## ON THE VARIETY OF ORBITS

## BY <br> A. Seidenberg ${ }^{1}$ <br> 1. Statement of the main result

Let the algebraic group $G$ have components $G_{1}, \cdots, G_{s}$ and let $G$ operate regularly on the variety $V$, i.e., let the operation of $G_{i}$ on $V$, for every $i$, be an everywhere defined rational map of $G_{i} \times V$ into $V$. (See 1 of $\S 4$, where the notes and remarks are assembled.) Let $k$ be a field of definition for $G$, $V$, and the operation of $G$ on $V$. Let $v \in V$ and let $g \in G_{i}$ be a generic point for $G_{i}$ over $k(v) . \quad k(v, g)$ is a regular extension of $k(v)$, so by [W., p. 18, Prop. 20] $k(v, g v)$ is also a regular extension of $k(v)$; thus $g v$ is a generic point over $k(v)$ of a subvariety $\mathcal{O}_{i}(v)$ of $V$ having $k(v)$ as a field of definition. On $\left(G_{i} \times v\right) \times \mathcal{O}_{i}(v)$, which has $k(v)$ as a field of definition, consider the subvariety $W_{i}$ having $((g, v), g v)$ as generic point over $k(v)$. The (algebraic) projection of $W_{i}$ on $\mathcal{O}_{i}(v)$ is $\mathcal{O}_{i}(v)$. The variety $W_{i}$ consists of the points $((\bar{g}, v), \bar{g} v)$, where $\bar{g}$ varies over $G_{i}$, so $\mathcal{O}_{i}(v)$ contains the part of the orbit of $v$ due to $G_{i}$; on the other hand, by [W, p. 169, Prop. 3], which also obviously applies in the abstract case, the set-theoretic projection of $W_{i}$ on $\mathcal{O}_{i}(v)$ contains a non-empty $k(v)$-open subset of $\mathcal{O}_{i}(v)$. Thus $\mathcal{O}(v)=\mathcal{O}_{1}(v)$ u $\ldots$ $\mathbf{u} \mathcal{O}_{s}(v)$ is the union of the orbit of $v$ and a $k(v)$-closed subset of dimension less than $\operatorname{dim} \theta(v)$.

We want to show that there exists a proper $G$-invariant $k$-closed subset $F$ such that on $V^{\prime}=V-F$ the orbits consist of closed sets having at most s components; and that these closed sets are in one to one correspondence with the points of a variety $W$ defined over $k$ in such a way that the mapping which associates to each point of $V^{\prime}$ its orbit is an everywhere defined rational map over $k$ of $V^{\prime}$ into $W$.

The "variety of orbits" was defined in [R], by means of a generic point, and coincides to a large extent with our $W$, but its relation to the set of orbits was not considered, except for the remark that "[the variety of orbits] is a true variety of orbits only so far as generic orbits are concerned".

The motivation for the stated result lies in [E, Th. 5], or rather in its application to the classification of singular points of algebraic curves. This theorem says that if $G$ is a connected solvable algebraic group operating regularly on an abstract variety $V$, then there exists a constructable subset $W$ of $V$ such that for each $v$ in $V$ there is a unique $w$ in $W$ with $v$ in $G w$. (See 2 of §4.) This rests on [R, Th. 10], which says that if $\tau$ is the natural rational map from $V$ to its variety of orbits $T$, and if $G$ is connected and solvable, then there exists a crosssection, i.e., a rational map $\sigma: T \rightarrow V$ with $\tau \sigma=1$. The statement $\tau \sigma=1$

[^0]is in the sense of algebraic geometry-set-theoretically there may be exceptions; and the proof of [E, Th. 5] consists of a kind of spelling out of the exceptions and an inductive taking care of them. However, a prior consideration of the relation of the "variety of orbits" to the set of orbits appears to be needed for a complete proof. This matter is not touched upon in [E] or in its references.

The case that $G$ and $V$ are affine varieties suffices for the application mentioned, and a restriction to this case would yield many simplifications, both in detail and in conception. However, we thought it proper to consider matters with at least the generality occurring in [E,Th. 5]. Complete generality requires some, but not much, more detail.

Some background material on $k$-constructable sets, $k$-elementary formulae, and elimination theory is given in $\left[\mathrm{S}_{3}\right]$.

## 2. Preliminary theorems

Let $U, V$, and $W$ be varieties, and let $\tau$ be a rational map of $U \times V$ into $W$, all defined over $k$. Let $v \in V$. If $\tau$ is defined at $\left(u_{0}, v\right)$ for some $u_{0}$, then it is also defined at $(u, v)$ for $u$ a generic point of $U$ over $k(v)$, and $\tau(u, v)$ is a generic point over $k(v)$ of a variety $\mathcal{O}(v) ; \mathcal{O}(v)$ does not depend on which generic point $u$ over $k(v)$ is chosen; if $\tau$ is not defined at $\left(u_{0}, v\right)$ for any $u_{0}$, we place $\mathcal{O}(v)=\emptyset$. If $\tau$ is defined at $u_{0}, v_{0}$, we write $u_{0} v_{0}$ for $\tau\left(u_{0}, v_{0}\right)$.

Theorem 1. Let $U, V, W, \tau, k$ be as just mentioned, and let $U, V, W$ be affine. Then there is an integer $N$ such that for every $v \in V$ there is a set of polynomials $f_{i}(\mathrm{~V}, X)$ in $k[\mathrm{~V}, X]$ of total degree $\leq N$ such that the $f_{i}(v, X)$ generate an ideal having $\mathcal{O}(v)$ as associated locus.

Proof. Given a generic point $x=\left(x_{1}, \cdots, x_{n}\right)$ of an affine variety $V^{r}$ over $k$, one knows how to compute a basis for an ideal having $V$ as associated locus. One forms $r+1$ linear combinations $t_{i} x$ with indeterminate coefficients $t_{i j}(i=1, \cdots, r+1 ; j=1, \cdots, n)$; these are algebraically dependent over $k(t)=k\left(t_{1}, \cdots, t_{r+1}\right)$; and the $-t_{i} x$ satisfy a polynomial

$$
F\left(t ; Z_{1}, \cdots, Z_{r+1}\right) \in k\left[t ; Z_{1}, \cdots, Z_{r+1}\right]-0
$$

which we may suppose is irreducible; into this one substitutes $-t_{i} X$ for $Z_{i}$; and then the coefficients of $F\left(t ;-t_{1} X, \cdots,-t_{r+1} X\right)$ considered as a polynomial in $t$ yield the desired basis (see [v.d.W ${ }_{1}$, Th. 6]).

Let $v$ be an arbitrary point of $V$ and $u$ a generic point of $U$ over $k(v)$. If $\tau$ is not defined at ( $u, v$ ), then $\tau$ is also not defined at ( $u, v_{0}$ ) for any $k$-specialization $v_{0}$ of $v$. If $\tau$ is defined at $(u, v)$, then, using the generic point $u v$, we compute a basis for $\mathcal{O}(v)$ over $k(v)$ in the way indicated. Let $Y$ be the $k$-closure of $v$ (so $v$ is a "generic point" for $Y$ over $k$ ). (See 3 of §4.) We now examine how uniform these computations are as $v_{0}$ varies over $Y$. Let $r=\operatorname{dim} \mathcal{O}(v)$. We first examine $\operatorname{dim} \mathcal{O}\left(v_{0}\right)$ as $v_{0}$ varies over $Y$. The coor-
dinates $w_{i}$ of $u v$ may be written as rational functions in $u, v$. Let these be $P_{i}(u, v) / d(u, v)$, where $P_{i}, d$ are polynomials over $k$. We may assume that only a $k$-algebraically independent subset of the coordinates of $u$ occur in $d(u, v)$. Let $v_{0}$ be another point of $Y$. We may suppose $u$ generic for $U$ over $k\left(v, v_{0}\right)$ : this does not change the computations for $\mathcal{O}(v)$ in any way, but prepares them to be correct for $v_{0}$. In particular, elements of $k(u)$ algebraically independent over $k$ remain such over $k\left(v_{0}\right)$. Let $c(v)$ be one of the coefficients of $d(\mathrm{U}, v), c(v) \neq 0$. Making exception of the $k$-closed subset of $Y$ defined by $c(\mathbf{V})=0$, we have $d\left(u, v_{0}\right) \neq 0$; and $P_{i}\left(u, v_{0}\right) / d\left(u, v_{0}\right)$ are the coordinates of $u v_{0}$, a generic point of $\mathcal{O}\left(v_{0}\right)$ over $k\left(v_{0}\right)$. Any $r+1$ of the $w_{i}$, say $w_{1}, \cdots, w_{r+1}$, are algebraically dependent over $k(v)$. Let

$$
f\left(v ; P_{1}(u, v) / d(u, v), \cdots, P_{r+1}(u, v) / d(u, v)\right)=0
$$

be a non-trivial polynomial relation over $k$. Making exception of a proper $k$-closed subset of $Y$, we get the non-trivial polynomial relation

$$
f\left(v_{0} ; \frac{P_{1}\left(u, v_{0}\right)}{d\left(u, v_{0}\right)}, \cdots, \frac{P_{r+1}\left(u, v_{0}\right)}{d\left(u, v_{0}\right)}\right)=0 .
$$

The argument is repeated for every $(r+1)$-tuple of the $w_{i}$. Thus, with exception of a $k$-closed subset of $Y, \operatorname{dim} \mathcal{O}\left(v_{0}\right) \leq r$. Now let $w_{1}, \cdots, w_{r}$ (say) be algebraically independent over $k(v)$. Let $H_{i}(\mathrm{U})=0$ be a finite set of polynomial equations over $k$ having $U$ as associated locus; and let $K_{j}(\mathbf{V})=0$ be a similar set for $Y$. Consider the conjunction (for all $i, j$, and for $k=1, \cdots, r)$ of
(*) $\quad H_{i}(\mathrm{U})=0, \quad K_{j}(\mathrm{~V})=0, \quad P_{k}(\mathrm{U}, \mathrm{V}) / d(\mathrm{U}, \mathrm{V})=C_{k}, \quad d(\mathrm{U}, \mathrm{V}) \neq 0$.
Eliminating U (see say [T, p. 39, Th. 1 and p. 54, note 16] or $\left[\mathrm{S}_{1}, \mathrm{p} .370\right.$, Th. 3 and p. 373, Remark (c)] or [ $\mathrm{S}_{2}$, p. 237, Th. 1] or [ $\mathrm{S}_{3}$ ]; see also [C]), we get a finite disjunction of finite conjunctions of polynomial equations and inequalities over $k$ in $V, C$. (See 4 of §4.) At least one of these conjunctions, which we may assume involves a sole inequality $e(\mathrm{~V}, C) \neq 0$, is satisfied by $\mathrm{V}=v, C_{k}=P_{k}(u, v) / d(u, v)$; let us consider just this one. Let $f(\mathbf{V}, C)=0$ be one of the equalities in it. Since $w_{1}, \cdots, w_{r}$ are algebraically independent over $k(v)$, we have $f(v, C)=0$. Hence for any $v_{0}, c$ satisfying $e\left(v_{0}, c\right) \neq 0$, one can solve (*) for U. We make exception of a $k$-closed subset of $Y$ defined by a non-zero coefficient of $e(\mathbf{V}, C)$ regarded as a polynomial in $C$; and take for $c_{1}, \cdots, c_{r}$ quantities algebraically independent over $k\left(v_{0}\right)$. Let $\bar{u}$ be a solution of (*) for $\mathbf{V}=v_{0}, C=c$. Then $P_{k}\left(\bar{u}, v_{0}\right) /$ $d\left(\bar{u}, v_{0}\right), k=1, \cdots, r$ are algebraically independent over $k\left(v_{0}\right)$. Hence with exception of a proper $k$-closed subset of $Y, \operatorname{dim} \mathcal{O}\left(v_{0}\right)=r$.

We now form $F(v, t, Z)$ as mentioned; we may assume $F(\mathrm{~V}, t, Z) \in k[\mathrm{~V}, t, Z]$, which we do. Making exception of a proper $k$-closed subset of $Y$, we will have $F\left(v_{0}, t, Z\right) \neq 0$. We note that $F\left(v_{0}, t,-t \cdot u v_{0}\right)=0$, since $v_{0}$ is a specialization of $v$ over $k(u)$; in fact, since $u$ and $v$ are independent over $k$ and $k(u)$
is regular over $k, k(u)$ and $k(v)$ are linearly disjoint over $k$, by [W, p. 18, Th. 5], and by [W, p. 15, Th. 3], $v_{0}$ remains a specialization of $v$ over $k(u)$. Hence if $F\left(v_{0}, t, Z\right)$ is irreducible over $k\left(v_{0}\right)$, then the coefficients of $F\left(v_{0}, t\right.$, $-t X)$ yield the desired basis. The condition of (absolute) irreducibility places another polynomial condition on $v_{0}$. (See [v.d.W ${ }_{1}$, Th. 3] and [v.d. $\mathrm{W}_{2}$, p. 707]). Altogether, with exception of a proper $k$-closed subset of $Y$, the computations proceed uniformly. (See 5 of §4.) In a similar way, we take care of the exceptional set, and get a bound on the total degree of the $f_{i}(\mathbf{V}, X)$ at least for $v_{0}$ varying over $Y$ (i.e., we take a $k$-component of the exceptional set, make a computation at a "generic point" thereof, find a smaller exceptional set; etc.). By taking $Y=V$, i.e., by taking $v$ generic for $V$ over $k$, we complete the proof.

Let $U, V, W$ be varieties, $\tau$ a rational map of $U \times V$ into $W$, and let $U$, $V, W, \tau$ be defined over $k$. Let $v \in V$ and $u$ a generic point for $U$ over $k(v)$. If $\tau$ is defined at $\left(u_{0}, v\right)$, then $\left(u_{0}, v\right)$ is a $k$-specialization of $(u, v), \tau$ is defined at $(u, v)$, and $\tau\left(u_{0}, v\right)$ is a $k(v)$-specialization of $\tau(u, v)$. Hence $\mathcal{O}(v)$ is the $k(v)$-closure of the set of points $\tau\left(u_{0}, v\right)$, where $u_{0}$ ranges over the points for which $\tau\left(u_{0}, v\right)$ is defined.

Theorem 2. Let $U, V, W, \tau, k$ be as just mentioned. Then the set of points $(x, v)$ in $W \times V$ such that $x \in \mathcal{O}(v)$ is $k$-constructable.

Proof. Let $U$ be defined via affine varieties $U_{\alpha}$ (and birational transformations $T_{\alpha \beta}$ ), let $V$ be defined via affine varieties $V_{\gamma}$, and $W$ via affine varieties $W_{\delta}$. Let $\Theta_{\delta}(v)$ denote the representative of $\mathcal{O}(v)$ on $W_{\delta}$ if there is one, and otherwise place $\mathcal{O}_{\delta}(v)=\emptyset$; let $\delta^{\prime}$ indicate an index such that $\mathcal{O}_{\delta^{\prime}}(v) \neq \emptyset$ for some $v$. For every $\alpha, \gamma, \delta^{\prime}$, the mapping $\tau$ induces a rational mapping

$$
\tau_{\alpha \gamma \delta^{\prime}}: U_{\alpha} \times V_{\gamma} \rightarrow W_{\delta^{\prime}}
$$

If $v$ has a representative $v_{\gamma}$ in $V_{\gamma}$, then $\mathcal{O}_{\delta^{\prime}}(v)$ is just the same as $\mathcal{O}_{\delta^{\prime}}\left(v_{\gamma}\right)$ as previously defined relative to $U_{\alpha} \times V_{\gamma} \rightarrow W_{\delta^{\prime}}$. We may write $\mathcal{O}_{\delta^{\prime}}(v)=$ $\mathcal{O}_{\delta^{\prime}}\left(v_{\gamma}\right)$ to indicate this.

Let $u, v$ be independent generic points for $U, V$ over $k$, and let $u_{\alpha}, v_{\gamma}$ be the representatives of $u, v$ in $U_{\alpha}, V_{\gamma}$. Let $w=u v$. Then $w_{\delta^{\prime}}$ can be written in a finite number of ways as rational functions over $k$ in $u_{\alpha}, v_{\gamma}$, each time with a common denominator, in such a way that $U_{\alpha} \times V_{\gamma} \rightarrow W_{\delta^{\prime}}$ is defined at ( $u_{0 \alpha}, v_{0 \gamma}$ ) if and only if one of the denominators does not vanish at ( $u_{0 \alpha}, v_{0 \gamma}$ ) (in this connection see [W, p. 171, Th. 2, Proof]). Thus the statement that $\tau_{\alpha \gamma \delta^{\prime}}$ is defined at ( $u_{0 \alpha}, v_{0 \gamma}$ ) can be written as a finite disjunction of finite conjunctions of polynomial equations and inequalities over $k$ in $u_{0 \alpha}, v_{0 \gamma}$. (See 6 of §4.)

Let $x_{\delta^{\prime}}$ be a point in $W_{\delta^{\prime}}$ and $v_{\gamma}$ a point of $V_{\gamma}$. Then $x_{\delta^{\prime}}$ is in $\mathcal{O}_{\delta^{\prime}}\left(v_{\gamma}\right)$ if and only if every polynomial $f\left(v_{\gamma}, X\right)$ in $k\left(v_{\gamma}\right)[X]$ which vanishes over $\mathcal{O}^{\prime}=\left\{\tau_{\alpha \gamma \delta^{\prime}}\left(u_{0 \alpha}, v_{\gamma}\right)\right\}$ vanishes at $x_{\delta^{\prime}}$; here $u_{0 \alpha}$ varies over the points for which $\tau_{\alpha \gamma \delta^{\prime}}$ is defined at $\left(u_{0 \alpha}, v_{\gamma}\right)$. We may suppose $f\left(v_{\gamma}, X\right) \epsilon k\left[v_{\gamma}, X\right]$ and, by

Theorem 1, can place a bound $N$ on the total degree of $f(\mathbf{V}, X)$. Moreover, one can relax the condition that $f$ have its coefficients in $k$, as any $f \in \Omega[X]-\Omega$, the universal domain-which vanishes over $\mathcal{O}^{\prime}$ vanishes over $\mathcal{O}_{\delta^{\prime}}\left(v_{\gamma}\right)$; in fact, if $k^{\prime}$ is a field containing $k, v_{\gamma}$, and the coefficients of $f$, and if $u_{0 \alpha}$ is a generic point of $U$ over $k^{\prime}$, then, dismissing the case $\mathcal{O}_{\delta^{\prime}}\left(v_{\gamma}\right)=\emptyset$ as trivial, $f$ vanishes at $\tau_{\alpha \gamma \delta^{\prime}}\left(u_{0 \alpha}, v_{\gamma}\right)$ and hence over $\mathcal{O}_{\delta^{\prime}}\left(v_{\gamma}\right)$. The set of polynomials $f(\mathbf{V}, X) \epsilon$ $\Omega[\mathbf{V}, X]$ of total degree $\leq N$ is parametrized by the points $c$ of an affine space. Hence the statement $x_{\delta^{\prime}} \in \mathcal{O}_{\delta^{\prime}}\left(v_{\gamma}\right)$ can be written as a finite disjunction, properly quantified, of finite conjunctions of polynomial equations and inequalities over $k$ in $x_{\delta^{\prime}}, v_{\gamma}, u_{0 \alpha}$, and $c$. (See 7 of $\S 4$.) Eliminating the parameters $u_{0 \alpha}, c$ (say by $\left[\mathrm{S}_{1}, \mathrm{pp} .370,373\right]$ or $\left[\mathrm{S}_{3}\right]$ ), we see that the set of points $\left(x_{\delta^{\prime}}, v_{\gamma}\right)$ in $W_{\delta^{\prime}} \times V_{\gamma}$ such that $x_{\delta^{\prime}} \in \mathcal{O}_{\delta^{\prime}}\left(v_{\gamma}\right)$ is $k$-constructable.

By [W, p. 188, Prop. 10], the $V_{\gamma}, W_{\delta}$ are $k$-open covers of $V, W$; and similarly the $W_{\delta} \times V_{\gamma}$ are a $k$-open cover of $W \times V$. As $x \in \mathcal{O}(v)$ if and only if for some $\gamma, \delta^{\prime}, x$ has a representative $x_{\delta^{\prime}}$ in $W_{\delta^{\prime}}$ and $v$ has a representative $v_{\gamma}$ in $V_{\gamma}$ and $x_{\delta^{\prime}} \in \mathcal{O}_{\delta^{\prime}}\left(v_{\gamma}\right)$, the set of $(x, v)$ in $W \times V$ for which $x \in \mathcal{O}(v)$ is the union of the sets $\left(x_{\delta^{\prime}}, v_{\gamma}\right)$ for which $x_{\delta^{\prime}} \in \mathcal{O}_{\delta^{\prime}}\left(v_{\gamma}\right)$. Hence the set of $(x, v)$ in $W \times V$ for which $x \in \mathcal{O}(v)$ is $k$-constructable.

Theorem 3. Let $U, V, \tau, k$ be as in Theorem 2. Let $s$ be an integer $\geq-1$. Then the set $S$ of points $v$ such that $\operatorname{dim} \hat{O}(v) \neq s$ is $k$-constructable.

Proof. Let $\gamma, \delta^{\prime}$ be two indices (with $\delta^{\prime}$ as in the proof of Theorem 2). Suppose we know that $\operatorname{dim} \mathcal{\theta}_{\delta^{\prime}}\left(v_{\gamma}\right) \neq s$ on a $k$-constructable set $W^{*}$ and a subset of a $k$-constructable set $W$ (which we do for $W^{*}=\emptyset$ and $W=V_{\gamma}$ ). $W$ (unless empty) is the finite union of sets each of which is a $k$-irreducible algebraic set minus a proper relatively $k$-closed subset. Let $W_{1}$ be one of these $k$-irreducible sets and $W_{1}^{\prime}$ the associated relatively $k$-closed subset. Then $W$ is the union of a $k$-constructable set $W^{\prime}$ disjoint from $W_{1}, W_{1}-W_{1}^{\prime}$, and a $k$-constructable subset of $W_{1}^{\prime}$. Let $v_{1}$ be a "generic point" for $W_{1}$ over $k$. If $\mathcal{O}_{\delta^{\prime}}\left(v_{1}\right) \neq \emptyset$, then by note 5 of $\S 4, \operatorname{dim} \mathcal{O}_{\delta^{\prime}}\left(v_{2}\right)=\operatorname{dim} \mathcal{O}_{\delta^{\prime}}\left(v_{1}\right)$ for $v_{2} \in W_{1}$ with possible exception of the points $v_{2}$ in a proper $k$-closed subset $W_{2}$; and the same is true if $\mathcal{O}_{\delta^{\prime}}\left(v_{1}\right)=\emptyset$, as then $\mathcal{O}_{\delta^{\prime}}\left(v_{2}\right)=\emptyset$ for every $v_{2} \in W_{1}$. If $\operatorname{dim} \mathcal{O}_{\delta^{\prime}}\left(v_{1}\right)=s$, we throw away $W_{1}-W_{2}$, and otherwise keep it (i.e., adjoin it to $\left.W^{*}\right)$. Then we examine $W^{\prime} \cup W_{2} \cup W_{1}^{\prime}$, etc. In this way we come to the desired conclusion. (See 8 of $\S 4$.)

By a $k$-atomic formula we mean a formula of the form $\left(x_{1}, \cdots, x_{s}\right) \in F$, where $x_{i}$ is a free variable ranging over a variety $V_{i}$ defined over $k$ and $F$ is a $k$-closed subset of $V_{1} \times \cdots \times V_{s}$. By a $k$-elementary formula we mean a formula built up in a finite number of steps from $k$-atomic formulae by negation, conjunction, disjunction, and quantification of the form $\exists x_{i}(\cdots)$. One checks easily that the set of points satisfying a $k$-elementary formula is $k$-constructable, and conversely. A $k$-elementary formula involving only bound variables is called a $k$-elementary sentence.

For example, let $U$ and $V$ be varieties, and $\tau$ a rational map of $U$ into $V$,
all defined over $k$. Then the expression " $\tau$ is defined at $u$ " is, or can be written as, a $k$-elementary formula; in fact, we saw this in the case $U, V$ are affine, and the extension to arbitrary varieties offers no difficulty. The expression

$$
\tau \text { is defined at } u \text { and has there the value } v
$$

is also a $k$-elementary formula. In fact, let $\Gamma_{\tau}$ be the graph of $\tau$. Then the mentioned expression can be written as

$$
\tau \text { is defined at } u \text { and }(u, v) \in \Gamma_{\tau} .
$$

Theorem 4. Let $U, V, \tau, k$ be as in Theorem 2. Let $\mathcal{O}^{\prime}(v)=\{\tau(u, v)\}$, where $u$ varies over the points such that $\tau$ is defined at $(u, v)$. Then the set $S$ of points $x$ such that for some $v, x \in \mathcal{O}(v)$ but $x \notin \mathcal{O}^{\prime}(v)$ is $k$-constructable.

Proof. The expression $x \in \mathcal{O}^{\prime}(v)$ is a $k$-elementary formula, as it can be written as

$$
\exists u(\tau \text { is defined at }(u, v) \text { and } x=\tau(u, v))
$$

The formula $x \in \mathcal{O}(v)$ is also $k$-elementary, by Theorem 2. Hence the formula

$$
\exists v\left(x \in \mathcal{O}(v) \text { and } x \notin \mathcal{O}^{\prime}(v)\right)
$$

is $k$-elementary.
Theorem 5. Let $U, V, W, \tau, k$ be as in Theorem 2, and let $F$ be a $k$-closed subset of $W$. Then the set $S$ of points $v$ such that $\mathcal{O}(v) \subset F$ is $k$-constructable.

Proof. Let $\mathcal{O}^{\prime}(v)$ be as in Theorem 4. As $\mathcal{O}(v)$ is the $k(v)$-closure of $\mathcal{O}^{\prime}(v)$, we have $\mathcal{O}(v) \subset F$ if and only if $\mathcal{O}^{\prime}(v) \subset F$. The set of $v$ satisfying $\mathcal{O}^{\prime}(v) \subset F$ is the same as the set satisfying $\forall u \exists y$ ( $\tau$ is not defined at $(u, v)$ or $\tau$ is defined at ( $u, v$ ) and has there the value $y$ and $y \in F$ ). Hence $S$ is $k$-constructable. (See 9 of §4.)

## 3. The case $U=G_{i}$ (and $W=V$ )

To get the picture of the $\mathcal{O}_{i}(v)(\S 1)$ clear, we recall some facts about $G$. Let $G_{1}$ be a component of $G$ containing the identity $e$. As a generic point of $G_{i}$ cannot lie in any other component, one has $G_{1} G_{i} \subset G_{i}$ and $G_{i} G_{1} \subset G_{i}$; hence, in particular, there is only one component containing $e$. Hence if $G_{i} G_{j}$ contains $e$, then $G_{i} G_{j} \subset G_{1}$, whence $G_{1}$ is a normal subgroup of $G$ and the $G_{i}$ are its cosets.

Let $\mathcal{O}_{i}^{\prime}(v)=\left\{g v \mid g \in G_{i}\right\}$. Then $\mathcal{O}_{i}(v)$ is the $k(v)$-closure of $\mathcal{O}_{i}^{\prime}(v)$. If $g_{i} \in G_{i}$, then $G_{i}=G_{1} g_{i}$, so $\mathcal{O}_{i}^{\prime}(v)=\left\{g g_{i} v \mid g \in G_{1}\right\}=\mathcal{O}_{i}^{\prime}\left(g_{i} v\right)$; so an orbit under $G$ is made up of $s$ (or fewer) orbits under $G_{1}$. Let $v \in V$ and $g$ a generic point of $G_{1}$ over $k(v)$; then $g v$ is a generic point over $k(v)$ of $\mathcal{O}_{1}(v)$. Let $g_{i}$ be a point of $G_{i}$ algebraic over $k$; then $g_{i} g v \in \mathcal{O}_{i}(v)$. As $k\left(v, g_{i}, g_{i} g v\right)=k\left(v, g_{i}, g v\right)$, $\operatorname{dim} \mathcal{O}_{i}(v) \geq \operatorname{dim} \mathcal{O}_{1}(v)$; and similarly $\operatorname{dim} \mathcal{O}_{1}(v) \geq \operatorname{dim} \mathcal{O}_{i}(v)$. Thus for every $v$, all the $\mathcal{O}_{i}(v)$ have the same dimension. Let $g_{i} \in G_{i}, g \in G$. Then

$$
\left[\mathcal{O}_{1}^{\prime}(v), \cdots, \mathcal{O}_{s}^{\prime}(v)\right]=\left[\mathcal{O}_{1}^{\prime}\left(g_{1} v\right), \cdots, \mathcal{O}_{1}^{\prime}\left(g_{s} v\right)\right]
$$

and

$$
\left[\mathfrak{O}_{1}^{\prime}(g v), \cdots, \mathfrak{O}_{s}^{\prime}(g v)\right]=\left[\mathcal{O}_{1}^{\prime}\left(g_{1} g v\right), \cdots, \mathcal{O}_{1}^{\prime}\left(g_{s} g v\right)\right] .
$$

As $g_{i} g, g_{j} g$ are in different cosets if $g_{i}, g_{j}$ are, $\left[\mathcal{O}_{1}^{\prime}(g v), \cdots, \mathcal{O}_{s}^{\prime}(g v)\right]$ is a permutation of $\left[\mathfrak{\vartheta}_{1}^{\prime}(v), \cdots, \mathfrak{O}_{s}^{\prime}(v)\right]$; and similarly for the $k(v, g)$-closures $\mathcal{O}_{i}(v)$, $\mathcal{O}_{i}(g v)$.

Theorem 6. If $v_{1} \in \mathcal{O}(v)$, then $\mathcal{O}\left(v_{1}\right) \subset \mathcal{O}(v)$.
Proof. As $\mathcal{O}(v)$ is closed and $\mathcal{O}\left(v_{1}\right)$ is the closure of the orbit of $v_{1}$, it suffices to show that the orbit of $v_{1}$ is in $\mathcal{O}(v)$. Let, then, $g^{\prime} \in G$. Then $g^{\prime} g v \in \mathcal{O}(v)$ for every $g \in G$. Let $v_{1} \in \mathcal{O}_{i}(v)$ and let $g$ be a generic point of $G_{i}$ over $k\left(v, g^{\prime}\right)$. Then $v_{1}$ is a specialization of $g v$ over $k\left(v, g^{\prime}\right)$, whence $g^{\prime} v_{1}$ is a specialization of $g^{\prime} g v$ over $k\left(v, g^{\prime}\right)$. Hence $g^{\prime} v_{1} \in \mathcal{O}(v)$, Q.E.D.

Corollary. The set $S$ of points $v_{1}$ such that for some $v, v_{1}$ is in $\mathcal{O}(v)$ but not in the orbit of $v$, is a $G$-invariant $k$-constructable set.

The expressions $v_{1} \in \mathcal{O}_{i}(v), v_{1} \in \mathcal{O}_{i}^{\prime}(v)$ are $k$-elementary formulae, so $S$ is $k$-constructable; it is $G$-invariant by the theorem.

Theorem 7. Let $F$ be a $k$-closed subset of $V$. The set $S$ of points $v$ such that for some $i, \mathcal{O}_{i}(v) \subset F$ is $k$-constructable and (obviously) $G$-invariant. The set $S_{1}$ of points $v$ such that for some $i \operatorname{dim} \mathcal{O}_{i}(v) \neq r$, where $r=\operatorname{dim} \mathcal{O}_{1}(v)$ for a generic point $v$ of $V$ over $k$, is $k$-constructable and (obviously) G-invariant.

This follows at once from our previous theorems. Here too (cf. Theorem 5) $S$ is $k$-closed.

Theorem 8. The $k$-closure $\bar{S}$ of a $k$-constructable $G$-invariant set $S$ containing no generic point of $V / k$ is proper and $G$-invariant.

Proof. $S$ (unless empty) is the union of a finite number of sets, each a $k$-irreducible set $F_{i}$ minus a proper $k$-closed subset. $\bar{S}=U F_{i}$ and is proper if no $F_{i}$ equals $V$. If $\bar{P} \in \bar{S}$, then there is a $P \in S$ with $P \rightarrow \bar{P}$ over $k$. Let $g_{i}$ be a generic point of $G_{i}$ over $k(P, \bar{P})$. Then $P \rightarrow \bar{P}$ also over $k\left(g_{i}\right)$. Hence $g_{i} P \rightarrow g_{i} \bar{P}$ over $k . \quad g_{i} P$ is in some $F_{j}$, say $F_{1}$. Then $g_{i} \bar{P} \subset F_{1}$; and, as $g_{i} \bar{P}$ is a generic point for $\mathcal{O}_{i}(\bar{P})$ over $k(\bar{P}), \mathcal{O}_{i}(\bar{P}) \subset F_{1}$. Hence the orbit of $\bar{P}$ is in $\bar{S}$.

In what follows we fix an index $\gamma$ and speak of the Chow form of an $\mathcal{O}_{i}(v)$ if $\mathcal{O}_{i \gamma}(v)$ is not empty, and then mean thereby the Chow form of $\mathcal{\vartheta}_{i \gamma}(v)$. We may write $F_{i}^{\prime}(v, t, Z)$ for this form; the point $v$ need not have a representative in $V_{\gamma}$. We speak of the Chow form of $\mathcal{O}(v)$ if each $\mathcal{O}_{i}(v)$ has a Chow form, and then mean thereby $\prod_{i=1}^{s} F_{i}^{\prime}(v, t, Z)$. Each $\mathcal{O}_{i}(v)$ occurs the same number of times amongst $\mathcal{O}_{1}(v), \cdots, \mathcal{O}_{s}(v)$, so every irreducible factor in the Chow form occurs with the same multiplicity. Hence the Chow form depends only on the locus $\mathcal{O}(v)$, not on $v$.

If $v$ is generic for $V$ over $k$, then $v$ has a representative in $V_{\gamma}$. Hence $\mathcal{O}_{\gamma}(v) \neq \emptyset$, as $v \in \mathcal{O}_{1}(v)$. We have $\mathcal{O}_{i}(v)=\mathcal{O}_{1}\left(g_{i} v\right)$ for $g_{i} \in G_{i}$. Since $k\left(g_{i}, g_{i} v\right)=k\left(g_{i}, v\right)$, by taking $g_{i}$ independent from $v$ over $k, g_{i} v$ remains generic for $V$ over $k$. Hence $\mathcal{O}_{i \gamma}(v) \neq \emptyset$. Thus we may speak of the Chow form of $\mathcal{O}(v)$ if $v$ is generic for $V$ over $k$.

Let $F(v, t, Z)$ be the Chow form of $\mathcal{O}(v)$ with $v$ generic for $V$ over $k$. The coefficients of $F$ (considered as a polynomial in $t, Z$ ) are the coordinates of a generic point $P$ over $k$ of a variety in projective space, the "variety of orbits". Let $\tau$ be the rational map defined by the generic point $(v, P)$ over $k . \quad \tau$ is defined at $v_{1}$ if, $F$ having been normalized by making some coefficient $=1$, the coefficients are defined at $v_{1}$. Let $g \in G$. Take $v$ generic for $V$ over $k(g)$; then $g v$ is also generic for $V$ over $k$ and $\mathcal{O}(g v)=\mathcal{O}(v)$. Hence $\tau(g v)=\tau(v)$, whence $\tau$ and $\tau g$ are the same rational map on $V$. Now let $\tau$ be defined at $v_{1}$. Then $\tau g$ is defined at $g^{-1} v_{1}$, so $\tau$ is defined at $g^{-1} v_{1}$. (See 10 of §4.) Thus the set $S$ of points $v_{1}$ at which $\tau$ is defined is $G$-invariant; it is also $k$-constructable. Hence

Theorem 9. The set $S$ of points $v_{1}$ at which $\tau$ is defined is $k$-constructable and $G$-invariant.

Theorem 10. Let $v$ be generic for $V$ over $k$ and let $F(v, t, Z)$ be the Chow form of $\mathcal{O}(v)$. Then the set $S$ of points $v_{1}$ at which $F(v, t, Z)$, after a suitable normalization, is defined and such that then $F\left(v_{1}, t, Z\right)$ yields the Chow form of $\mathcal{O}\left(v_{1}\right)$ is $k$-constructable and $G$-invariant.

Proof. We first confine ourselves to the points $v_{1}$ for which $\tau$ is defined, for which $\mathcal{O}\left(v_{1}\right)$ has a Chow form, and for which $\operatorname{dim} \mathcal{O}\left(v_{1}\right)=\operatorname{dim} \mathcal{O}(v)$ (so the Chow forms of $\mathcal{O}\left(v_{1}\right), \mathcal{O}(v)$ involve the same $t$ and $\left.Z\right)$; this is a $k$-constructable $G$-invariant set. Let $v_{1}$ be such that $F\left(v_{1}, t, Z\right)$, i.e., $\left.F(v, t, Z)\right|_{v=v_{1}}$ after a suitable normalization of $F$, is the Chow form of $\mathcal{O}\left(v_{1}\right)$. Then by note 4 of $\S 4, F\left(\bar{v}_{1}, t, Z\right)$ is the Chow form of $\mathcal{O}\left(\bar{v}_{1}\right)$ for almost all $k$-specializations $\bar{v}_{1}$ of $v_{1}$. Now let $v_{1}$ be such that $F\left(v_{1}, t, Z\right)$ is not the Chow form of $\mathcal{O}\left(v_{1}\right)$; let $G\left(v_{1}, t, Z\right)$ be the Chow form of $\mathcal{O}\left(v_{1}\right)$. Let $a_{i}, b_{i}$ be corresponding coefficients of $F\left(v_{1}, t, Z\right), G\left(v_{1}, t, Z\right)$; then $d\left(v_{1}\right)=a_{j} b_{k}-a_{k} b_{j} \neq 0$ for some $j, k$. For almost all $k$-specializations $\bar{v}_{1}$ of $v_{1}, F\left(\bar{v}_{1}, t, Z\right)$ remains defined, $G\left(\bar{v}_{1}, t, Z\right)$ is the Chow form of $\mathcal{O}\left(\bar{v}_{1}\right)$, and $d\left(\bar{v}_{1}\right) \neq 0$, so $F\left(\bar{v}_{1}, t, Z\right)$ is not the Chow form of $\mathcal{O}\left(\bar{v}_{1}\right)$. By note 8 of $\S 4, S$ is $k$-constructable. It is also obviously $G$-invariant.

The main result ( $\S 1$ ) now follows quickly. Let $S$ be the set of points $v_{1}$ such that for some $v_{1}^{\prime}$ with $\operatorname{dim} \mathcal{O}\left(v_{1}^{\prime}\right)=\operatorname{dim} \mathcal{O}(v)$ for $v$ a generic point of $V / k, v_{1} \in \mathcal{O}\left(v_{1}^{\prime}\right)$ but $v_{1}$ is not in the orbit of $v_{1}^{\prime} ;$ or $\operatorname{dim} \mathcal{O}\left(v_{1}\right) \neq \operatorname{dim} \mathcal{O}(v)$, where $v$ is generic for $V$ over $k$; or $\mathcal{O}\left(v_{1}\right)$ does not have a Chow form; or $\tau$ is not defined; or $\tau$ is defined but does not yield the Chow form of $\mathcal{O}\left(v_{1}\right)$. (See 11 of §4.) Then $S$ is a $k$-constructable $G$-invariant subset of $V$ containing no generic point of $V / k$, and so is its $k$-closure $\bar{S}$. The image under $\tau$ of $V-\bar{S}$
contains a non-empty $k$-open subset $W$ of the "variety of orbits"; as $\tau$ induces a $k$-continuous map of $V-\bar{S}$ (cf. [W, p. 171, Th. 2]), the counterimage of $W$ on $V-\bar{S}$ is a $k$-open $G$-invariant subset $V-F$ of $V$. Then $V^{\prime}=V-F$ and $W$ (viewed as a variety) satisfy the statement of §1.

The proof of [E, Th. 5] can now also be quickly completed. Before doing so, we prefix a remark which will give a somewhat stronger version of that theorem: Let $V, W$ be (say) affine varieties defined over an algebraically closed field $k$, let $\tau$ be a rational map of $V$ into $W$ defined over $k$, and assume there exists $a$ rational map $\sigma$ of $W$ into $V$ such that $\tau \sigma=1$; then there also exists a rational map $\bar{\sigma}$ of $W$ into $V$ defined over $k$ and such that $\tau \bar{\sigma}=1$. In fact, let $\sigma$ be defined over a field $k^{\prime}$ containing $k$. Let $y$ be a generic point of $W$ over $k^{\prime}$ and $\sigma(y)=\left(\sigma_{1}(y), \cdots, \sigma_{t}(y)\right) \epsilon V$. Write $\tau \sigma(y)=y$. More explicitly one can write $\tau_{i}(x)=P_{i}(x) / Q(x)$, where $x$ is a generic point of $V$ over $k$, $P_{i}, Q$ are polynomials over $k, Q\left(\sigma_{1}(y), \cdots, \sigma_{t}(y)\right) \neq 0$, and

$$
P_{i}\left(\sigma_{1}(y), \cdots, \sigma_{t}(y)\right) / Q\left(\sigma_{1}(y), \cdots, \sigma_{t}(y)\right)=y_{i}
$$

The $\sigma_{j}(y)$ are rational functions over $k^{\prime}$. The $\sigma_{j}$, having been written out in some explicit way with a common denominator in $k^{\prime}[y]$, involve only a finite number of coefficients in $k^{\prime}$; let these, arranged in some order, be designated $\sigma$. Let $d(\sigma, y) \in k[\sigma, y]$ be the denominator mentioned. Then $d^{\rho} Q\left(\sigma_{1}(y), \cdots, \sigma_{t}(y)\right)=Q_{1}(\sigma, y)$ is a polynomial over $k$ in $\sigma, y$ for some $\rho$. Now specialize $(\sigma, y)$ over $k$ to a $k$-rational point ( $\bar{\sigma}, \bar{y}$ ) in such way that $d(\bar{\sigma}, \bar{y}) Q_{1}(\bar{\sigma}, \bar{y}) \neq 0$. A fortiori $d(\bar{\sigma}, y) Q_{1}(\bar{\sigma}, y) \neq 0$. Let $\sigma_{i}(y)=n_{i}(\sigma, y) /$ $d(\sigma, y), \bar{\sigma}_{i}(y)=n_{i}(\bar{\sigma}, y) / d(\bar{\sigma}, y)$ and let $\bar{\sigma}$ be defined by

$$
\bar{\sigma}(y)=\left(\bar{\sigma}_{1}(y), \cdots, \bar{\sigma}_{t}(y)\right)
$$

As $(\bar{\sigma}, y)$ is also a specialization of $(\sigma, y)$ over $k$, we have $\bar{\sigma}(y) \in V$ and $\tau \bar{\sigma}(y)=y$. Thus $\bar{\sigma}$ is a desired map.

Let now $G$ be a connected algebraic group operating regularly on a variety $V$ and let $k$ be an algebraically closed field of definition for $G, V$, and the operation of $G$ on $V$. Let $W$ be the "variety of orbits" and $\tau$ the natural map of $V$ into $W ; W$ and $\tau$ are also defined over $k$. Assume that for every $V$ there exists a rational map $\sigma$ of $W$ into $V$ such that $\tau \sigma=1$ (which by [ $\mathrm{R}, \mathrm{Th} .10$ ] will be the case if $G$ is solvable). Then we will show there exists a $k$-constructable (and not merely constructable) subset $C$ of $V$ such that every orbit meets the set $C$ in precisely one point. In fact, let $F$ and $W$ be as stated in the main result ( $\S 1$ ), and let $\tau: V-F \rightarrow W$. By the last paragraph we may assume $\sigma$ is defined over $k$. $\quad \sigma$ is defined except on a $k$-closed subset $G$ of $W$. Let $V-F^{\prime}$ be the inverse image of $W-G$ (under $\tau$ ). The image of $W-G$ under $\sigma$ is a $k$-constructable subset $C^{\prime}$ of $V$ contained in $V-F^{\prime}$; and every orbit in $V-F^{\prime}$ meets $C^{\prime}$ in precisely one point. Replacing $V$ by $F^{\prime}$, we would be through by induction on $\operatorname{dim} V$, except that $V$ is replaced not by a variety but by a bunch of varieties (of smaller dimension).

To meet this last point, let $V_{1}$ be a component of $F^{\prime}$. Let $g \epsilon G$ and $v$
a generic point of $V_{1}$ over $k(g)$. If $\bar{v} \in V_{1}$, then $(g, \bar{v})$ is a $k$-specialization of $(g, v)$ and $g \bar{v}$ is a $k$-specialization of $g v$, so $g V_{1}$ is in the $k$-component of $F^{\prime}$ which contains $g v$. Thus every element of $G$ carries every component of $F^{\prime}$ into, and hence also onto, another component; and the set $\left\{g V_{1} \mid g \epsilon G\right\}$ is finite. Let $H$ be the subset of $G$ leaving $V_{1}$ invariant; $H$ is obviously a subgroup of $G$. Let $\Gamma$ be the graph of the operation of $G$ on $V$. Then the expression $h v \in V_{1}$ can be written in the form

$$
\exists(y)\left(h \in G, v \in V,(h, v, y) \in \Gamma \text { and } y \in V_{1}\right),
$$

and hence is $k$-elementary. Then $\forall(v)\left(v \in V_{1} \Rightarrow h v \in V_{1}\right)$ is $k$-elementary, so $H$ is $k$-constructable. Now one proves that $H$ is $k$-closed (cf. note 6 of §4). Then $G$ is a finite union of $k$-closed sets of the form $g^{-1} H g$. As $G$ is connected, $G=g^{-1} H g$ for some $g$, whence $G=H$. Thus $V_{1}$ is invariant under $G$. Let $V_{2}$ be another component of $F^{\prime}$ and $v \in V_{1} \cap V_{2}$; then the orbit of $v$ is contained in $V_{1} \cap V_{2}$. Hence if $K$ is the set of points $P$ in $V_{1}$ and in another component of $F^{\prime}$, then $K$ is $k$-closed and for every $v \in V_{1}-K$, the orbit of $v$ is in $V_{1}-K$. By induction on $\operatorname{dim} V$, we take care of $V_{1}-K$; and then similarly the rest of $F^{\prime}$. In this way we complete the proof.

## 4. Notes and remarks

1. Our terminology is mainly that of [W]. From the definition of algebraic group, we recall that the product $g_{i} g_{j}$ of $g_{i} \epsilon G_{i}, g_{j} \epsilon G_{j}$ is given by an everywhere defined rational map of $G_{i} \times G_{j}$ into one of the components $G_{k}$; and similarly for $g_{i}^{-1}$. From the definition of operate regularly, $g_{1}\left(g_{2}(v)\right)=$ $\left(g_{1} g_{2}\right)(v)$ and $e(v)=v$ for $e$ the identity of $G$. (See [R].)
2. $G$ is said to be connected if $s=1$, i.e., if the underlying set is a variety. A subset $W$ of $V$ is said to be constructable if it is the finite union of sets each of which is the intersection of a closed set and an open set; the $k$-constructable subsets of a variety $V$ defined over $k$ are similarly defined. The complement in $V$ of a $k$-constructable set and the finite union and finite intersection of $k$-constructable sets are $k$-constructable; and the set-theoretic projection of a $k$-constructable subset of a product $V \times W$ on a factor is $k$-constructable. (See $\left[\mathrm{S}_{3}\right]$; see also [C, p. 38, Cor. to Th. 3].) The notion of solvability does not enter into our considerations.
3. The quotation marks indicate a deviation from the terminology of [W].
4. By a finite conjunction of polynomial equations and inequalities (or inequations) over $k$ we mean a finite conjunction $f_{1}\left(x_{1}, \cdots, x_{n}\right)=$ $f_{1}^{\prime}\left(x_{1}, \cdots, x_{n}\right) \quad$ and $\cdots$ and $f_{s}\left(x_{1}, \cdots, x_{n}\right)=f_{s}^{\prime}\left(x_{1}, \cdots, x_{n}\right)$ and $g_{1}\left(x_{1}, \cdots, x_{n}\right) \neq g_{1}^{\prime}\left(x_{1}, \cdots, x_{n}\right)$ and $\cdots$ and $g_{t}\left(x_{1}, \cdots, x_{n}\right) \neq$ $g_{t}^{\prime}\left(x_{1}, \cdots, x_{n}\right)$, where the $f_{i}, f_{i}^{\prime}, g_{j}, g_{j}^{\prime}$ are polynomials over $k$ and the $x_{i}$ are free variables (ranging over the universal domain $\Omega$ ). Usually a conjunction of this kind can be replaced without loss of generality by an equivalent one,
i.e., one having the same solutions; and this is frequently tacitly done. Thus we may suppose all the $f_{i}^{\prime}, g_{j}^{\prime}$ to be zero. Adjoining $0=0$ and $1 \neq 0$, we may suppose $s>0$ and $t>0$. With $t>0$ and the $g_{j}^{\prime}=0$, we may suppose $t=1$ as we replace $g_{1} \neq 0$ and $\cdots$ and $g_{t} \neq 0$ by $g_{1} \cdots g_{t} \neq 0$. The theorem being used here (above) amounts to this: the projection of a $k$-constructable set is $k$-constructable.
5. $F(v, t, Z)$ is the so-called Chow form of $\mathcal{O}(v)$, except that the Chow form is understood to be defined only up to a constant factor $\rho \neq 0$. Dropping the condition $F(V, t, Z) \in k[V, t, Z]$ (i.e., allowing it to be in $k(V)$ $[t, Z])$, we have just proved that if $F(v, t, Z)$ is the Chow form of $\mathcal{O}(v)$, then for almost all $k$-specializations $\bar{v}$ of $v$ (i.e., for all $\bar{v} \in Y$ except perhaps those lying in a proper $k$-closed subset) the coefficients of $F(v, t, Z)$ are defined at $\bar{v}, \mathcal{O}(\bar{v}) \neq \emptyset$, and $F(\bar{v}, t, Z)$ is the Chow form of $\mathcal{O}(\bar{v})$.
6. Let $d_{1}, \cdots, d_{s}$ be the denominators mentioned-they are polynomials over $k$-let $g_{1}=0, \cdots, g_{t}=0$ be a finite set of polynomial equations over $k$ for the locus $U_{\alpha}$, and let $h_{1}=0, \cdots, h_{u}=0$ be a set for $V_{\gamma}$. If $u_{0 \alpha}, v_{0 \gamma}$ are understood to vary over $U_{\alpha}, V_{\gamma}$, as will be the case later, the condition mentioned can be written as $d_{1}\left(u_{0 \gamma}, v_{0 \gamma}\right) \neq 0$ or $\cdots$ or $d_{s}\left(u_{0 \alpha}, v_{0 \gamma}\right) \neq 0$. For the present we write $\left(g_{1}\left(u_{0 \alpha}\right)=0\right.$ and $\cdots$ and $g_{t}\left(u_{0 \alpha}\right)=0$ and $h_{1}\left(v_{0 \gamma}\right)=0$ and $\cdots$ and $h_{u}\left(v_{0 \gamma}\right)=0$ and $\left.d_{1}\left(u_{0 \alpha}, v_{0 \gamma}\right) \neq 0\right)$ or $\cdots$ or $\left(g_{1}\left(u_{0 \alpha}\right)=0\right.$ and $\cdots$ and $g_{t}\left(u_{0 \alpha}\right)=0$ and $h_{1}\left(v_{0 \gamma}\right)=0$ and $\cdots$ and $h_{u}\left(v_{0 \gamma}\right)=0$ and $d_{s}\left(u_{0 \alpha}, v_{0 \gamma}\right) \neq$ 0 ). This is a desired disjunction.
7. Let $d_{1}, \cdots, d_{s}$ be the denominators mentioned in the last paragraph and let $d_{1} \tau_{\alpha \gamma \delta^{\prime}}^{(1)}, \cdots, d_{s} \tau_{\alpha \gamma \delta^{\prime}}^{(s)}$ be the corresponding numerators. Let $g_{1}=0$, $\cdots, g_{t}=0$ be a finite set of polynomial equations over $k$ defining the locus $U_{\alpha}$, and let $h_{1}=0, \cdots, h_{u}=0$ be a set for $V_{\gamma}$. Let $f(c ; \mathrm{V}, X)$ be the "general" polynomial of total degree $N$ in $\mathrm{V}, X$ with coefficients $c$. Then the statement that $x_{\delta^{\prime}} \in \mathcal{O}_{\delta^{\prime}}\left(v_{\gamma}\right)$ can be written as the following disjunction, properly quantified, for $i=1, \cdots, s:\left(g_{1}\left(u_{0 \alpha}\right) \neq 0\right.$ or $\cdots$ or $\left.g_{t}\left(u_{0_{\alpha}}\right) \neq 0\right)$ or $\left(g_{1}\left(u_{0 \alpha}\right)=0\right.$ and $\cdots$ and $g_{t}\left(u_{0 \alpha}\right)=0$ and $\left.d_{i}\left(u_{0 \alpha}, v_{\gamma}\right)=0\right)$ or $\left[\left(g_{1}\left(u_{0 \alpha}\right)=0\right.\right.$ and $\cdots$ and $g_{t}\left(u_{0 \alpha}\right)=0$ and $h_{1}\left(v_{\gamma}\right)=0$ and $\cdots$ and $h_{u}\left(v_{\gamma}\right)=0$ and $\left.d_{i}\left(u_{0 \alpha}, v_{\gamma}\right) \neq 0\right)$ and $\left(d_{i}\left(u_{0 \alpha}, v_{\gamma}\right)\right)^{N} f\left(c ; v_{\gamma}, \tau_{\alpha \gamma \delta^{\prime}}^{(i)}\left(u_{0 \alpha}, v_{\gamma}\right)\right)=0 \Rightarrow$ $\left.f\left(c, v_{\gamma}, x_{\delta^{\prime}}\right)=0\right]$. We write these, with obvious abbreviations, as $\left(g_{1}\left(u_{0 \alpha}\right) \neq\right.$ 0 or $\cdots$ or $\left.g_{t}\left(u_{0 \alpha}\right) \neq 0\right)$ or $A_{i}$ or $\left[B_{i}\right.$ and $\left.\left(C_{i} \Rightarrow D_{i}\right)\right]$, where $A_{i}, B_{i}$ are finite conjunctions of polynomial equations and inequalities over $k$ in $x_{\delta^{\prime}}, v_{\gamma}, u_{0 \alpha}$, and $c$; and $C_{i}, D_{i}$ are polynomial equations over $k$. We rewrite $A_{i}$ or $\left[B_{i}\right.$ and $\left.\left(C_{i} \Rightarrow D_{i}\right)\right]$ as $A_{i}$ or $\left[B_{i}\right.$ and $\left(D_{i}\right.$ or not $\left.\left.C_{i}\right)\right]$ and then as $A_{i}$ or [ $\left(B_{i}\right.$ and $\left.D_{i}\right)$ or $\left(B_{i}\right.$ and not $\left.C_{i}\right)$ ]. Then $g_{1}\left(u_{0 \alpha}\right) \neq 0$ or $\cdots$ or $g_{t}\left(u_{0 \alpha}\right) \neq 0$ or $A_{1}$ or ( $B_{1}$ and $D_{1}$ ) or ( $B_{1}$ and not $C_{1}$ ) or $\cdots$ or $A_{s}$ or $\left(B_{s}\right.$ and $D_{s}$ ) or ( $B_{s}$ and not $C_{s}$ ), is a desired disjunction. Of course, this disjunction is to be quantified for all $u_{0 \alpha}$ over the ambient space of $U_{\alpha}$ and over all $c$.
8. The proof shows that $a$ set $S$ is $k$-constructable if and only if for every $P$ (in $V$ ) if $P$ is not in $S$ then almost all $k$-specializations of $P$ are not in $S$ and if $P$ is in $S$ then almost all $k$-specializations of $P$ are in $S$. On the basis of this characterization one may give a simple proof that the set-theoretic projection of a $k$-constructable set is $k$-constructable. (See $\left[\mathrm{S}_{3}\right]$.)
9. The set $S$ is even $k$-closed. To show that a $k$-constructable set $S$ is $k$-closed it suffices to show that every $k$-specialization of every $P$ in $S$ is in $S$. Let, then, $v$ be in $S$ and let $\bar{v}$ be a $k$-specialization of $v$. Setting aside trivial cases, let $\mathcal{O}(v), \mathcal{O}(\bar{v})$ be $\neq \emptyset$. Let $u$ be generic for $U$ over $k(v, \bar{v})$. Then $u v, u \bar{v}$ are generic for $\mathcal{O}(v), \mathcal{O}(\bar{v})$ over $k(v, \bar{v})$; and $u v \in F$. As $(u, \bar{v})$ is a $k$-specialization of $(u, v), u \bar{v}$ is a $k$-specialization of $u v$, and $u \bar{v} \epsilon F$. Hence $\mathcal{O}(\bar{v}) \subset F$. This illustrates a useful technique for proving that a closed set is closed.
10. Compare this part of the argument with [E, p. 461].
11. The first condition, along with the second, assures us that the orbits in the $G$-invariant set $V-S$ are (relatively) closed. However, this follows also from the second condition alone (deleting the first condition). In fact, if $v_{1}$ is in the closure $\mathcal{O}(v)$ of the orbit $\mathcal{\vartheta}^{\prime}(v)$ of $v$ but not in $\mathcal{O}^{\prime}(v)$, then the orbit $\mathcal{O}^{\prime}\left(v_{1}\right)$ cannot meet $\mathcal{O}^{\prime}(v)$, hence lies in $\mathcal{O}(v)-\mathcal{O}^{\prime}(v)$, which is contained in a closed set $K$ of dimension less than $\operatorname{dim} \mathcal{O}(v)$. Then the closure $\mathcal{O}\left(v_{1}\right)$ of $\mathcal{O}^{\prime}\left(v_{1}\right)$ is contained in $K$. This is impossible, as $\operatorname{dim} \mathcal{O}\left(v_{1}\right)=\operatorname{dim} \mathcal{O}(v)$.

## References

C: C. Chevalley, Sur la théorie des variétés algébriques, Nagoya Math. J., vol. 8 (1955), pp. 1-44.
E: S. Ebey, The classification of singular points on algebraic curves, Trans. Amer. Math. Soc., vol. 118 (1965), pp. 454-471.
R: M. Rosenlicht, Some basic theorems on algebraic groups, Amer. J. Math., vol. 78 (1956), pp. 401-443.
$\mathrm{S}_{1}$ : A. Seidenberg, A new decision method for elementary algebra, Ann. of Math., vol. 60 (1954), pp. 365-374.
$\mathrm{S}_{2}$ : ——— Some remarks on Hilbert's Nullstellensatz, Arch. Math., vol. 7 (1956), pp. 235-240.
$\mathrm{S}_{3}:-$ On $k$-constructable sets, $k$-elementary formulae, and elimination theory, to appear in Crelle's J.
T: A. Tarski, $A$ decision method for elementary algebra and geometry, A Rand Corporation publication, Santa Monica, California, 1948 (2nd. ed., Berkeley, 1951).
v.d.W : B. L. van der Waerden, Zur algebraischen Geometrie 19. Grundpolynom und zugeordnete Form, Math. Ann., vol. 136 (1958), pp. 139-155.
v. d. $\mathrm{W}_{2}$ : ——, Zur algebraischen Geometrie X. Über lineare Scharen von irreduziblen Mannigfaltigkeiten, Math. Ann., vol. 113 (1937), pp. 705-712.
W: A. Weil, Foundations of algebraic geometry, 2nd edition, Amer. Math. Soc. Colloq. Publ., vol. 29, Amer. Math. Soc., Providence, R. I., 1962.


[^0]:    Received December 8, 1967.
    ${ }^{1}$ Supported in part by a National Science Foundation grant. Written in Rome, Italy, Summer, 1967.

