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Let S be the linear space of n X n real symmetric matrices and ( be the cone
of real positive definite matrices in S. Consider a linear transformation T on
S to S such that

and

(2) det (T (A) (det A )c, A e S

where c is a non-zero real constant. If M is an n X n non-singular matrix., let
T denote the linear transformation on S defined by

(3) T (A =- MAM’, A e S;

and let G denote the set of such transformations T. It is obvious that if
T e G, then T satisfies (1) and (2). Our first theorem establishes the
converse.

THEOREM 1. If T is a linear transformation on S to S satisfying (1) and (2),
then T e G.

Proof. Since T (I) e 6), there exists a B e ( such that T (I) B-tB-.
Setting U T T, we have that U satisfies (1) and (2) with c 1 and

U (I) I. Since U is linear, we have

(4) get (,I A) det (V(XI A)) det (kI U(A))

for A e S and real k. Hence, the eigenvalues of A are the same as the eigen-
values of U(A) for all A e S. Now, an inner product on S is (At, A) tr At
(tr denotes trace). If A, B e S have the same eigenvalues, it is well known
that tr A tr B. Thus, we see that

(5) (A, A)= (UA, UA) (U’UA,A)

for all A e S. Thus U’U is the identity on S (see [1, p. 138]).
RIf x e is a column vector, then xx’ e S. We also note that any positive

semi-definite matrix of rank one is of the form xx’ for some x e R and the only
non-zero eigenvalue is x’x. Further, (xx’, yy’) (x’y). Now, let et,
be the standard orthonormal basis in R. Since e e s positive semi-definite
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of rank 1 with non-zero eigenvalue equal to 1, it follows that

(6) U(ee) xx, i= 1,...,n

where x x 1. Furthermore,

(Ue

()
so hag , i 1, n is an orghono,rmal basis for R". Le 1 be he n Xn
orhogonal matrix wih i row and define V on S by V Tv U. hen V
sgisfies (1) and (2) wih c 1 and Ve e e e i 1, n, and

(7) a (az a) a ( VA).

I-Ienee ghe eigenwlues of A and VA are ghe same. Now, fix i < j. Since
(e + e.)(e + e.)’ is a rnk one posigive semidefinige matrix wih non-zero
eigenvalue equal o 2, ghere exists z such ha

(8) V(e + e)(e + ei)’ zx,

(8) can be wrigenwhere z 2. Since Ve e e e

However,

(V’V (e e), e e + e

Thus he i, i and j, j diagonal elements of V (e e:. + e. e) are 0. Using (8)
this implies that (x) (’) 1, where x is the kt element of the vector
x. Sincex’x 2, we see that x 0 for k i, k j, x 4-1 and
x 4-1. Thus we have

(9) V (e e + e. e) xx’ e e e. e = (e, e + e e).

n} u {e e + e e, i < j} forms a basis for SNoting that {e e, i 1,
we conclude that if VA C. {C}, then C -a where A {a},
o" :i:1, and , 1.
Now, let n. forj 1, n. We claim that n.. To establish

this claim, we first show that m n. By assumption, det (VA) det (A)
for all A e S. For A, choose the matrix

0

A where B1

and I is the (n 3) X (n 3) identity.

1 1
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Then

V(A) whereB2 ,2 0

and we then have det B1 det B. This yields the equation 2 1.
Since } =i= 1, we see that 72 , 2.
Now, by simply permuting rows and columns, it follows easily that ,

for all i, j. Thus if we let D e S be a diagonal matrix with ith diagonal element
,s, then

(10) VA =DAD for A e S.

Setting M B-1F’D, we have

(11) T(A) MAM’ for AeS. Q.E.D.

Let be the linear space of n X n real matrices. We want to extend the
result of the above theorem to linear transformations on oC. First, we prove
the following.

THEOREM 2. Let MI and M be two real n X n matrices such that

det (A +M) det (A + M2) for all AeS.(12)

Then
M- M. or M MP..

Proof. We first write Ms As W Ns, i 1, 2 where As is symmetric and
N is skew symmetric. Then (12) implies

(13)) det (A-t-N) det (A -A3-t-N) forall AeS

where Aa A A1 is symmetric. Now, write A3 FD01 where I’ is
orthogonal and Do is diagonal. Then (13) implies that

(14) det (A WF) det (A-t-Do-t-G) forall AeS

where F F’N and G FN F are both skew symmetric. To establish
the lemma, it is sufficient to show (14) implies that Do 0 and that F G or
F G’o

Let H Do + G and note that (14)implies

(15) det (hi + AF) det (kI + AH)

for all non-singular A e S. However, (15) shows that for each non-singular
A e S, the eigenvalues of AF are the same as the eigenvalues of AH. Thus,

(16) tr (AF)2 tr (AH)
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for all non-singular A e S and then (16) holds for all A e S by continuity.
Writing out the left hand side of (16) explicitly, we have

(17) tr (AF)

where A {aj/ and F {f}. Now, we desire the coefficient of a, ain
(17). Due to the symmetry of A {a}, there are eight subscript combina-
tions of (i, j,/c, l) which yield a contributing term to the coefficient of aaa a in
(17). These are listed below"

Subscript Combination Coefficient

i ,, , j ..,,
i , k , j , f.f
i= , = j=, =
i , k j , f
i , k , j a,

However, F is skew symmetric so thatf --f for all i and j. Using this
fact that adding the coefficients in the above table, we conclude that the co-
efficient of aaa a, in (17) is

(18)

Since (16) holds for all A e S, we conclude that

(19)

for all a, , 7, . Noting that f.. 0 and setting a 7 in (19) shows
that h.. 0 for all a. Since H h} D0 + G, D0 is diagonal, and G is skew
symmetric, it is clear that D0 0. Thus we can write (19) as

for all a, , , . Setting a and in (29), we have

Noting that f.. g.. 0 for all a, and using (20), flint with and then
th a , we have the two equations

(23)

for ull a,
Iff 0 for all and , then (21) shows that F G 0 and the lemma

is established. In the case where F 0, fix i and j such thatf 0. From

Those readers unfamiliar with continuity arguments in an algebraic setting might
consult Chapter 1 of Bellman [2].
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(22) and (23) we then have

(24) fjfi.fj gij g. g

for all a, 8, and then (21) shows that

(25) f,f g,g for all a,.
Now, setting i und j in (20) und using (25), we conclude that

(26)

Sincef g 0, it follows that

(27)

or

However, F and G are skew symmetric so that either F G or F G’. This
estublishes the theorem.

If TM G, let denote the extension of T to given by N MNM
for all N e . Also, let G denote the set of .

Let T be a linear transformation on to such thatTHEOREM 3.

(2s)

and

(29) det (TN c det N for N e 3,

where c is a non-zero real number. Then T or TW e where W is the linear
operation of transpose.

Proof. From (28) we have that T (S)

___
S. Applying Theorem 1 to the

restriction of T to S, there exists a M e G such that

(30) V T
satisfies (29) with c 1 and V(A) A for allAeS. To establish the
theorem, it is sufficient to show that V is the identity or V W on 3.

Now, for each skew symmetric matrix F, (29) implies that

(31) det (A + V(F)) det (A-t-F) for all AS

and Theorem 2 shows that either V (F) F or V (F) F’. Let denote the
linear space of all n X n skew symmetric matrices and note that 2 S - .Also let

(32) {FIFe, V(F) El, 2 {F]Fe, V(F) F’}.

It is obvious that 1 and 2 are linear manifolds with only 0 in common and
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1 2 . However, the fact that every F e is either in 1 dr 2 shows
that either 1 /0} or . {0}. This completes the proof.
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