proof. Given m e N, set
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N, ={sfu{m+ 20 — 1, m + 2}
v{m/2)(n —1m+ @ —1n+1,---,
(m/2)(n — 1)n + n}
u---, i=12 - ,m.
Note that

(1) Ui N; = N, and hence Ui N; = N.
It is easily calculated that the Cesadro mean of the sequence xax, equa,ls 1/m
for each 1 < 7 < m. This implies that (by the definition of the set Ql)

(2) for each ¢ € Qy, and for each s e N, i < m, we have (¢/, xx;) = 1/m.
Now note that for each j ¢ N and each ¢ < m, N i\ij : 1s of the form
FuAiudsu---
where F is a finite set and for n e N,
Aw = {knsbn+ 1, kn+7 — 1}

with kup1 > ke +J — 1 and knpq — ko — © asn — . Using Lemma 1.1,
we conclude that d(N\7’N;) = 0 for 1 < ¢ < m and jeN. Similarly,
d(¥™NAN;) = 0forl1 <7< mandjeN. Thus

(3) foreach 1 < ¢ < m, N;is nearly invariant.
Now to prove the proposition, suppose that there were
ee@inceo (el (exM)),

SAY, 0 = D w1 Cn @n with D mei¢s = 1,6, > 0and ¢, e cl (ex M). FixneN.
By (1), supp ¢» n N # ¢ for some ¢ < m. By Lemma 3.1 and (3) above,
suppen © N;. Hence by (2), 1/m = go(N) > cnon(V:) = ¢n. Butmis
a pre-fixed constant, which is independent of n. Thus we have ¢, = 0.
Again, n is arbitrary, i.e., ¢, = 0 for all n € N, in other words, ¢ = 0. Thisis
a contradiction.

A modification of the proof of Proposition 3.2 will lead us to the following,

ProrosiTioN 3.4. If we D" (Definition 1.4), then
Q.ncco (cl (exM)) =
Proof. Let we D" and let m ¢ N be given. Set
Q =cl{r"w:neNy, 1=1,2---,m,

where N; is as in the proof of Proposition 3.2. Since o(w) is discrete in the
subspace topology, we can construct by induction a disjoint sequence of sub-
sets A,,n = 1,2, -+, of N such that 7"we 4,. Define fem(N) as follows:
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f@) =4 if leU{d,:neNy, 1=1,2 ---,m;

) fO) =0 if 1¢U{A,:neN}.
Denote by f, the continuous extension of f to BN. Then if n e N;, we have
f(@"w) = 4. This implies
(1) Un® = Pif i #= k.
Since the sets Q; are closed and mutually disjoint, we can find m mutually
disjoint clopen sets V; such that @; < V; for all . Now, since the Ceséro

mean of xy; has value 1/m, and since xv;~ is continuous on N, if ¢ € Q. , we

have o (V;) = 1/m. Now note that support of ¢ C 6(w). It follows easily
that

2) ifeeQ,,then (@) = 1/m,2=1,2,+--,m.
Again since o (w) is discrete, an elementary argument tells us that
QAT = cl{rw:jeN;AT"N
c{rw:je N\T"Njuecl {70 :jer"NANJ.

It

Thus
B) ¢@:;AT"Q;) = 0, for each pe M, ne N, and 7 < m.

But since the collection {2} can be separated by the clopen set ¥, by an
argument similar to Lemma 3.1, we see that if pecl (exM ), and supp ¢
C 6(w), then ¢ (2;) = 1or0.
Now assume that
@ = D me1CnoneQuncco (cl (exM)).

We may assume that supp ¢, € d(w). Then using the facts we developed
above, it follows as in Proposition 3.2 that ¢ = 0, a contradiction.

Remarks. (1) Let Q = U {Q.: weN}. Jerison [5] showed that M = co Q
(= the closed convex hull of @). A look at his proof shows that it is not hard
to see that we can extend it to say that

M=% (U{Q.:weK}).

But by Proposition 2.6, M # co (U{Q,:weA™}).

Jerison asked whether the set @ is closed. By the Krein-Milman Theorem,
if the set @ is closed then all the extreme points of M/ are contained in Q.
Thus to show that @ is not closed it would be more than sufficient to show that
Q doesn’t contain any ergodic measure. We have already shown that if
w e D" then @, contains no ergodic measure (Proposition 3.3). But for the
general case it seems very hard to prove, perhaps not true. However, by
Proposition 2.5, to show that @ is not closed we need only to show that if
w ¢ A" then @, contains no ergodic measures. It appears to us that we could
refine Theorem 6 of Rudin [11] to get this result.
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(2) Nearly invariant sets are insufficient in the following sense. There
exists a set A such that d(4) = 1,d(4) = 0 but A cannot be written either as

(i) A = Aju A,, A;nearly invariant and d(4,) < 1, or as

(i) A = A:\A4:, A; nearly invariant and d (4;) < 1.

Indeed, let ¢ € ex M such that supp ¢ is not minimal. Choose w e suppe n A",
(Such an w exists since the closed invariant set supp ¢ contains a minimal set
and points in minimal sets are almost periodic.) Since supp ¢ is not minimal
there exists w; e supp ¢\d(w). Now we can find a subset A < N such that
0(w) € A, w; ¢ A and A avoids 6 (w:), where w, is an almost periodic point not
ino(w). (It follows from Proposition 1.9 that there exist at least ¢ minimal
sets.) Since A contains the closed invariant set 6(w), d(4) = 1. On the
other hand, since 4 n 5 (w;) = @, d(4) = 0. We claim the set A cannot have
the form (i) or (ii). If we can write A = A;u A, as in (i), then since
d(4:) < 1, some r'w ¢ A, for if o(w) < A, then d(4;) = 1. Thus some
r'wed;. Now A, is nearly invariant and A; nsupp¢ % @ we must have
suppe C A; (Lemma 3.1). This is a contradiction, since w;¢A;, but
wy e SUpp ¢. Similarly, we can show that (ii) is impossible.
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