ON LINEAR TRANSFORMATIONS WHICH PRESERVE THE DETERMINANT

BY
Morris L. Eaton ${ }^{1}$

Let S be the linear space of $n \times n$ real symmetric matrices and \mathcal{P} be the cone of real positive definite matrices in S. Consider a linear transformation T on S to S such that

$$
\begin{equation*}
T(\mathcal{P}) \subseteq \mathcal{P} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{det}(T(A))=(\operatorname{det} A) c \tag{2}
\end{equation*}
$$

where c is a non-zero real constant. If M is an $n \times n$ non-singular matrix, let T_{M} denote the linear transformation on S defined by

$$
\begin{equation*}
T_{M}(A) \equiv M A M^{\prime}, \quad A \in S \tag{3}
\end{equation*}
$$

and let G denote the set of such transformations T_{M}. It is obvious that if $T_{M} \in G$, then T_{M} satisfies (1) and (2). Our first theorem establishes the converse.

Theorem 1. If T is a linear transformation on S to S satisfying (1) and (2), then $T \epsilon G$.

Proof. Since $T(I) \in \mathscr{P}$, there exists a $B \in \mathscr{P}$ such that $T(I)=B^{-1} B^{-1}$.
Setting $U=T_{B} T$, we have that U satisfies (1) and (2) with $c=1$ and $U(I)=I$. Since U is linear, we have

$$
\begin{equation*}
\operatorname{det}(\lambda I-A)=\operatorname{det}(U(\lambda I-A))=\operatorname{det}(\lambda I-U(A)) \tag{4}
\end{equation*}
$$

for $A \epsilon S$ and real λ. Hence, the eigenvalues of A are the same as the eigenvalues of $U(A)$ for all $A \in S$. Now, an inner product on S is $\left\langle A_{1}, A_{2}\right\rangle \equiv \operatorname{tr} A_{1} \mathrm{~A}_{2}$ (tr denotes trace). If $A, B \in S$ have the same eigenvalues, it is well known that $\operatorname{tr} A^{2}=\operatorname{tr} B^{2}$. Thus, we see that

$$
\begin{equation*}
\langle A, A\rangle=\langle U A, U A\rangle=\left\langle U^{\prime} U A, A\right\rangle \tag{5}
\end{equation*}
$$

for all $A \in S$. Thus $U^{\prime} U$ is the identity on S (see [1, p. 138]).
If $x \in R^{n}$ is a column vector, then $x x^{\prime} \in S$. We also note that any positive semi-definite matrix of rank one is of the form $x x^{\prime}$ for some $x \epsilon R^{n}$ and the only non-zero eigenvalue is $x^{\prime} x$. Further, $\left\langle x x^{\prime}, y y^{\prime}\right\rangle=\left(x^{\prime} y\right)^{2}$. Now, let $\varepsilon_{1}, \cdots, \varepsilon_{n}$ be the standard orthonormal basis in R^{n}. Since $\varepsilon_{i} \varepsilon_{i}^{\prime}$ is positive semi-definite

[^0]of rank 1 with non-zero eigenvalue equal to 1 , it follows that
$$
U\left(\varepsilon_{i} \varepsilon_{i}^{\prime}\right)=x_{i} x_{i}^{\prime}, \quad i=1, \cdots, n
$$
where $x_{i}^{\prime} x_{i}=1$. Furthermore,
\[

$$
\begin{aligned}
\left(\varepsilon_{i}^{\prime} \varepsilon_{j}\right)^{2} & =\left\langle\varepsilon_{i} \varepsilon_{i}^{\prime}, \varepsilon_{j} \varepsilon_{j}^{\prime}\right\rangle=\left\langle U^{\prime} U \varepsilon_{i} \varepsilon_{i}^{\prime}, \varepsilon_{j} \varepsilon_{j}^{\prime}\right\rangle \\
& =\left\langle U \varepsilon_{i} \varepsilon_{i}^{\prime}, U \varepsilon_{j} \varepsilon_{j}^{\prime}\right\rangle=\left\langle x_{i} x_{i}^{\prime}, x_{j} x_{j}^{\prime}\right\rangle \\
& =\left(x_{i}^{\prime} x_{j}\right)^{2}
\end{aligned}
$$
\]

so that $x_{i}, i=1, \cdots, n$ is an orthonormal basis for R^{n}. Let Γ be the $n \times n$ orthogonal matrix with $i^{\text {th }}$ row x_{i}^{\prime} and define V on S by $V \equiv T_{\Gamma} U$. Then V satisfies (1) and (2) with $c=1$ and $V \varepsilon_{i} \varepsilon_{i}^{\prime}=\varepsilon_{i} \varepsilon_{i}^{\prime}, i=1, \cdots, n$, and

$$
\begin{equation*}
\operatorname{det}(\lambda I-A)=\operatorname{det}(\lambda I-V A) \tag{7}
\end{equation*}
$$

Hence the eigenvalues of A and $V A$ are the same. Now, fix $i<j$. Since $\left(\varepsilon_{i}+\varepsilon_{j}\right)\left(\varepsilon_{i}+\varepsilon_{j}\right)^{\prime}$ is a rank one positive semidefinite matrix with non-zero eigenvalue equal to 2 , there exists $x \in R^{n}$ such that

$$
\begin{equation*}
V\left(\varepsilon_{i}+\varepsilon_{j}\right)\left(\varepsilon_{i}+\varepsilon_{j}\right)^{\prime}=x x^{\prime} \tag{8}
\end{equation*}
$$

where $x^{\prime} x=2$. Since $V \varepsilon_{i} \varepsilon_{i}^{\prime}=\varepsilon_{i} \varepsilon_{i}^{\prime}$, (8) can be written

$$
x x^{\prime}=\varepsilon_{i} \varepsilon_{i}^{\prime}+\varepsilon_{j} \varepsilon_{j}^{\prime}+V\left(\varepsilon_{i} \varepsilon_{j}^{\prime}+\varepsilon_{j} \varepsilon_{i}^{\prime}\right)
$$

However,

$$
\begin{aligned}
0 & =\left\langle\varepsilon_{k} \varepsilon_{k}^{\prime}, \varepsilon_{i} \varepsilon_{j}^{\prime}+\varepsilon_{j} \varepsilon_{i}^{\prime}\right\rangle \\
& =\left\langle V^{\prime} V\left(\varepsilon_{k} \varepsilon_{k}^{\prime}\right), \varepsilon_{i} \varepsilon_{j}^{\prime}+\varepsilon_{i} \varepsilon_{i}^{\prime}\right\rangle \\
& =\left\langle\varepsilon_{k} \varepsilon_{k}^{\prime}, V\left(\varepsilon_{i} \varepsilon_{j}^{\prime}+\varepsilon_{j} \varepsilon_{i}^{\prime}\right)\right\rangle .
\end{aligned}
$$

Thus the i, i and j, j diagonal elements of $V\left(\varepsilon_{i} \varepsilon_{j}^{\prime}+\varepsilon_{j} \varepsilon_{i}^{\prime}\right)$ are 0 . Using (8) this implies that $\left(x^{(i)}\right)^{2}=\left(x^{(j)}\right)^{2}=1$, where $x^{(k)}$ is the $k^{\text {th }}$ element of the vector x. Since $x^{\prime} x=2$, we see that $x^{(k)}=0$ for $k \neq i, k \neq j, x^{(i)}= \pm 1$ and $x^{(j)}= \pm 1$. Thus we have

$$
\begin{equation*}
V\left(\varepsilon_{i} \varepsilon_{j}^{\prime}+\varepsilon_{j} \varepsilon_{i}^{\prime}\right)=x x^{\prime}-\varepsilon_{i} \varepsilon_{i}^{\prime}-\varepsilon_{j} \varepsilon_{j}^{\prime}= \pm\left(\varepsilon_{i} \varepsilon_{j}^{\prime}+\varepsilon_{j} \varepsilon_{i}^{\prime}\right) \tag{9}
\end{equation*}
$$

Noting that $\left\{\varepsilon_{i} \varepsilon_{i}^{\prime}, i=1, \cdots, n\right\} \cup\left\{\varepsilon_{i} \varepsilon_{j}^{\prime}+\varepsilon_{j} \varepsilon_{i}^{\prime}, i<j\right\}$ forms a basis for S we conclude that if $V A=C=\left\{C_{i j}\right\}$, then $C_{i j}=\xi_{i j} a_{i j}$ where $A=\left\{a_{i j}\right\}$, $\xi_{i j}= \pm 1$, and $\xi_{i i}=1$.

Now, let $\eta_{j}=\xi_{1 j}$ for $j=1, \cdots, n$. We claim that $\xi_{i j}=\eta_{i} \eta_{j}$. To establish this claim, we first show that $\xi_{23}=\eta_{2} \eta_{3}$. By assumption, $\operatorname{det}(V A)=\operatorname{det}(A)$ for all $A \in S$. For A, choose the matrix

$$
A=\left(\begin{array}{ll}
B_{1} & 0 \\
0 & I
\end{array}\right) \text { where } B_{1}=\left(\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

and I is the $(n-3) \times(n-3)$ identity.

Then

$$
V(A)=\left(\begin{array}{cc}
B_{2} & 0 \\
0 & I
\end{array}\right) \quad \text { where } B_{2}=\left(\begin{array}{ccc}
0 & \eta_{2} & \eta_{3} \\
\eta_{2} & 0 & \xi_{23} \\
\eta_{3} & \xi_{23} & 1
\end{array}\right)
$$

and we then have $\operatorname{det} B_{1}=\operatorname{det} B_{2}$. This yields the equation $\eta_{2} \eta_{3} \xi_{23}=1$. Since $\xi_{23}= \pm 1$, we see that $\eta_{2} \eta_{3}=\xi_{23}$.

Now, by simply permuting rows and columns, it follows easily that $\xi_{i j}=\eta_{i} \eta_{j}$ for all i, j. Thus if we let $D \in S$ be a diagonal matrix with $i^{\text {th }}$ diagonal element η_{i}, then

$$
\begin{equation*}
V A=D A D \quad \text { for } \quad A \in S \tag{10}
\end{equation*}
$$

Setting $M=B^{-1} \Gamma^{\prime} D$, we have

$$
\begin{equation*}
\mathrm{T}(A)=M A M^{\prime} \text { for } A \in S \tag{11}
\end{equation*}
$$

Q.E.D.

Let $\&$ be the linear space of $n \times n$ real matrices. We want to extend the result of the above theorem to linear transformations on $\&$. First, we prove the following.

Theorem 2. Let M_{1} and M_{2} be two real $n \times n$ matrices such that

$$
\begin{equation*}
\operatorname{det}\left(A+M_{1}\right)=\operatorname{det}\left(A+M_{2}\right) \text { for all } A \in S \tag{12}
\end{equation*}
$$

Then

$$
M_{1}=M_{2} \quad \text { or } \quad M_{1}=M_{2}^{\prime}
$$

Proof. We first write $M_{i}=A_{i}+N_{i}, i=1,2$ where A_{i} is symmetric and N_{i} is skew symmetric. Then (12) implies

$$
\begin{equation*}
\operatorname{det}\left(A+N_{1}\right)=\operatorname{det}\left(A+A_{3}+N_{2}\right) \text { for all } A \in S \tag{13}
\end{equation*}
$$

where $A_{3}=A_{2}-A_{1}$ is symmetric. Now, write $A_{3}=\Gamma D_{0} \Gamma^{\prime}$ where Γ is orthogonal and D_{0} is diagonal. Then (13) implies that

$$
\begin{equation*}
\operatorname{det}(A+F)=\operatorname{det}\left(A+D_{0}+G\right) \text { for all } A \in S \tag{14}
\end{equation*}
$$

where $F=\Gamma^{\prime} N_{1} \Gamma$ and $G=\Gamma^{\prime} N_{2} \Gamma$ are both skew symmetric. To establish the lemma, it is sufficient to show (14) implies that $D_{0}=0$ and that $F=G$ or $F=G^{\prime}$.

Let $H=D_{0}+G$ and note that (14) implies

$$
\begin{equation*}
\operatorname{det}(\lambda I+A F)=\operatorname{det}(\lambda I+A H) \tag{15}
\end{equation*}
$$

for all non-singular $A \in S$. However, (15) shows that for each non-singular $A \in S$, the eigenvalues of $A F$ are the same as the eigenvalues of $A H$. Thus,

$$
\begin{equation*}
\operatorname{tr}(A F)^{2}=\operatorname{tr}(A H)^{2} \tag{16}
\end{equation*}
$$

for all non-singular $A \in S$ and then (16) holds for all $A \epsilon S$ by continuity. ${ }^{2}$ Writing out the left hand side of (16) explicitly, we have

$$
\begin{equation*}
\operatorname{tr}(A F)^{2}=\sum_{i} \sum_{j} \sum_{k} \sum_{l} a_{i k} f_{k j} a_{j l} f_{l i} \tag{17}
\end{equation*}
$$

where $A=\left\{a_{i j}\right\}$ and $F=\left\{f_{i j}\right\}$. Now, we desire the coefficient of $a_{\alpha \beta} a_{\gamma \delta}$ in (17). Due to the symmetry of $A=\left\{a_{i j}\right\}$, there are eight subscript combinations of (i, j, k, l) which yield a contributing term to the coefficient of $a_{\alpha \beta} a_{\gamma \delta}$ in (17). These are listed below:

Subscript Combination			

However, F is skew symmetric so that $f_{i j}=-f_{j i}$ for all i and j. Using this fact that adding the coefficients in the above table, we conclude that the coefficient of $a_{\alpha \beta} a_{\gamma \delta}$ in (17) is

$$
\begin{equation*}
4\left\{f_{\beta \gamma} f_{\delta \alpha}+f_{\beta \delta} f_{\gamma \alpha}\right\} \tag{18}
\end{equation*}
$$

Since (16) holds for all $A \in S$, we conclude that

$$
\begin{equation*}
f_{\beta \gamma} f_{\delta \alpha}+f_{\beta \delta} \mathrm{f}_{\gamma \alpha}=h_{\beta \gamma} h_{\delta \alpha}+h_{\beta \delta} h_{\gamma \alpha} \tag{19}
\end{equation*}
$$

for all $\alpha, \beta, \gamma, \delta$. Noting that $f_{\alpha \alpha}=0$ and setting $\alpha=\beta=\gamma=\delta$ in (19) shows that $h_{\alpha \alpha}=0$ for all α. Since $H=\left\{h_{i j}\right\}=D_{0}+G, D_{0}$ is diagonal, and G is skew symmetric, it is clear that $D_{0}=0$. Thus we can write (19) as

$$
\begin{equation*}
f_{\beta \gamma} f_{\delta \alpha}+f_{\beta \delta} f_{\gamma \alpha}=g_{\beta \gamma} g_{\delta \alpha}+g_{\beta \delta} g_{\gamma \alpha} \tag{20}
\end{equation*}
$$

for all $\alpha, \beta, \gamma, \delta$. Setting $\alpha=\beta$ and $\gamma=\delta$ in (29), we have

$$
\begin{equation*}
f_{\beta \gamma}^{2}=g_{\beta \gamma}^{2} \quad \text { for all } \beta \text { and } \gamma \tag{21}
\end{equation*}
$$

Noting that $f_{\alpha \alpha}=g_{\alpha \alpha}=0$ for all α, and using (20), first with $\delta=\beta$ and then with $\alpha=\gamma$, we have the two equations

$$
\begin{align*}
& f_{\beta \gamma} f_{\beta \alpha}=g_{\beta \gamma} g_{\beta \alpha} \tag{22}\\
& f_{\beta \gamma} f_{\delta \gamma}=g_{\beta \gamma} \mathbf{g}_{\delta \gamma} \tag{23}
\end{align*}
$$

for all $\alpha, \beta, \gamma, \delta$.
If $f_{\beta \gamma}=0$ for all β and γ, then (21) shows that $F=G=0$ and the lemma is established. In the case where $F \neq 0$, fix i and j such that $f_{i j} \neq 0$. From

[^1](22) and (23) we then have
\[

$$
\begin{equation*}
f_{i j}^{2} f_{i \alpha} f_{\delta j}=g_{i j}^{2} g_{i \alpha} g_{\delta j} \tag{24}
\end{equation*}
$$

\]

for all α, δ, and then (21) shows that

$$
\begin{equation*}
f_{i \alpha} f_{\delta j}=g_{i \alpha} g_{\delta j} \quad \text { for all } \quad \alpha, \delta . \tag{25}
\end{equation*}
$$

Now, setting $\beta=i$ and $\gamma=j$ in (20) and using (25), we conclude that

$$
\begin{equation*}
f_{i j} f_{\delta \alpha}=g_{i j} g_{\delta \alpha} \text { for all } \alpha, \delta \tag{26}
\end{equation*}
$$

Since $f_{i j}^{2}=g_{i j}^{2} \neq 0$, it follows that

$$
\begin{equation*}
f_{\delta \alpha}=g_{\delta \alpha} \text { for all } \alpha, \delta \tag{27}
\end{equation*}
$$

or

$$
f_{\delta \alpha}=-g_{\delta \alpha} \text { for all } \alpha, \delta
$$

However, F and G are skew symmetric so that either $F=G$ or $F=G^{\prime}$. This establishes the theorem.

If $T_{M} \in G$, let \widetilde{T}_{M} denote the extension of T_{M} to \mathcal{L} given by $\tilde{T}_{M} N=M N M^{\prime}$ for all $N \in \mathcal{L}$. Also, let \widetilde{G} denote the set of \tilde{T}_{M}.

Theorem 3. Let T be a linear transformation on \mathfrak{L} to $\&$ such that

$$
\begin{equation*}
T(\mathcal{P}) \subset \mathcal{P} \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{det}(T N)=c \operatorname{det} N \quad \text { for } \quad N \in \mathscr{L}, \tag{29}
\end{equation*}
$$

where c is a non-zero real number. Then $T \epsilon \widetilde{G}$ or $T W \in \widetilde{G}$ where W is the linear operation of transpose.

Proof. From (28) we have that $T(S) \subseteq S$. Applying Theorem 1 to the restriction of T to S, there exists a $\tilde{T}_{M} \in \widetilde{G}$ such that

$$
\begin{equation*}
V=T \tilde{T}_{M}^{-1} \tag{30}
\end{equation*}
$$

satisfies (29) with $c=1$ and $V(A)=A$ for all $A \epsilon S$. To establish the theorem, it is sufficient to show that V is the identity or $V=W$ on \mathscr{L}.

Now, for each skew symmetric matrix F, (29) implies that

$$
\begin{equation*}
\operatorname{det}(A+V(F))=\operatorname{det}(A+F) \text { for all } A \in S \tag{31}
\end{equation*}
$$

and Theorem 2 shows that either $V(F)=F$ or $V(F)=F^{\prime}$. Let \mathfrak{F} denote the linear space of all $n \times n$ skew symmetric matrices and note that $£=S+\mathfrak{F}$. Also let

$$
\begin{equation*}
\mathfrak{F}_{1}=\{F \mid F \in \mathfrak{F}, V(F)=F\}, \quad \mathfrak{F}_{2}=\left\{F \mid F \in \mathfrak{F}, V(F)=F^{\prime}\right\} \tag{32}
\end{equation*}
$$

It is obvious that \mathfrak{F}_{1} and \mathfrak{F}_{2} are linear manifolds with only 0 in common and
$\mathfrak{F}_{1}+\mathfrak{F}_{2}=\mathfrak{F}$. However, the fact that every $F \epsilon \mathfrak{F}$ is either in \mathfrak{F}_{1} or \mathfrak{F}_{2} shows that either $\mathfrak{F}_{1}=\{0\}$ or $\mathfrak{F}_{2}=\{0\}$. This completes the proof.

References

1. P. R. Halmos, Finite-dimensional vector spaces, second edition, Van Nostrand, Princeton, 1958.
2. R. Bellman, Matrix analysis, McGraw-Hill, New York, 1960.

University of Chicago
Chicago, Illinois

[^0]: Received December 7, 1967.
 ${ }^{1}$ This research was supported in part by a research grant from the Division of Mathematical, Physical and Engineering Sciences of the National Science Foundation, and in part by the Army Research Office, Office of Naval Research, and Air Force Office of Scientific Research.

[^1]: ${ }^{2}$ Those readers unfamiliar with continuity arguments in an algebraic setting might consult Chapter 1 of Bellman [2].

