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Introduction

A loop is set, L, with one binary operation,., with the property that the
mppings R" y -- y. x nd L" y x.y re permutations of L for each x in
L nd with n element 1 for which R nd L re the identity. The multipli-
cation group of L, 9, is the group of permutations of L generated by the set
of mppings R nd L for x in L. A given group my be the multiplication
group of several loops, so that it is generally impossible to recapture loop L
from knowledge of . Certain conditions on 9, however, impose re-
strictions sufficient to determine L to within smll rnge of possibilities.
This pper contains results connected with the problem of determining such
conditions together with n ccount of some fmilies of simple loops nd simple
lgebrs which rise in connection with the problem.
In Section 1 we consider coset groupoids, hybrid of fctor groups nd sets

of translations in . The min results give necessary snd sufficient con-
ditions that coset groupoid rising from s group be loop.
The next section dels with relations between the normal structure of

finite loop nd the structure of . We show that is nilpotent if nd
only if L is direct product of nilpotent loops of prime-power orders. If L is
solvable, need not be solvable, but if L is nilpotent, then 9 is solvable
(lthough not necessarily nilpotent). If L is finite Moufng loop nd if 9
is solvable, then L is solvable. The remainder of the pper stems fromn effort
to prove similar result without the Moufng condition. We succeed in re-
placing "Moufng" by "lterntive".
Suppose that L is finite simple loop whose multiplication group contains n

belin normal subgroup. In Section 3 we show that L cn be constructed
from type of non-ssocitive lgebr in nturl wy. We cll loops ob-
tained from such lgebrs linear loops. The next two sections give complete
description of the finite simple linear loops of dimensions 1, 2 nd 3 (1-dimen-
sional ones re trivial, nd there re no 2-dimensional ones) nd summarize the
bsic fcts bout the utomorphisms nd multiplication groups ofthe 3-dimen-
sional ones. Finally, there is discussion in Section 6 of the difficulities to be
encountered in hndling higher-dimensional cses.
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1. Coset groupoids
Let L be a loop with multiplication group !IJL and inner mapping group.

(Unexplained notation is that of [2] or of [6] ). !gt is a transitive permutation
group on L and (L is the subgroup fixing the element 1. The set
R {R Ix e L} forms a right transversal of , in 9)t. For each x in L,
R is the unique member of R sending 1 to x, R R and R agree on 1 and
a knowledge of the particular permutations in R,, is enough to determine the
multiplication table of L.
With this situation in mind, we define a (right) coset groupoid to be a

groupoid (L, with an element 1 such that 1 x x for all x and with the
property that for each x in L the translation R y y x is a permutation of
L. If L is a coset groupoid let R, {Rx Ix e L}, let ,, be the group of all
permutations of L and let 9 be the subgroup of L generated by R. If
G <_ let G1 be the subgroup of G fixing 1. The following facts are easy to
check.

PROPOSITION 1. (I) If G is a group with subgroup H and if G is a (right)
transversal of H in G define o on G by x o y e Hxy n G. Then (G, o) is a coset
groupoid.

(II) If (L, ) is a coset groupoid and if >_ G >_ 9r, then R is a trans-
versal of G1 in G. If o is defined on R as in (I), then the mapping x -- R is an
isomorphism of (L, onto (Rz, o).

This proposition shows that coset groupoids are precisely transversals with
an obvious multiplication. Since choice of representatives of H in G is not
"canonical," we do not generally get a "canonical" way of multiplying cosets
of H in G. The obvious exception is the case in which H <:l G.
Loops are clearly coset groupoids. Every loop is a coset groupoid for the

pair (9J,,, ,,), by (II). If G is a group with subgroup H, which loops can
have G as multiplication group and H as inner mapping group? We consider
the more general question of which loops can be coset groupoids of the pair
(G, H). The proof of the following proposition is straightforward.

PROPOSITION 2. Under the hypotheses of Proposition 1, (G, o) is a quasi-
group if and only if G is a transversal for every conjugate of H, and (G, o has a
two-sided identity if and only if the representative of the coset H belongs to every
conjugate of H.

PROPOSITION 3. Let n be finite. If T is a subset of the symmetric group S,
which has n elements, then T is a transversal for every conjugate of (S,)1 in S, if
and only if T is transitive.

For example, in Sa there are exactly two transitive subsets of order 3, the
set of 2-cycles and A. Under o they yield the two quasigroups of order 3 with
left identity.



Proof of Proposition 3. Since T[ n, T is transitive on 1, n/if and
only if for every a and b in 1, n} no two members of T send a to b. And
T is a transversal of x-1 (S)1 x if and only if no two members of T send lx to
the same place. The result follows.

The next result is straightforward to prove.

PROIOSITION 4. Let G be a transitive subgroup of S,.
(I) If (G, o) is a loop, then the non-identity elements of G are regular (i.e.,

have no fixed points).
(II) If 1 e S

_
G, if S n and if the subgroup of G generated by S con-

sists of regular elements (together with 1), then the identity function is an iso-
morphism of (S, o) onto (S, ).

In particular, if G is a Frobenius group of degree n, then by (I) the only
loops (G, o) which can possibly arise are made from the Frobenius kernel K of
G and by (II) the only one is the group K itself.

If G is the alternating group A5 viewed as a transitive subgroup of $6, then
the regular elements are the products of disioint 3-cycles, and no five of them
together with 1 form a transitive subset of G. It follows that there is no
transversal of G1 in G which is a loop of order 6 under o. Thus not every
permutation group of degree n has an associated loop of order n. On the other
hand, every loop of order n is a coset groupoid for Sn, by Proposition 1 (II).
Loop properties can be translated straightforwardly into conditions on

transversals. Some examples (in the notation of Proposition 1) are:

(i) (G, is commutative if and only if (a1, b1) e H for all a and b in G;
(ii) (G, o) has the R.I.P. if and only if for each a in G there exists b in G

with ab xHx-1;
(iii) (G, o) has the L.I.P. if and only if a o b aHb for all a and b in G.

2. Relations between the normal structures of L and

If L is a direct product (or sum) of subloops {L(i)I i I} then !FL is the
direct product (respectively, sum) of/L()] i e I}. By Lemma 2.2, p. 98 [2],
if L is a finite loop then L is (centrally) nilpotent of p-power order if and only
if !gt is a p-group. It follows that if L is a direct product of finitely many nil-
potent finite p-loops then L is nilpotent. In fact, we have the following.

THEOREM 1. If L is a finite loop, then L is a direct product of nilpotent loops
of prime-power orders if and only ifJ is nilpotent.

Proof. We prove the remaining implication by induction on lL !. Say
!l X with a non-trivial Sylow subgroup. Let P 1 and Q 1.
Now P is [’ n I, a p-power, Qlis prime to p and P and Q are normal
inL. Hence, PnQ 1. ForH__Llet

H* {0 e JL xO e Hxf x e LI
(see Lemma 1.3, p. 62, [2]). We need the following to complete the proof.
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PROPOSITION 5. If L is a loop, if ?I ( , and if 1I 1 1, then
(l)*and (1)*.

Proof. Clearly, (1)* and (1)*. Since

[()* ()*] ()* ()* 1,

then (1)* (1)* . But (1)* a (1)* nd is coreless.
Hence, (1)* a (1)* 1. It follows that (1)* and (1)*.
Now in the proof of the theorem, we hve P* and Q*,

/P* , und we muy ussume inductively that LIP is a direct
product of lpoteat q-loops for primes q other than p, nd hence that L’Q]
is ap-power. Then ]L:PQ] 1, so that L P X Q. The result now
follows by induction.

Since fite dissociative nilpotent loops are direct products of p-loops
(Corollary, p. 404 of [6] ), Theorem I yields the following.

COnOLAaY. If L is a finite diassociative loop, then L is centrally nilpotent
if and only if is nilpotent.

The construction t the end of Section 2 of [6] yields commutative, power-
ssociutive, lpotent loop which is not the direct product of p-loops and hence
does not have a lpotent multiplication group. We can, however, show the
follong.

TEOEM 2. If L is a finite nilpotent loop, then is solvable.

Proof. We actually prove slightly more. Suppose that 1 N L. The
cosets Nx re blocks for the permutation group , N* is the kernel of the
canocl homomorphism of into nd for euch x restriction of N* to
Nx yields homomorphism 0 of N* into the group of permutations of Nx.
Moreover, N* is subdirect product of the various image groups N*/Ker
Now Ker 0 is the set of members of N* fixing ech nx in Nx and hence is

N* (RR)-RR n e N}.
But ts subgroup is conjugate to N*a -R R n e N} W, the largest
normal subgroup of N* in N*. Thus N* is solvable if and only if each
N*/Ker 0 is solvableand they all look like N*/W.
LetR {RneN} . ThenRN*. Hence,<R> N*andre-

striction to N yields a homomorphism of <R> into with kernel <R> W.
If it is true that <R> W N*, then N*/W is a subquotient of.
To prove the theorem we use induction on the nilpotency class of L and

suppose N Z(L). Then /N* is solvable, W<R>/W is abelian,
W n N*, W R N* and hence N* is solvable.
The same proof also shows that if N L, if L is solvable, if N[ 4 and

if/ is solvable then is solvable. For in ts case N*/W is a subgroup
of the solvable group S. Ts shows that

if L has chief factors of order at most 4, then is solvable.



The condition NI
_

4 is necessary here. There is a solvable power-associ-
ative loop of order 10 with a subgroup of order 5 whose multiplication group
contains the symmetric group $5. A worse example may be constructed as
follows. In the notation of Section 2 of [6], let C be cyclic of order 5 and let H
be a Klein 4-group with elements e, a, b and c. To specify G we need only
give the operations *h.k for h and k in H. Let *a,b be ordinary addition, let
b. be as in Figure 1, let *a,c be arbitrary and let *h.k *,h Then G is a
commutative, power-associative solvable loop of order 20 in which every
element lies in a cyclic subgroup of order 10. However, the group generated
by R(,). R Ra,) and (,) is isomorphic to $5, so that F is not solvable.

*b.c 0 1 2 3 4

1 2 3 4 0
4 1 0 2 3
3 4 1 0 2
0 3 2 1 4
2 0 4 3 1

FIGURE 1

These examples and Theorems 1 and 2 suggest that, in terms of normal
structure, a loop is generally nicer than its multiplication group. If )L is
good, then L should be even better. The rest of the paper is concerned with
topics which arise in connection with the following coniecture.

If }L is solvable, then L is solvable.

(A solvable loop is one which has abelian groups as composition factors.) We
show, among other things, that if L has an abelian normal subgroup and L
is simple and not solvable then L is very special.

Let L be a loop with subloops H and K with K <:1 H. Let

and let
@L(H) <R, L ]h ell>

_ .
((L/K) is the group K* used above.) @(H) normalizes (H/K) and
the mapping p of L (H/K) @(H) into/ (the group of permutations of
H/K) given by (Kh) (Op) K (hO) is a homomorphism onto Yn/ with kernel
(H/K). Thus . (R) (H)/@ (H) (H/K),
a homomorphic image of a subgroup of. In particular, if is nilpotent
or solvable, so is
In case K <:l L, L(L/K) avoids the quotient @.(H)/@(H) L(H/K),

so that / is a homomorphic image of @(H)- (L/K)/L(L/K). If
both H and K are normal in L it follows that/ is a quotient of H*/K*.

Suppose now that H is a minimal normal subloop of L. If W is a minimal
normal subloop of (L/H), then since 1W L and 1W 1, 1W H and
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HI ]W:n W ], divisor of }W 1. As consequence we hve the
following.

PROPOSTIO 6. If L is a finite loop with solvable, then the chief factors
of L have prime-power orders, and for each minimal normal subloop H of L,

(L/H) has an elementary abelian p-group as is socle, where H has p-power
order.

As we shll see, there exist nonsolvble loops stisfying the conclusion of
Proposition 6. It follows from the discussion bove, however, that if 9 is
solvable the composition fctors of L lso hve prime-power orders nd solvable
multiplication groups. We would thus like to show that if L is simple loop
nd if Ft is solvable, then L is cyclic group.

In t least one cse Proposition 6 provides the desired result. A Flouring
loop of prime-power order is nilpotent (Glubermn nd Wright [3] nd [4] ),
so that we hve the following.

THEOREM 3. If L is a finite Moufang loop and if )% is solvable, then L is
solvable.

To ttck the general cse we need more mchinery.

3. Linear loops
PROPOSITION 7. Let L be a loop. L is simple if and only if is a primitive

permutation group on L.

Proof. This is essentially Theorem 8, p. 516, [1].

COrOLLArY. If L is a finite simple loop and if9 contains an abelian mini-
mal normal subgroup A, hen ILl A I, A is he unique minimal normal sub-
group of9 and A acs regularly on L.

THEOREM 4:. Let (L, be a finite simple loop such that contains an
abelian normal subgroup. Then there is a simple (nonassociative) algebra,
(A, +, ), over afield of prime order satisfying

(1) a b a only if a O and a b b only if b 0

and such that, if a o b a + b a b, then (A, o) is a loop isomorphic to (L, )
and 9)% is imbedded in the alne group on A with a subgroup of the general
linear group on A.

Proof. By the Corollary to Proposition 7, Fhs unique minimal normul
subgroup, A, nd for ech x in L there is unique x in A such that lxa x.
Write the operation of A inherited from Ft dditively, so that (A, + )is
vector spce over GF (p) for some prime p. cts fithfully by conjugation
s non-singular linear transformations of (A, + ).

Define from 9% to by x (a) (xa) for x in L nd a in. Then

x(()) (x) (x) (t) z () (),
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so that is a homomorphism. Clearly is monic. For a e L, x (a)
(xa) a-lxa, and hence L is contained in GL(A). For y in L,
x (y ) x W y, so that A is the group of translations of A and hence
embeds M in Aft (A).
Now define o on A by x o y (x. y), so that (A, o) is isomorphic to

(L, ), and define xa y x y (x y). For x in L let x 0 R,
so that 0. Now

)--10--1]
--1 --1y yA[(T O )m]

y.(1 ),

where r e GL(A). Similarly, x y x (1 (0-)). Hence, is bilinear
and (A, --, is an algebra over GF (p).
Ifx.y x,then0 y x oy y. (xy) so that xy y.

But then x 1, so that x 0. Thus and similarly (A, -, satisfies (1).
Finally, (A, , ) is a simple algebra, since if B is an ideal of A, then B is a

normal subloop of A.
If (A, , is an algebra over the field K, then we may define o on A by

a o b a b a b as in the theorem and in ring theory, and we could define
quasi-regularity as in ring theory. However, the quasi-regular elements may
not form a groupoid, let alone a loop. For example, let

A <x,y[x x y,xy yx 0>.

Then x is not quasi-regular, but y and -y are, and y o (-y) x.
The condition (1) on (A, --, is equivalent to right and left cancellation

in (A, o) and is a consequence of the fact that

(2) y --> y xy and y -- y yx are permutations of A.

(In fact, these mappings are linear automorphisms of (A, + ).

PROPOSITION 8. (A, o) is a loop if and only if (A, --, satisfies (2).

Call a loop (A, o) obtained in this way from an algebra satisfying (2)a
linear loop.

If we define a unit of an algebra A to be an element x such that y -- x. y and
y -- y x are permutations of A, then an algebra satisfies (2) precisely if it can
be embedded as the unique maximal ideal of non-units in an algebra with 1.
(To see this, embed A in K @ A, where

(, x) (’, x’) (k’, kx’ + k’x + x. x’).)

Hence, the study of algebras with (2) may be viewed as the study of radicals
of certain "completely primary" algebras. Although most of what follows
would be true for algebras over division rings, we are interested primarily in
finite loops and so restrict consideration to algebras over fields.
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In view of Propositions 6 and 7 and Theorem 3, we would like to show that
simple linear loops of certain kinds are, in fact, cyclic groups. Note that
(a,b,c) lin (A if and only if [a b] c a.[b.c]in (A,.)andsimi-
larly (a, b) 1 if and only if a. b b a. In particular, (A, o) is power-
associative, diassociative or commutative precisely if (A, is.
A finite-dimensional power-associative algebra satisfying (1) is a nilalgebra,

X
k

X
k+n

X
k’since a relation 0 a0 + + a with a0 0 gives

X
k

6 <xk+l
a contradiction of (1). If A is a finite-dimensional algebra satisfying (1) and
the alternative laws yx. x y. x and x.xy x.y, then A is power-
associative, by Theorem 3.1 of [5], so that (A, +, is nilpotent, by Theorem
3.2 of [5]. But then A A 0 if A is simple. A consequence of these re-
marks is the following theorem which includes Theorem 3 as a special case.

TI-IEOREM 5. Let L be a finite loop. If
(y, x, x) 1 (x, x, y) for all x and y in L

and if ML is solvable, then L is solvable.

Before we study linear loops in more detail it may be worthwhile to look
at some "nonlinear" simple loops obtained in a related way.

PROPOSITION 9. Let V be a 2-dimensional vector space over the finite field K.
Suppose that 0 is a function from V to V satisfying

(i) if u, v e V, then uO vO or uO vO e K (u v ),
(ii) O0 O, and
(iii) VOn[(--1,0) +g(0,1)] 0.

For u in V, if uO (a, b) let

Ru Tu I-Ru
0

and define o on V by u ov uT + . Then (V, o) is a loop.

The proof is straightforward. It will follow from results below that these
loops (if simple) cannot be linear loops over K.
There really are functions 0 satisfying (i), (ii) and (iii). For example, if
K >- 4 let , u, , e K with 0, u {0, 1, 2}, and let S be a non-empty

set of units of K. Define 0 on K X K by

(c,),c+c+s)0 (,v),-vtc) for s in S
and by

(c, d )O (O, uc if d,c-t-c-t-S.
Then

(a, b o (c, Xc + + s) (a W c + ,a, b + )c + + s + ,ka + ,ac)
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and
(a, b)o (c, d) (a -4- c, b -4- d ,gac) if d Xc + tc + S.

(The condition -2 is necessary to prevent (a, Xa -t- #a2) a e K} from
being a normal subloop.) If K has prime order, such loops are simple and
possess lots of subgroups or very few, depending on whether S is large or
small. There is no such function 0 if K is 2 or 3.

4. 1- and 2-dimensional linear loops
IfA is a linear loop over K and ifA A < A, then either A A 0, in which

case (A, o) is just the abelian group (A, + ), or A A is a proper normal sub-
loop. We are looking for simple linear loops, so that we consider only loopsA
for whichA.A A. (There isalinearloopA for whichA.A A >
Z (A) > 0, so that A A A is not a sufficient condition for simplicity of A. )
A linear loop A of dimension 1 must have A A 0, since x A x for

x 0. Suppose that A is a 2-dimensional linear loop. We claim that A is
not simple. A short, ad hoc argument would work here, but we prefer to
illustrate the general methods, beginning with a fact about multilinear
mappings.

LEMMA. If V is a vector space over the field K of dimension m, then for each
positive integer n there is an alternating multilinear map

,,.V’W,
where W is ()-dimensional, such that , @1,
xl x,} is dependent

x,) 0 if and only if

Proof. If n > m let o, 0. Suppose that n _< m. Let B be an ordered
basis for V. Let W be a vector space over K with basis C {c} indexed by
the n-element subsets, a, of B. For each such a let A be the matrix whose
first n rows are Xl, x, in terms of B and whose last m n rows are the
members of B a listed in order. Let a det (A) and let

,(xx x,) Eac.
From now on, we shall denote (x, ..., x) by <<xl, ..., x>>.
If A is a linear loop, then A x < A for every x in A. Hence, if A isn-dimen-

sional

(3) <<Xx.X, ...,x.x>> 0 /x, .--,x, eA,
and similarly, by symmetry,

(3’) <<x.xl, ..-,x.x,>> 0 Vx, ...,x,A.
We can exploit multilinearity to get dependence relations among the

products x.y in A.A. After gleaning what we can from (3) and (3’),
we may also use the fact that, since x A x for x 0, a relation

o x,)
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would force ax O. Thus, and symmetrically,

(4) <<x- x x, ..., x. x x.>> 0

and

(4’) <<x x x, x x x>> 0

for all x in A and all {xl, x} independent.
We apply (3) and (3’) to the 2-dimensional case and obtain

0 (axx flxy, ayx yy, 0 ((axx yx, axy yy
for all a, e K, x, y e A. Hence, by multilinearity,

(5) 0 <<xx,

(6) 0 <<xx, yy>> <<xy,

(7) 0 <<xx, xy>>

for all x, y e A. If xx 0 for some x in A, then by (5), yx <xx> (from now
on, "<S>" denotes the space spanned by S); by (7), xy <xx> so that
<<xy, yx>> 0; and by (6), yy e <xx>. If <x, y> A, then

A A <xx, xy, yx, yy> <xx> A,

so that A is not simple. The only other possibility is that xx 0 for all x
in A. Then (3) and (3’) are no help. But if A <x, y>, then for all a, e K,
by (4),

0 <<axx xy x, ayx - yy

<<xy x, ayx y>>

a<<xy x, yx>> + <<xy x, -y>>,

so that for all , 0 <<xy x, yx>> and 0 <<xy x, -y>>. Hence,

0 <<xy, yx>>, 0 <<x, yx>>, 0 <<xy, -y>> + <<-x,

Thus 0 <<xy, -y>>, so that yx e <x>, xy e <y>. However, 0 (x -t- y)2
xy + yx, so that xy yx 0 for all x and y and A A 0. This argument,
together with our earlier remarks, establishes the following.

PROPOSITION 10. There are no non-abelian simple linear loops of dimensions
1 and 2.

5. The three-dimensional case

The analysis of simple 3-dimensional linear loops is considerably more
complex than that of 1- and 2-dimensional loops and involves lengthy com-
putations. We list here only the maior mileposts and the end results. Again
we begin by considering (3) and (3’). Our first goal is to show that if A is a
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3-dimensional linear loop, then either

(i)
(ii)
(ii’)
(iii)

xx O for all x in A,
x.A 0forsomex 0,
A.x 0forsomex 0or
A.A<A.

We suppose all four conditions fail, show first that we can choose a basis
{x, y, z} such that yz 0 and yx and xz are independent, and after appealing
to (3) and (3’) show that the possibilities for A must be limited. In fact, A
has constants of structure given by

x y z

xx Gxx -{-- Pxz xz
yx Gyx -{-- Hxz 0

Fxx -t- Lyx (GF HE)xx -+- (GL -- PE)yx -- (PF "l- HL)xz Eyx + Fxz

with H, E # 0. Such an algebra need not satisfy one of (i), .-., (iii),
however, and to show that one of them holds we must use (4) and (4’). A
few pages of computations give the desired result.
Now of course a simple linear loop cannot satisfy (iii), and a short argu-

ment shows that (i) also cannot hold for a simple algebra satisfying (2). We
are thus left with (ii) and (ii’), and consider only (ii).
A few pages of carefully selected computations show that in this case it is

possible to choose a basis {x, y, z} such that the multiplication in A is given
by the table

x y z

(8)
0 ax + ez sx -t" fy -l- gz
0 dx x
0 hx 0

where the constants of structure are arbitrary in K subject to the conditions
(implied by (4) and (4’)) that

X2ef + Xg 1 and X2f-t- XY(df-t- gh) + Yeh-t--Xs-t-- Ya- 1

are irreducible polynomials over K for every Y in K. If K is finite, the second
of these conditions implies that (gh -t- df) 4feb and 2(gh df)s 4af,
and it is possible to write the table as

x y z

(9)
0 stx -t- bfz sx --1- fy + cfz
0 [2t- c(t/b)]x x
0 (t’/b)x 0

where Xb + Xc 1 and Xf + Xs 1 are irreducible over K. (If ef O,
then A A < A. Thus we suppose that ef 0 and hence that bf 0.)
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An algebra, A, given by (9) does determine a loop satisfying A. A A
and v A A v 0 only if v 0. Note that <x> is the left nucleus, Nx,
and that N, No 0 unless 0, in which case N, <y> and Nx <z>.
Note also that the non-simple loops which we have discarded need not be

groups. For example, the loop given by

x y z

x 0 0 0
y 0 x 0
z 0 0 y

is not associative even though it is commutative and endowed with a center.
To compute ,, where A is given by (9), we look at the mappings

’a--y.a and p’a--a.y foryinA.

It is easy to check that is generated by the mappings ?, kz kz-1, p p p-t and
pu },-1 for y and z in A. A moderate amount of computation shows that
contains all matrices I + aE for a in K and i j and hence con-
tains SL(3, K). The determinants of the members of form a subgroup D
of K generated by the elements 1 ca ba and 1 sa fa as a ranges
over K. If K is finite, D is the group of units of K and , GL(3, K).
If K is infinite, D may be much smaller than K. In the finite case,
)t Aft(3, K), so that )h acts primitively on A and A is simple. We
may summarize the finite results.

THEOREM 5. If A is a finite, centerless, 3-dimensional linear loop over the
field K, and if A. A A, then A is given by (9) (or its opposite algebra)
for suitable constants in K, A is simple, and t Aft (3, K).

Since A may or may not have trivial left nucleus, we see that the loops, A,
which have )h Aft(3, K) are not all isotopic.
The automorphisms of a finite linear loop A of type (9) over the field K

with Galois group @ (K) over its prime field are the semi-linear transforma-
tions of the form

ai2e 0 0

ade 0

0 (rd

where a e @ (K), fixes st, t/b, s/f, c/b and (if ct O) t/c and where d and
e satisfy sz s d, ca ce, f(r f d, ba be and tz te. Hence, the auto-
morphism group of A is of the form H X T where H is a (cyclic) factor
group of @ (K) and T is a subgroup of the Klein 4-group whose size depends
on which of s, c and are trivial. In particular, it can easily happen that A
has no non-trivial automorphism. Such is the case if K GF (p) and sc O.
An infinite linear loop of type (9) may have other sorts of automorphisms.
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For example, if K Q (x/3) (Q the rational field) and if b 2 + v/3 f t,
s 0 and c 2 2b, then b lib generates @(K), and the loop has
an automorphism of order 2 given by-- (lib) 0

0 --. 2/(b- b)
0 --. (b + 1)/(b b2)

. (b+ 1)/(b3- b2)
. 2/(b 1)

Even in the infinite case, however, the automorphism group is a group of
semi-linear transformations which is an extension of a subgroup of K4 by a
quotient of @(K).

6. Higher-dimensional linear loops
Any field K over which there is an irreducible quadratic polynomial can be

used to construct loops of form (9). Hence, if K is n-dimensional over F and
there is an irreducible quadratic polynomial over K we can obtain simple
3n-dimensional linear loops over F. Aside from this obvious device, there
seems to be no easy way of constructing simple linear loops of dimension 4 or
more. Conditions (3) and (3’) still yield relations on the constants of struc-
ture which are comparatively easy to deal with. In the n-dimensional case
with basis {xl, "", Xn}, if we write x al xl + + a x, then (4) and
(4’) become statements that certain polynomial equations in a, -.., am
have no solutions. The equations which arise are of degree n in general,
but by comparison with the polynomials in (3) and (3’) they reduce to degree
n 1. Thus, except in special cases, (4) and (4) given conditions on the
constants of structure expressed as conditions that certain polynomial equa-
tions of degree n 1 have no solutions, and it is by no means easy to deter-
mine which (if any) constants satisfy the conditions.
By imposing additional restrictions on the desired loops one may be able

to depress the degrees of the polynomials involved. For example, the condi-
tions (4) and (4’) on a 4-dimensional commutative linear loop involve
insolvability of quadratic equations and can be shown to conflict with an
assumption of simplicity. I conjecture that there are no finite simple
power-associative linear loops and hence that if L is finite and power-
associative and) is solvable, then L is solvable.
In every case which I have examined it has been necessary to invoke (4) or

(4) as well as (3) and (3’) in order to settle matters. In view of this ex-
perience and the additionM complexities which arise with higher dimensions
it seems most likely that extension of the analysis to higher dimensions will
be most successful in cses in which additional restrictions besides simplicity
are imposed upon the loops.
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