ON THE MULTIPLICATION GROUP OF A LOOP

BY
C. R. B. WrigHT"

Intfroduction

A loop is a set, L, with one binary operation, -, with the property that the
mappings R, : y — y-x and L, : y — -y are permutations of L for each « in
L and with an element 1 for which R, and L, are the identity. The multipli-
cation group of L, My , is the group of permutations of L generated by the set
of mappings R, and L, for z in L. A given group may be the multiplication
group of several loops, so that it is generally impossible to recapture a loop L
from a knowledge of M. . Certain conditions on Iy, however, impose re-
strictions sufficient to determine L to within a small range of possibilities.
This paper contains results connected with the problem of determining such
conditions together with an account of some families of simple loops and simple
algebras which arise in connection with the problem.

In Section 1 we consider coset groupoids, a hybrid of factor groups and sets
of translations in M. The main results give necessary and sufficient con-
ditions that a coset groupoid arising from a group be a loop.

The next section deals with relations between the normal structure of a
finite loop and the structure of M. We show that I, is nilpotent if and
only if L is a direct produet of nilpotent loops of prime-power orders. If L is
solvable, M. need not be solvable, but if L is nilpotent, then M. is solvable
(although not necessarily nilpotent). If L is a finite Moufang loop and if 9.
is solvable, then L is solvable. The remainder of the paper stems from an effort
to prove a similar result without the Moufang condition. We succeed in re-
placing “Moufang” by ‘““alternative’.

Suppose that L is a finite simple loop whose multiplication group contains an
abelian normal subgroup. In Section 3 we show that L can be constructed
from a type of non-associative algebra in a natural way. We call loops ob-
tained from such algebras linear loops. The next two sections give a complete
description of the finite simple linear loops of dimensions 1, 2 and 3 (1-dimen-
sional ones are trivial, and there are no 2-dimensional ones) and summarize the
basic facts about the automorphisms and multiplication groups of the 3-dimen-
sional ones. Finally, there is a discussion in Section 6 of the difficulities to be
encountered in handling higher-dimensional cases.
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1. Coset groupoids

Let L be a loop with multiplication group x and inner mapping group . .
(Unexplained notation is that of [2] or of [6]). My is a transitive permutation
group on L and & is the subgroup fixing the element 1. The set
Ry = {R.|zeL} forms a right transversal of & in M. For each z in L,
R. is the unique member of Ry sending 1 to 2, R, - R, and R., agree on 1 and
a knowledge of the particular permutations in Ry is enough to determine the
multiplication table of L.

With this situation in mind, we define a (right) coset groupoid to be a
groupoid (L, -) with an element 1 such that 1 -z = z for all  and with the
property that for each « in L the translation R, : y — y - = is a permutation of
L. If Lis a coset groupoid let B, = {R.|x e L}, let & be the group of all
permutations of L and let N1 be the subgroup of &, generated by R.. If
G < & let G1 be the subgroup of G fixing 1. The following facts are easy to
check.

ProrositioN 1. (I) If G is a group with subgroup H and iof G is a (right)
transversal of H in G define o on G by xoye Hryn G. Then (G, o) 78 a coset
groupotid.

(A1) If (L, - ) is a coset groupoid and if S, > G > Ry, then Ry is a trans-
versal of G1in G. If o is defined on Ry as in (1), then the mapping x — R is an
isomorphism of (L, - ) onto (Rr, °).

This proposition shows that coset groupoids are precisely transversals with
an obvious multiplication. Since choice of representatives of H in G is not
“canonical,”” we do not generally get a “‘canonical” way of multiplying cosets
of H in G. The obvious exception is the case in which H < G.

Loops are clearly coset groupoids. Every loop is a coset groupoid for the
pair (Mz, J), by (AI). If G is a group with subgroup H, which loops can
have G as multiplication group and H as inner mapping group? We consider
the more general question of which loops can be coset groupoids of the pair
(G, H). The proof of the following proposition is straightforward.

ProrosiTioN 2. Under the hypotheses of Proposition 1, (G, °) is a quasi-
group if and only if G is a transversal for every conjugate of H, and (G, °) has a
two-sided identity if and only if the representative of the coset H belongs to every
conjugate of H.

ProprosITION 3. Let n be finite. If T <s a subset of the symmetric group S
which has n elements, then T is a transversal for every conjugate of (Sa)1tn Sn of
and only if T s transttive.

For example, in S; there are exactly two trapsitive subsets of order 3, the
set of 2-cycles and A;. Under o they yield the two quasigroups of order 3 with
left identity.
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Proof of Proposition 3. Since | T'| = n, T is transitive on {1, - - - , n} if and
only if for every @ and bin {1, - - - , n} no two members of T'send a to b. And
T is a transversal of 2" (S, )1z if and only if no two members of T' send 1z to
the same place. The result follows.

The next result is straightforward to prove.

Prorosirion 4. Let G be a transitive subgroup of Sa .
@) If (G, o) s a loop, then the non-identity elements of G are regular (i.e.,
have no fixed points).
(A1) If1eS C @G if | S| = n and if the subgroup of G generated by S con-
sists of regular elements (together with 1), then the identity function is an iso-
morphism of (8, o) onto (S, ).

In particular, if G is a Frobenius group of degree n, then by (I) the only
loops (G, ) which can possibly arise are made from the Frobenius kernel K of
@ and by (II) the only one is the group K itself.

If G is the alternating group A;s viewed as a transitive subgroup of Ss, then
the regular elements are the products of disjoint 3-cycles, and no five of them
together with 1 form a transitive subset of G. It follows that there is no
transversal of G: in @ which is a loop of order 6 under o. Thus not every
permutation group of degree n has an associated loop of order n. On the other
hand, every loop of order n is a coset groupoid for S, , by Proposition 1 (II).

Loop properties can be translated straightforwardly into conditions on
transversals. Some examples (in the notation of Proposition 1) are:

(i) (G, o) is commutativeif and only if (a', b') ¢ H for all @ and b in G;
(iil) (G, o) has the R.I.P.if and only if for each a in G there exists b in G
with ab e NzHz™;

(i) (G, o) has the L.LI.P. if and only if a o b e aHb for all @ and b in G.

2. Relations between the normal structures of L and 9.

If L is a direct product (or sum) of subloops {L(z)|Z eI} then M. is the
direct product (respectively, sum) of {Mwcy|7eI}. By Lemma 2.2, p. 98 [2],
if L is a finite loop then L is (centrally) nilpotent of p-power order if and only
if My is a p-group. It follows that if L is a direct product of finitely many nil-
potent finite p-loops then Iy is nilpotent. In fact, we have the following.

TaeoreM 1. If L is a finite loop, then L is a direct product of nilpotent loops
of prime-power orders if and only if M1, s nilpotent.

Proof. We prove the remaining implication by induction on |L|. Say
M =P X O with P anon-trivial Sylow subgroup. Let P = 1P and Q = 1Q.
Now | P |is |B:B n S|, a p-power, | Q | is prime to p and P and @ are normal
in L. Hence, Pn@Q = 1. For H Llet

H* = (6eMy |20 e Hr Y z e L}
(see Lemma 1.3, p. 62, [2]). We need the following to complete the proof.
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ProrostrioN 5. If Lis aloop, if My = A X B, and if 1A n 1B = 1, then
A= (1A)* and B = (1B)*.

Proof. Clearly, ¥ € (19)* and B S (18)*. Since
AW n B S 1 * n1(1B)* = 1An 1B = 1,

then (19)*n (1B)* € S.. But (1) n AB)* < M, and J is coreless.
Hence, (13)* n (1B)* = 1. It follows that A = (1)* and B = (1B)™.

Now in the proof of the theorem, we have $ = P* and Q = Q¥
Mep ~ Me/P* ~ Q, and we may assume inductively that L/P is a direct
product of nilpotent g-loops for primes ¢ other than p, and hence that | L:Q |
is a p-power. Then |L:PQ| = 1, so that L = P X Q. The result now
follows by induction.

Since finite diassociative nilpotent loops are direct products of p-loops
(Corollary, p. 404 of [6]), Theorem 1 yields the following.

CoroLLARY. If L s a finite diassociative loop, then L is centrally nilpotent
if and only if My vs nilpotent.

The construction at the end of Section 2 of [6] yields a commutative, power-
associative, nilpotent loop which is not the direct product of p-loops and hence
does not have a nilpotent multiplication group. We can, however, show the
following.

TueorEM 2. If L s a finite nilpotent loop, then ML is solvable.

Proof. We actually prove slightly more. Suppose that 1 < N <{ L. The
cosets Nz are blocks for the permutation group MMy, N* is the kernel of the
canonical homomorphism of N, into Mz/v and for each « restriction of N* to
Nz yields a homomorphism 6, of N* into the group of permutations of Nz.
Moreover, N* is a subdirect product of the various image groups N*/Ker 6, .

Now Ker 6, is the set of members of N* fixing each nz in Nz and hence is
N*aN{(R.R:) "SRR |neN}.

But this subgroup is conjugate to N* n N {R,'Sy, R |n e N} = W, the largest
normal subgroup of N* in §,n N*. Thus N* is solvable if and only if each
N*/Ker 6, is solvable—and they all look like N*/W.

LetR = {R.[neN} © M. ThenR C N*. Hence, <R> € N* and re-
striction to N yields a homomorphism of <R> into Iy with kernel <R>n W.
If it is true that <R> - W = N*, then N*/W is a subquotient of My .

To prove the theorem we use induction on the nilpotency class of L and
suppose N < Z(L). Then 9M./N* is solvable, W<R>/W is abelian,
W =S.aN* W-R = N* and hence N* is solvable.

The same proof also shows that if N < L, if L is solvable, if |[N| < 4 and
if 9w is solvable then 9%y, is solvable. For in this case N*/W is a subgroup
of the solvable group Si:. This shows that

if L has chief factors of order at most 4, then I, is solvable.
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The condition | N | < 4 is necessary here. There is a solvable power-associ-
ative loop of order 10 with a subgroup of order 5 whose multiplication group
contains the symmetric group S;. A worse example may be constructed as
follows. In the notation of Section 2 of [6], let C be cyelic of order 5 and let H
be a Klein 4-group with elements e, a, b and ¢. To specify G we need only
give the operations #,; for A and k in H. Let .5 be ordinary addition, let
*p,c be as in Figure 1, let #,,. be arbitrary and let #., = %5 . Then G is a
commutative, power-associative solvable loop of order 20 in which every
element lies in a cyclic subgroup of order 10. However, the group generated
by Ra. - Rumn and R{s is isomorphic to Ss, so that e is not solvable.

*b,e 0 1 2 3 4
0 1 2 3 4 0
1 4 1 0 2 3
2 3 4 1 0 2
3 0 3 2 1 4
4 2 0 4 3 1

Ficure 1

These examples and Theorems 1 and 2 suggest that, in terms of normal
structure, a loop is generally nicer than its multiplication group. If Iy is
good, then L should be even better. The rest of the paper is concerned with
topics which arise in connection with the following conjecture.

If 9. is solvable, then L is solvable.

(A solvable loop is one which has abelian groups as composition factors.) We
show, among other things, that if 9, has an abelian normal subgroup and L
is simple and not solvable then L is very special.

Let L be a loop with subloops H and K with K fl_ H. Let

CL(H/K) = {6eM.|h0e KhY h e H}
and let
OLH) = <Ry, Ln|heH> < My

(CL(L/K) is the group K* used above.) ®(H) normalizes €.(H/K) and
the mapping p of €z (H/K) - ®(H) into Sg/x (the group of permutations of
H/K) given by (Kh)(p) = K (h8) is a homomorphism onto g x with kernel
CL(H/K). Thus

mﬂ/x ol @L(H)/@L(H) n @L(H/K),

a homomorphic image of a subgroup of M. . In particular, if M is nilpotent
or solvable, so is Ma/x .

In case K < L, €. (L/K) avoids the quotient & (H)/®.(H) n €.(H/K),
so that Ma/x is a homomorphic image of O (H) - €.(L/K)/CL(L/K). If
both H and K are normal in L it follows that 9%x/x is a quotient of H*/K™.

Suppose now that H is a minimal normal subloop of L. If W is a minimal
normal subloop of €. (L/H ), then since 1W <] L and 1W # 1, 1W = H and
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|H| = |W:3:n W/, a divisor of | W|. As a consequence we have the
following.

Prorosirion 6. If L is a finite loop with My solvable, then the chief factors
of L have prime-power orders, and for each minimal normal subloop H of L,
CL(L/H) has an elementary abelian p-group as its socle, where H has p-power
order.

As we shall see, there exist nonsolvable loops satisfying the conclusion of
Proposition 6. It follows from the discussion above, however, that if Iy is
solvable the composition factors of L also have prime-power orders and solvable
multiplication groups. We would thus like to show that if L is a simple loop
and if I, is solvable, then L is a eyclic group.

In at least one case Proposition 6 provides the desired result. A Moufang
loop of prime-power order is nilpotent (Glauberman and Wright [3] and [4]),
so that we have the following.

TrrorEM 3. If L s a finite Moufang loop and of My is solvable, then L s
solvable.

To attack the general case we need more machinery.

3. Linear loops

Prorosition 7. Let Lbe a loop. L s simple if and only <f MMy, is a primitive
permutation group on L.

Proof. This is essentially Theorem 8, p. 516, [1].

CoroLLaRY. If L s a finite simple loop and if My contains an abelian mini-
mal normal subgroup A, then |L| = | A |, A is the unique minimal normal sub-
group of My and A acts reqularly on L.

Tueorem 4. Let (L, -) be a finite simple loop such that Mw contains an
abelian normal subgroup.  Then there is a simple (nonassociative) algebra,
(A, &+, ), over a field of prime order satisfying

(1) a-b=aonlyifa=0anda-b=>bonlyyfb=0
and such that,if aocb = a + b — a - b, then (A4, o) is a loop isomorphicto (L, -)

and My vs tmbedded in the affine group on A with S a subgroup of the general
linear group on A.

Proof. By the Corollary to Proposition 7, 9tz has a unique minimal normal
subgroup, 4, and for each z in L there is a unique z4 in 4 such that 1z, = .
Write the operation of A inherited from I, additively, so that (4, +)isa
vector space over GF (p) for some prime p. . acts faithfully by conjugation
as non-singular linear transformations of (4, +).

Define ¢ from Mz to ©4 by z4(a¢) = (xa)sforzin Land ain M. Then

z4((@B)e) = (aB)a = (va)s(Bp) = wa(ap) (Be),
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80 that ¢ is a homomorphism. Clearly ¢ is monic. For a e S, z4(ap) =
(xa)s = o zaa, and hence ¢ is contained in GL(A). For y in L,
Za(ya®) = x4 + ya, so that Ao is the group of translations of 4 and hence ¢
embeds M 1, in Aff(4).

Now define o on A by zaoys = (- y)a, so that (4, o) is isomorphic to
(L7 * )’ a'nddeﬁnexd. *Ya = Ta -+ Ya — (.’EA oyA). Forxin Lletzs = 0, - Rz,
so that 6. ¢ §.. Now

T4 Ya = Ya — (xA °Ya — $A) = Ya — [(xy)le]A = Ya — [nyR;loz_I]A
= ya — ya[ (T2 0. )¢l
= Ya (1 - T),
where 7€ GL(A). Similarly, z4 - y4 = 24(1 — (6, )¢). Hence, - is bilinear
and (4, +, ) is an algebra over GF (p).
If 24 ys = 24,then 0 = y4 — za0ys = ya — (@y)a, so that zy = y.

But then z = 1, so that x4 = 0. Thus and similarly (4, -+, - ) satisfies (1).

Finally, (4, 4, «) is a simple algebra, since if B is an ideal of A, then B is a
normal subloop of 4.

If (4, 4+, -) is an algebra over the field K, then we may define o on A by
aob=a-+b— a-basin the theorem and in ring theory, and we could define
quasi-regularity as in ring theory. However, the quasi-regular elements may
not form a groupoid, let alone a loop. For example, let

A=<yld’=2=19, 0y =y = 0.

Then z is not quasi-regular, but y and —y are, and yo (—y) = z.
The condition (1) on (4, -+, -) is equivalent to right and left cancellation
in (A4, o) and is a consequence of the fact that

(2) y—y — zyand y — y — yx are permutations of 4.

(In fact, these mappings are linear automorphisms of (4, 4+ ).)
ProrosiTioN 8. (4, o) is a loop if and only if (A, +, - ) satisfies (2).
Call a loop (4, o) obtained in this way from an algebra satisfying (2)a

linear loop.

If we define a unit of an algebra A to be an element x such that y — = - y and
y — y - « are permutations of 4, then an algebra satisfies (2) precisely if it can
be embedded as the unique maximal ideal of non-units in an algebra with 1.
(To see this, embed 4 in K @ A, where

k,z) &', 2" = (KK, k2’ + Ko+ x-2').)

Hence, the study of algebras with (2) may be viewed as the study of radicals
of certain “completely primary” algebras. Although most of what follows
would be true for algebras over division rings, we are interested primarily in
finite loops and so restrict consideration to algebras over fields.
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In view of Propositions 6 and 7 and Theorem 3, we would like to show that
simple linear loops of certain kinds are, in fact, cyclic groups. Note that
(a,b,¢) =1in (4,0)ifandonlyif[a-b]l-c=a-[b-clin (4, -) and simi-
larly (a,b) = lifand onlyifa:b = b - a. In particular, (4, o) is power-
associative, diassociative or commutative precisely if (4, - ) is.

A finite-dimensional power-associative algebra satisfying (1) is a nilalgebra,
since a relation 0 = aoz® + -+ - + @, 2™ with apz® = 0 gives

k k41 k
a e <t oo M,

a contradiction of (1). If A is a finite-dimensional algebra satisfying (1) and
the alternative laws yz-2 = y-2° and -2y = 2° -y, then A is power-
associative, by Theorem 3.1 of [5], so that (A, 4, - ) is nilpotent, by Theorem
3.2 of [5]. But then A - A = 0if 4 is simple. A consequence of these re-
marks is the following theorem which includes Theorem 3 as a special case.

THEOREM 5. Let L be a finite loop. If
W, z,z) =1= (x,x,y) forall z and y in L
and if M. is solvable, then L is solvable.

Before we study linear loops in more detail it may be worthwhile to look
at some “‘nonlinear” simple loops obtained in a related way.

ProrosiTioN 9. Let V be a 2-dimensional vector space over the finite field K.
Suppose that 0 s a function from V to V satisfying
1) u,veV,thenud = v0 or ud — v0¢ K(u — v),
@) 06 = 0, and
(iii) Von[(—1,0) + K(,1)] = 0.
ForuinV,if ud = (a,b) let

a b 14+a b
Ru= ]; Tu=[+Ru= ],
0 0 0 1

and define o on V by uov = uT, + v. Then (V, o) is a loop.

The proof is straightforward. It will follow from results below that these
loops (if simple) cannot be linear loops over K.

There really are functions 6 satisfying (i), (ii) and (iii). For example, if
|K| > 4letu, v, \e K with u 5 0, »¢ {0, —1, —2}, and let S be a non-empty
set of units of K. Define 8 on K X K by

(e, \e + uc® +8)0 = (v, v\ + vuc) for s in S
and by
(¢, d)0 = (0, —wuc) if derc+ pc® + 8.
Then

(@, b)o (e, e + uc® +s5) = (@ + ¢+ va, b+ e + uc® + s + vra + vuac)
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and
(@, b)o(c,d) = (a+ ¢, b+ d— vuac) if derec+ pcd + 8.

(The condition » # —2is necessary to prevent { (a, \a + pa’) |a e K} from
being a normal subloop.) If K has prime order, such loops are simple and
possess lots of subgroups or very few, depending on whether S is large or
small. There is no such function 0 if | K | is 2 or 3.

4. 1- and 2-dimensional linear loops

If Aisalinearloop over K andif A - 4 < A, then either A - 4 = 0, in which
case (4, o) is just the abelian group (4, +), or A - A is a proper normal sub-
loop. We are looking for simple linear loops, so that we consider only loops A
for which 4 - A = A. (There is a linear loop 4 for which 4 - 4 = 4 >
Z(A) > 0,s0 that A - A = A is not a sufficient condition for simplicity of A.)

A linear loop A of dimension 1 must have A - 4 = 0, since 2 ¢ A - z for
xz # 0. Suppose that A4 is a 2-dimensional linear loop. We claim that 4 is
not simple. A short, ad hoc argument would work here, but we prefer to
illustrate the general methods, beginning with a fact about multilinear
mappings.

LemMa. If V is a vector space over the field K of dimension m, then for each
positive integer n there is an alternating multilinear map
ot V> W,
where W is ()-dimensional, such that ¢, (x1, -+, ©.) = 0 if and only if
{z1, - -+, &a} 15 dependent

Proof. If n > mlet ¢, = 0. Suppose that » < m. Let B be an ordered
basis for V. Let W be a vector space over K with basis C = {¢,} indexed by
the n-element subsets, ¢, of B. For each such o let A, be the matrix whose

first n rows are 21, -+ - , Z, in terms of B and whose last m — n rows are the
members of B — o listed in order. Let a, = det (4,) and let
‘p"(xla ft il)n) = Zaaaca--
From now on, we shall denote ¢, (z1, -+ -, @) by <21, -+, >

If A is a linear loop, then A - © < A for every zin A. Hence, if 4 isn-dimen-
sional

3) LTy @y &> =0 VYV, o+, 20ed,
and similarly, by symmetry,
3" KL Ty, o, T 2> =0 Yy, -, Taed.

We can exploit multilinearity to get dependence relations among the
products = -y in A - A. After gleaning what we can from (3) and (3'),
we may also use the fact that, since z ¢ A - « for x # 0, a relation

0= ai@i-a—a) = Qaixs) & — D, i
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would force Y, a;x; = 0. Thus, and symmetrically,

4) LT — T, 5T T — 2> #Z 0
and

4" LT X —Tr, Ty — T > FO0
forall zin A and all {x1, -- -, x,} independent.

We apply (3) and (38’) to the 2-dimensional case and obtain
0 = Kazxz + Bzy, ayz + Byy>, 0 = Kazxx + Byz, axy + Byy>
forall e, Be K, z, ye A. Hence, by multilinearity,

5) 0 = Lzz, yo>
6) 0 = Kzz, yy> + Ly, yr>
() 0 = Laz, zy>

forallz,ye A. If zx £ 0 for some z in 4, then by (5), yx e <xx> (from now
on, “<8>” denotes the space spanned by S); by (7), xy e <xaz> so that
KLzy, yr=> = 0;and by (6), yy e <xx>. If <z, y> = A, then

A A = &z, zy, yo, yy> = <ax> < A,

so that A4 is not simple. The only other possibility is that zz = 0 for all
inA. Then (3)and (3') are no help. Butif A = <z, y>, thenforalle, 8¢ K,
by (4),

0 # Kaxz + Bzy — 2, ayz + Byy — y>

LBry — x, ayr — y>

= alfzry — z, yr> + LBry — z, —y>,
so that for all 8, 0 = KBry — z, yr>> and 0 # KLBxy — z, —y>. Hence,
0 = Lzy, yr>, 0 = Lz, yr>, 0 # Ly, — > + KL—z, —y>.

Thus 0 = Kzy, —y>>, so that yx e <x>, 2y e <y>. However, 0 = (z + y)’ =
zy + yx,so that xy = yo = Oforallz and yand 4 - A = 0. This argument,
together with our earlier remarks, establishes the following.

Prorosition 10. There are no non-abelian simple linear loops of dimensions
1 and 2.

5. The three-dimensional case

The analysis of simple 3-dimensional linear loops is considerably more
complex than that of 1- and 2-dimensional loops and involves lengthy com-
putations. We list here only the major mileposts and the end results. Again
we begin by considering (3) and (3’). Our first goal is to show that if 4 is a
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3-dimensional linear loop, then either

i) ax =Oforallzin A4,

@ii) x-A = 0for some x # 0,
@i') A-z = 0forsomex < 0 or
i) 4-4 < A.

We suppose all four conditions fail, show first that we can choose a basis
{x, y, 2} such that yz2 = 0 and yx and 2z are independent, and after appealing
to (3) and (3’) show that the possibilities for A must be limited. In fact, A
has constants of structure given by

z Y z
x zx Gzz + Pxz Tz
y yx Gyx + Hzxz 0

z | Fxx + Lyx (GF — HE)xx + (GL + PE)yx + (PF 4+ HL)xz Eyx + Fzxz

with H, E # 0. Such an algebra need not satisfy one of (i), ---, (i),
however, and to show that one of them holds we must use (4) and (4’). A
few pages of computations give the desired result.

Now of course a simple linear loop cannot satisfy (iii), and a short argu-
ment shows that (i) also cannot hold for a simple algebra satisfying (2). We
are thus left with (ii) and (ii’), and consider only (ii).

A few pages of carefully selected computations show that in this case it is
possible to choose a basis {z, y, 2} such that the multiplication in 4 is given
by the table

z y z
z 0 ar + ez sz + fy + g2
(8) y 0 dz x
z 0 hx 0

where the constants of structure are arbitrary in K subject to the conditions
(implied by (4) and (4’)) that

X% + Xg — 1 and X 4+ XY (df + gh) + Y’eh + Xs + Ya — 1
are irreducible polynomials over K for every Y in K. If K is finite, the second

of these conditions implies that (gh + df)* = 4feh and 2(gh + df)s = 4af,
and it is possible to write the table as

x Y 2z

x 0 stz + bfz sz + fy + cfz
) ¥ 0 [2¢ — ¢(82/b)]x z

z 0 (t2/b)x 0

where X% + X¢ — 1 and X*f + Xs — 1 are irreducible over K. (If ef = 0,
then 4 - A < A. Thus we suppose that ef % 0 and hence that bf = 0.)
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An algebra, A, given by (9) does determine a loop satisfying 4 - 4 = A
andv-A =4 -v=0onlyif v = 0. Note that <x> is the left nucleus, Ny,
and that N, = N, = 0 unless ¢ = 0, in which case N, = <y> and Ny = <&>.

Note also that the non-simple loops which we have discarded need not be
groups. For example, the loop given by

T 2

x

Y
z

0
0

Y

(=]
o8 O w

is not associative even though it is commutative and endowed with a center.
To compute &4, where A is given by (9), we look at the mappings

Nia—y-a and pyla—a-y for y in A.

Tt is easy to check that $4 is generated by the mappings A, \. Az, py p- pye and
py N, for y and z in A. A moderate amount of computation shows that 34
contains all matrices I + aF;; for « in K and ¢ # j and hence con-
tains SL (3, K). The determinants of the members of &4 form a subgroup D
of K generated by the elements 1 — ca — ba’ and 1 — sa — fo’ as « ranges
over K. If K is finite, D is the group of units of K and &4 = GL(3, K).
If K is infinite, D may be much smaller than K. In the finite case,
Ms = Aff (3, K), so that P4 acts primitively on A4 and A is simple. We
may summarize the finite results.

TarorEM 5. If A 7s a finite, centerless, 3-dimenstonal linear loop over the
field K, and if A - A = A, then A 1is given by (9) (or its opposite algebra)
for suitable constants in K, A is simple, and M4 = AfF (3, K).

Since A may or may not have trivial left nucleus, we see that the loops, 4,
which have M4 = Af(3, K) are not all isotopic.
The automorphisms of a finite linear loop A of type (9) over the field K

with Galois group & (K) over its prime field are the semi-linear transforma-
tions of the form

od’e 0 O
0 ode O,
0 0 od

where o ¢ ® (K), o fixes st, ££/b, s*/f, ¢’/b and (if ¢t # 0) t/c and where d and
e satisfy so = sd, co = ce, fo = fd’, bec = be’ and te = te. Hence, the auto-
morphism group of 4 is of the form H X 7T where H is a (cyclic) factor
group of ® (K) and T is a subgroup of the Klein 4-group whose size depends
on which of s, ¢ and ¢ are trivial. In particular, it can easily happen that 4
has no non-trivial automorphism. Such is the case if K = GF (p) and sc # 0.

An infinite linear loop of type (9) may have other sorts of automorphisms.
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For example, if K = Q(+/3) (Q the rational field) andifb = 2+ /3 =f =1,
s =0and ¢ = 2 — 2b, then o : b — 1/b generates & (K ), and the loop has
an automorphism of order 2 given by

—a - (1/b%) 0 0
0 —o - 2/(b* = 1) - (b+1)/0* —b)
0 —c - (b+1)/(* — b)) c-2/(b—1)

Even in the infinite case, however, the automorphism group is a group of
semi-linear transformations which is an extension of a subgroup of K, by a
quotient of & (K).

6. Higher-dimensional linear loops

Any field K over which there is an irreducible quadratic polynomial can be
used to construct loops of form (9). Hence, if K is n-dimensional over F' and
there is an irreducible quadratic polynomial over K we can obtain simple
3n-dimensional linear loops over F. Aside from this obvious device, there
seems to be no easy way of constructing simple linear loops of dimension 4 or
more. Conditions (3) and (3") still yield relations on the constants of struc-
ture which are comparatively easy to deal with. In the n-dimensional case
with basis {1, + -+, 2.}, if we write £ = w1 + -+ + an@., then (4) and
(4’) become statements that certain polynomial equations in ey, -+, aa
have no solutions. The equations which arise are of degree n in general,
but by comparison with the polynomials in (3) and (3’) they reduce to degree
n — 1. Thus, except in special cases, (4) and (4’) given conditions on the
constants of structure expressed as conditions that certain polynomial equa-
tions of degree n — 1 have no solutions, and it is by no means easy to deter-
mine which (if any) constants satisfy the conditions.

By imposing additional restrictions on the desired loops one may be able
to depress the degrees of the polynomials involved. For example, the condi-
tions (4) and (4’) on a 4-dimensional commutative linear loop involve
insolvability of quadratic equations and can be shown to conflict with an
assumption of simplicity. I conjecture that there are no finite simple
power-associative linear loops and hence that if L is finite and power-
associative and 9t is solvable, then L is solvable.

In every case which I have examined it has been necessary to invoke (4) or
(4’) as well as (3) and (3') in order to settle matters. In view of this ex-
perience and the additional complexities which arise with higher dimensions
it seems most likely that extension of the analysis to higher dimensions will
be most successful in cases in which additional restrictions besides simplicity
are imposed upon the loops.
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