ON FINITE AUTOMORPHIC ALGEBRAS

BY
ErnesT E. SHULT

1. Introduction

Throughout this paper, all algebras considered are non-associative algebras,
that is, not necessarily associative algebras. We say that an algebra is auto-
morphic if it admits a group of automorphisms which acts transitively on its
one-dimensional subspaces. We say that an algebra is finite if it contains
finitely many elements.

DEerINtTION.  An algebra is called a quase division algebra if and only if the
non-zero elements of the algebra form a multiplicative quasi-group.

The object of this paper is to show the following:

TuroreEM 1. Let A be a finite automorphic algebra with ground field F. If F
contains more than two elements, then either A> = 0 or A is a quasi division
algebra.

The principal application of this theorem concerns Boen’s problem, and its
generalizations. A finite p-group P is said to be p-automorphic if it admits a
group of automorphisms G which transitively permutes the elements of order
p in P. In [1], Boen considered the problem of showing that p-automorphic
p-groups of odd order are abelian. Despite the efforts of several workers [1],
[2], [13], [16], [17], [6], [15] this problem has remained open up to the present
time.

A more natural setting of this problem is in terms of algebras. It was shown
in [2] that if P is a p-automorphic p-group minimal with respect to being non-
abelian, then there is associated with P, an algebra A over the field of p ele-
ments with the property that 4 is anticommutative and A* # 0. Moreover if
G is the group of automorphisms which acts transitively on the elements of
order p in P, then @ also acts as a group of operators on the algebra 4, in such
manner that 4 and ©; (Z (P)) are isomorphic as Z, G-modules. Accordingly,
Kostrikin introduced the notion of homogeneous algebra, i.e. a finite-dimensional
algebra which admits a group of automorphisms transitively permuting its
non-zero elements. A proof that finite homogeneous algebras over fields of
odd characteristic are zero-algebras would then solve the corresponding prob-
lem on p-automorphic p-groups. In [16] Boen’s problem was generalized
slightly in another direction by considering semi-p-automorphic p-groups (spa-
groups), i.e. p-groups whose cyclic subgroups of order p are transitively per-
muted by a group of automorphisms. The construction of an algebra canoni-
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TaBLe 1
Type of Algebra Author(s) Assumptions Reference
homogeneous Higman G is cyclic [11]
«“ Boen n < 4 1]
“ Boen, Rothaus and Thompson n <6 2]
«“ Boen, Rothaus and Thompson nn? < q [2]
“ Kostrikin n—6<gqg [13]
« Dornhoff 2n — 3 < ¢ [6]
spa-algebra Shult n is prime [16]
«“ Shult @ is p-solvable [17]
“ Dornhoff 2n — 3 < ¢ [6]
« Passman @ is p-solvable [15]

cally associated with a minimal non-abelian spa-group still carries through and
motivates the corresponding notion of spa-algebra, i.e. automorphic algebras
which are anticommutative [16]. The fact that every finite dimensional homo-
geneous algebra is a spa-algebra follows from

Lemma (Kostrikin [13)). If A is a finite dimensional homogeneous algebra
over a field of odd characteristic, then A s anticommutative.

To show that p-automorphic p-groups of odd order are abelian, it suffices to
prove that either finite homogeneous algebras or finite spa-algebras are zero-
algebras if they have odd characteristic. Several authors have obtained such
proofs in the presence of special additional assumptions. These results are
summarized in Table 1. Throughout Table 1, A is either a homogeneous algebra,
or a spa-algebra. A has dimension n over GF (¢) where ¢ is assumed to be odd.
G denotes a group of automorphisms of A satisfying the appropriate transitivity
condition. The results are listed in approximate chronological order; although
the first four items were proved for ¢ a prime, the proofs apply equally well to
algebras over fields containing an odd number ¢ of elements.

All of the results of Table 1 are contained in

CoRroLLARY 1. Finite spa-algebras of odd characteristic are zero-algebras.

More can be said about finite automorphic algebras over fields of charac-
teristic 2. Consider

CoroLLARY 2. Let A be an automorphic algebra over GF (q) and let
G = Aut(A). Let dbethe number of G-orbitsin A¥ = A — (0). Ifqg—1>d,
then A> = 0. In particular, if ¢ > 2, and A is a homogeneous algebra, then
A* = 0.

The provision that ¢ > 2 in the homogeneous case is necessary, as can be
seen by the following:

Example. Let F = GF(2"). Let o denote the automorphism of F
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defined by (a)” = o . Define a new product o o 8 on F by the rule
aofB = (af)’ for any a, B1in F. Then it is easy to see that F becomes a quasi-
division algebra over GF (2) relative to the operations o and field addition.
Moreover this algebra is a homogeneous algebra since scalar multiplication by
a primitive (2" — 1)st root induces an automorphism of the algebra which
transitively permutes the non-zero elements of F.

A number of group-theoretic corollaries follow:

CoroLLARY 3. Let P be a p-group which admits a group of automorphisms
transitively permuting its subgroups of order p. Then if p is odd, P is abelian.

CoRoLLARY 4. Suppose G s a group coniaining one conjugate class of sub-
groups of odd prime order p. Then a p-Sylow subgroup S of G is abelian if and
only if U (S) < Z(S).

The following corollary is a generalization of a result of Gaschiitz and Yen

(9.

CoROLLARY 5. Let p be an odd prime. Suppose G is a p-solvable group whose
subgroups of order p are conjugate in the automorphism group of G. Then G has
p-length 1 and abelian p-Sylow subgroups.

All of these corollaries are proved as consequences of Theorem 1 in Section 1
of this paper.

In Section 3 we consider algebras A over a field F and algebras 4 @ K
where K is a galois extension of . The embedding 4 - 4 ® 1 C A ® K
induces an injection Aut (4) — Aut (4 ® K). A canonical semiautomorphism
Y of A @ K is defined which has the property that A ® 1 comprises the
fixed points of ¢ in A ® K and Aut(4) is isomorphic to the subgroup of
Aut (A ® K) consisting of those automorphisms of A ® K which commute
with ¢. Facts concerning Aut(4) impose multiplicative conditions on eigen-
vectors for these automorphisms in A ® K. The utility of ¢ lies in the
fact that the multiplication table of A can then be recovered from the strue-
ture constants of A ® K. As a consequence, y and A ® K provide a
vehicle for deriving information concerning the algebra A from Aut(4).
These methods can be utilized to define a class of quasidivision algebras which
admit irreducible automorphisms.

In Section 4, our attention centers on elements in a linear group which have
prime order and which act irreducibly on the underlying vector space. A very
useful trichotomy (Theorem 3) is obtained for linear groups acting on finite
vector spaces of characteristic prime to the group order.

If n denotes the dimension of the underlying space, one proves that either G
is metacyeclic, is a central extension of LF (2,2n + 1) (where 2n -+ 1is a prime)
or that if  is an irreducible element of prime order in @, then O(z) = n + 1.
As an application we prove an E.-theorem which may be regarded as a modu-
lar analogue of a theorem of Blichfeldt.
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Section 5 contains the main result of the paper (Theorem 4). The section
then concludes with a proof of Theorem 1. The essential idea involves a shift
away from automorphic algebras to a consideration of a left ideal B in an
algebra A which satisfy two conditions: (i) B* = 0 and left multiplication by
any element z ¢ A induces a nilpotent transformation of B; (ii) The group H of
automorphisms of 4 leaving B invariant acts transitively on the 1-dimensional
subspaces of B. The result is that AB = 0. This approach admits a more
powerful use of induction, leading at once to the case that H has order prime to
the field characteristic. Under these conditions the trichotomy of Section 4
can be exploited.

2. Proof of the corollaries

We begin with a few basic ideas of Chevalley [4]. Let R denote the cartesian
product of n copies of GF (¢) and let P = GF (¢)[x:, - -+, «a] be the commuta-
tive ring of polynomials in n variables with coefficients from GF (¢). Any
polynomial F in P can be associated with a mapping R — GF (¢) by assigning

valuesin R to the n-tuple (x1, - - -, z,) and evaluating . Two polynomialsin
P are associated with the same mapping R — GF (¢) if and only if they are
congruent modulo the ideal I of P generated by z} — z;, 2 =1, ---, n.

By a process of replacing x7 by z;, any polynomial F can be converted to a
polynomial F such that no monomial summand of F' contains a power of x; as
large as ¢ (we say F is in reduced form) and F = F mod I. F is unique with
these properties and is called the reduced form of F.

LEmmA 1 (Chevalley [4]). A polynomial in P which is in reduced form in-
duces the zero-map B — 0 € GF (q) if and only if it is the zero polynomial.

This essentially asserts that the polynomials in reduced form comprise a
system of distinct coset representatives of I in P.

Lemma 2 (Chevalley [4]). If F is a homogeneous polynomial in P having
degree less than n (the number of variables) and F (0, - - - ,0) = 0, then there exist
an n-tuple £ in R, such that £ £ (0, -+ ,0) and F (¢) = O (i.e. F has a non-trivial
zeroon R).

This is Chevalley’s theorem that finite fields are quasi-algebraically closed.

Let A be a non-associative algebra. We say that A is left (right) nil if and
only if the linear transformation L. (R.) of A induced by left (right) multi-
plication by z is a nilpotent linear transformation. We say A is a nil algebra
if it is both left and right nil.

The following is a minor variation on a lemma of Boen, Rothaus and Thomp-
son [2].

LemMmA 3. If A s a finite automorphic algebra then either A is nil or A is a
quast-division algebra.
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Proof. Given any two elements a, b in A, there exists an element
geG = Aut(4) and a scalar 8 ¢ F, the ground field of A4, such that a = gb°.
If L, denotes the linear transformation of A induced by left multiplication by
a, then L, and L are always projectively similar.

Suppose {a;} is an F-basis of 4 and let {vii} be a fixed set of structure con-
stants forA relative to this basis. Then the transformations L,; can be repre-
sented by matrices relative to the basis {a;} which depend only on the con-
stants yix . For a general element

a=Na+ -+ Man #0,

the transformation L, = M\ Lay + - - - + N, L, is represented by a matrix whose
entries are linear expressions in the A;. It follows that all principal 7 X j
minors of this matrix are homogeneous polynomials of degree 7 in the variables
M, ***, M. If the characteristic equation of L, is

"t — Ci(M, - - ;)‘n)xn—l'l' con Caaay oy M)z Ca(My w00 5 M)

then each C;, being a linear combination of these principal j X j minors, is a
homogeneous polync,nnial of , degree j in the X;. ,Moreover, if we write
(A, o+, M) for (A1, -+ -, \y) whenever o’ = Y \; a;, we have that

Citv,y ooy M) = Ci((My -+, \)%)

for each g e G andn-tuple (A1, - -+, A\a) InF X -+« X F, since the similarity of
L, and L, forces them to have identical characteristic equations. For any
other element b € A, L is projectively similar to L,. Thus for any second n-

tuple (eu, - - -, o) there exists a scalar 8 such that
ﬁijO\l’ ] >‘n) = Ci(aI, ] an) fOI‘j .<_. n.
Thus if there exists a choice for (\1, -+, A\x) # (0, ---, 0) which is a zero

for C;, then C; vanishes for all n-tuplesin F X --- X F. By Lemma 2, such a
choice exists for eachj < n. Thus either L, has characteristic equation 2" = 0
for each a € A, or else L, has characteristic equation 2" — C,(a) for each a e 4
where Cn(a) 0 for all a ¢ A — (0). Thus either L, is nilpotent for all
a e A or L, is non-singular for each a e A — (0). A similar dichotomy holds
among the set of right multiplications. If A is left (right) nil, then some right
(left) multiplication is singular and so A is also right (left) nil. Thus either
A isnil or A — (0) is a quasi group.

LemMmA 4. Let F be a finite field and let R be the vector space of n-tuples with
entries from F. Let p be a homogeneous polynomial of degree n in Flzy, « - - , x.].
Suppose G is a group of linear transformations of R which acts transitively on the
one-dimensional subspaces of R and suppose

p@) = p(°)
for every v e R and g € G. Then either
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i) p@) =0forallveRr or
(ii) the stabilizer in G of a one-dimensional subspace of R fixes every vector
wn that subspace;
i.e. foranyve R, g e G, v° = \v for some \ ¢ F tmplies N = Lorv = 0.

Proof. Let d be the number of G-orbits on B — (0); let L be the subspace
{()‘;0; e ’O)I)‘GF}

of R, and let H be the stabilizer in G of L. Then, because @ is transitive on the
1-dimensional subspaces of R, d also represents the number of H-orbits on
L — (0). ForanyueL — (0)and heH,u" = X\ (h)u for some scalar A(h) ¢ F
depending on % and independent of . It is easy to see that \(Ri)A(h) =
A(hy he) for (b1, he) € H X H and so \ defines a homomorphism \:H — F*, the
multiplicative group of non-zero elements of F'. Thus for all w e L — (0), the
H-orbit u” = {\(h)u | h e H} has cardinality independent of u. ~As there are d
such orbits and F* is cyclic of order ¢ — 1, we have

NH) >~ Zgya-

Now suppose p does not vanish on B. Then for some v ¢ R, p(v) # 0.
We can find g e @ and 8 ¢ F* such that o* = (3,0, ---,0) and so

0= p(ﬁyo’ )O) = p(B,0, - 70)h)
= p()‘(h)ﬁyof 70) = )‘(h)np(ﬁror e ’O)

for every h ¢ H since p is homogeneous of degree n. Thus A (k)" = 1 for all
heHso (g — 1)/d divides n, or (¢ — 1) divides nd.
We now show that (p (1, -+, z.)) is constant on R — (0). Set

k= (@10, --- :0))d'

For any v e R — (0) there exists (3, ¢) e F* X G such thato* = (3,0, ---,0).
Then

p@®)* = P@,0,---,0))* = g% =k, independent of v,
since B # 0 and ¢ — 1 divides nd. Set
f=k@—IT @ — 28).

Then both f and p® have value k on R — (0) and value zero on (0, -+, 0).
It follows from Lemma 1, that since f is in reduced form, it s the reduced form
of p?. Thus

nd = deg (p) > deg (f) = n(g — 1)
sod > q— 1. Sinceddividesq — 1,d = ¢ — 1 and (ii) holds.

Lemma 5. If A is a finite automorphic algebra, then either A is nil, or
G = Aut(A) does not move an element of A to a distinct scalar multiple of itself
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(t.e. d = g — 1 where q s the cardinality of the ground field of A and d s the
number of G-orbits on A — (0).).

Proof. From Lemma 3, if {a; is an F-basis for4 and @ = D \; ai,
M\i € F, then the characteristic equation of L, has the form

" — Cu(,y o+, M) = 0.

IfA isnotnil, C.(\1, - -+ , A\n) = p(a)isnot zero forallze A. Now p satisfies
the conditions on p in Lemma 4 and so (ii) holds for G and A.
We can now prove all the corollaries assuming Theorem 1 as a hypothesis.

Proof of Corollary 1. If A is a finite spa-algebra, anticommutativity and odd
characteristic force a® = 0 foreach a e A. Thenif A 7 (0) then A contains at
least three elements and A is not a quasi-division algebra. As A is auto-
morphie, and the ground field is not Z,, the result follows from Theorem 1.

Proof of Corollary 2. 1f ¢ — 1 > d, by Lemma 5, 4 is nil. By Theorem 1,
since A is not a quasi-division algebra A*> = 0.

Proof of Corollary 3. Let P be a p-group of odd order chosen minimally
with respect to being non-abelian and satisfying the hypothesis of Corollary 3.
Then the Frattini subgroup D (P), and P/Q:(Z (P)) are both homocyclic
abelian p-groups. Thus [P, P] = Q. (Z (P)) is elementary and so p-th powers
are central and generate D(P). Then there exists a power mapping
P = P/D(P) — @ (Z(P)) which is a G-isomorphism u between these spaces
viewed as G-modules. Since D (P) = Z(P), commutation defines a skew-
symmetric bilinear mapping

viP X P — Q(Z(P)).
Setting A = P, a G-module, the composition of the G-homomorphism

—1

AXA=PxP X qzP)t—-P=4

defines a product4 X A — A relative to which A4 is a non-associative algebra
and @ is an operator group. Thus, since 4 ~ @ (Z(P)) 4 is a spa-algebra.
Since A® = 0 by Corollary 1, the mapping v is the zero map and so P is abelian.
This contradicts the choice of P and proves the corollary.

Proof of Corollary4. Suppose & (S) < Z(S). By Burnside’sfusion theorem
and the hypothesis of this corollary, ap-complement @ of Sin Ne(S) acts as a
group of operators of the p-group S transitively permuting its subgroup of
order p. As S is odd, S is abelian by Corollary 2. The converse part is
trivial.

Proof of Corollary 5. Clearly we may assume O, (G) = 1. Let S be a
p-Sylow subgroup of G and set P = 0,(G'). We may assume P > 1. Then
2 (S) = @ (P). Next we observe that the semidirect product H = Aut(@) G
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is a group of operators of P transitively acting on its subgroups of order P.
Thus P is abelian. Let @ be a p-complement in O, (G). By a Frattini
argument we may write H = Ng(Q)P. If S = P we are done. Assuming
S > P,wehave @ > 1. Then

Ne@) n(P) = Z(Opy (G)) nu(P)

is an H-invariant subgroup of Q; (P) which is clearly an irreducible H-module.
Thus either & (P) < Cx(Q) or Nx(Q) n 2% (P) = 1. In the former case, by a
theorem of Huppert [12], since P is abelian, P is centralized by @. This is
contrary to Lemma 1.2.3 of Hall and Higman [10]. Thus N (@) is a comple-
ment in H toP. Since % (S) < P, N¢(Q) is a p’-group; hence P = 8, and
the proof is complete.

3. The canonical semi-automorphism group
Recall that if V is a vector space over a field K, a mapping

fivV—-=Vv

is called a semi-linear transformation of V if and only if f (u 4+ v) = f(u) + f(v)
for all u, v ¢ V and there exists ¢ ¢ Aut(K) such that f(au) = «’f (u) for all
ueV and a e K.

DeriniTION. Let B be an algebra over the field K. A mapping
f:B—B

is called a semi-automorphism of B if and only if f@)f(b) = f(ab) for all a,
f e B and f is a semi-linear transformation of B.

If A is an algebra over a field K and F is a subfield of K, then the set Sr(4)
of semi-automorphisms f of A satisfying f(ea) = «f(a) for all a ¢ A and scalars
a lying in the subfield F', forms a group. Clearly Aut(4) = Sx(4) and is a
normal subgroup of Sg(4). If P is the prime subfield of K, Sp(A4) is the full
semi-automorphism group of A. Moreoverif ¥ C L C K where L is a normal
extension of F, then S;(4) < Sr(4) and Sr(4)/S.(4) is a subgroup of the
Galois group G (L/F).

Now suppose A is an algebra over F' and K is an extension field of 7. In
the usual way A ® K can be endowed with the structure of a K-algebra by
asserting that

(a®a)b®B) = (ab) @ (aB)
foralla,be A and @, B ¢ K. Then the mapping
a—a®1

induces an embedding A — A ® K as algebras over F. There is also an em-
bedding

uiAut (4) — Aut (4 ® K)
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uniquely defined by the requirement that (¢ ® a)(" ) = ¢’ @ a for all
geG aeAand aeK.

In this paragraph we assume that K is a finite normal separable extension of
F. Wenowdefinein a canonical way a finite subgroup, Y (4, K) of S (4 ® K)
with the properties

(1) Y(4,K)~G(K/F),
2) YA, K)nAut (4 ® K) =1,
B) YA4,K)Aut (4 ® K) = Sr(4 ® K).

Suppose [K:F] = n and let {&}, o ¢ G(K/F) be a normal F-basis of K.
Since

4) ARK=4Q0a® -+ ®A4Q &,

where {s;} = G(K/F), the mapping ¢;:a¢ ® €; — @ ® €w;s for all @ ¢ A and
fixed ¢ e G(K/F) can be extended F-linearly to A ® K, permuting the subsets
A ® &, as wholes. Clearly eachy, is a semi automorphism of A ® K satisfy-
ing ¥, (ea) = oY, (a) forallae A,ae K. Sincey. ¥, = ¥,, (viewing S, (4 ® K)
as a right operator group), the set

{¥o |0 e G(K/F)}

forms a group Y (4, K). Clearly 1 = 4¢; is the only element in
YA, K)nAut (A ® K). If fe Sr(A ® K) then f(aa) = o’f(a) for all
ae A, a e Kand some fixed 7 ¢ G(K/F) independent of ¢ and «. Clearly
S¥—1 and ¥,-1 f both belong to Aut (4 ® K) and so

Y(4,K)Aut (A ® K) = Sr(4 ® K).
We can now prove

Tueorem 2. Suppose A is an algebra over F and K is a normal separable
finite extension of F. Then

(5) A®1=_Ciux(Y(4,K))
M oreover,
(6) Aut (4) =~ Cauuen (Y (4, K))
Proof. Suppose a e A ® K is an element fixed by Y (4, K). Then the
decomposition (4) yields
@ =D o/ @ @ & , as € A

and for ¥, ¢ Y(4, K), (a. ® &) = a. ® &, whence the a, are all equal.

Thus @ has the form a; ® 2 & ¢ A ® 1, from the separability of K/F. Ob-

viously (@ ® 1)¢¥, = a ® 11is a fixed point of Y (4, K) and so (5) holds.
Suppose g e Aut (4) and ¢, e Y (4, K). Thenforanyae A,

(a ® gf)#(o)% = (a,o ® 81-)% = @ e = (a® e,)'p""(").
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Since u(g) and ¢, are F-linear maps which commute when restricted to the
a ® & whose I'-spanis A ® K, u(Aut (A)) is centralized by Y (4, K). Now
suppose ¢ is an automorphism of A ® K which commutes with all semi-
automorphisms in Y (4, K). Then ¢ induces an automorphism on the fixed
pointset A ® 1. Thus (¢ ® 1) = o’ ® 1for some g e Aut (A) and allae A.
Since ¢ is K-linear, (¢ @ ) = o’ ® « whence ¢ = u(g). Thus we see from
(1), (2), and (3) that Y (4, K) normalizes the subgroup Aut (4 ® K) of
Sr(4A ® K) and this group for fixed points of ¥ (4, K) in Aut (4 ® K) is
precisely u(Aut (4)). Thus (6) holds.
The next two lemmas will be required for Section 4.

Lemua 6. Suppose A is a finite algebra over F.  Let g be an element of order
m in Aut (A) where char F does not divide m. If U s a g-irreducible subspace
of A and K s an extenston of F containing m-th roots, then U ® K has a basts of
eigenvectors for u(g) which are transitively permuted by Y (4, K).

Proof. Set |F| = q. There exists an m-th root 8 and an eigenvector
uoe U @ K, such that (o) *©@ = 6uy. Y (4, K) ~ GK/F) is cyclic, and
is generated by an element ¢ such that zﬁ (aa) = a'y(a). Settingd = dim U,
the elgenroots for g are 6, 6% , 07 ~1, and so setting wu; = ud’ ,
1 =0,---,d— 1, the u; generate U ® K and ¢°(us) = Buo for some 8 ¢ K.
If ¢ has exponent n mod m, d divides n and y* = 1. Thus

n d)n/d d _q2d n—d
ug’ — (lﬁn =ﬁ6q6q "'ﬁq

Since 1 + ¢* + ¢ + -+ + ¢** divides (¢* — 1)/ (q — 1), it follows that 8
is a (¢* — 1)st power. Hence we can find v € K such that v = g7 It
follows that ¢* fixes yuo and we may use the y-orbit of vuo, as the desired
eigenbasis of U ® K.

Lemma 7. Suppose A is a finite algebra over F with left ideal B and suppose
z € Aut (A) has order m, prime to char F and that x leaves B invariant and acts
faithfully and irreducibly on B. Let U be an x-irreductble subspace of A different
from B and let K be an extension field of F' containing primitive m-th roots of
unity. Form U @ K and B @ K and let wo, - -+, ug_1 be an eigenbasis of
U ® K relative to the transformation x. Suppose uo(B @ K) is one-dimensional.
Then left multiplication of B by any mon-zero element w e U, induces a linear
transformation of B which is similar to a semilinear transformation of K. In
particular, such a transformatiin is non-singular and so uB = B for 0 # ue U.

Proof. Set F = q,dimr B = n and let 0 be a prlrmtwe m-th root of unity.
Then z acts on B ® K, with n distinct eigenvalues 6, 6% , 07" and ¢ has
exponent n modulo m. Similarly z acts with eigenvalues 0 0"“ , gkt
where k¢® = 1 mod m. Let ¢ generate Y (4, K) where z[/(aa) = oa%(a) for
all a e K and aeA. By Lemma 6, there exist eigenbases up, * ++ , %a—1 and
bo, -+ ,bpa0f U® K and B ® K respectively. By hypothesis uo(B ® K)
has d1mens1on 1. On the other hand, for some ¢ and e, uob, = vb. ¥ 0 and
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ugb; = 0for¢ s~ ¢. Thisforcesk + ¢ = ¢ mod m. If

Zd -1
;Ui
gd—1

is fixed by ¢, then oy = ady = ol = v = ol ' = o, Thusif Lisan
intermediate field such that F € L € K and [L:F] = d, then for each a ¢ L
we may associate a unique element u (o) = 2 o%u;in U @ 1, the fixed points
of ¢y in U @ K. Similarly for each 8¢ K, we may uniquely associate the
element

b(B) = 257 6"bs
in B ® 1, the fixed points of ¢ in B. Then
u(e)b(8) = 2958 2= otV us by
= 20w bie + B bisare + - B berarte

_ n—1 qi q.’l"‘c q1
- 7=0 B bJ+e

=b@" (@)™ ")

Thus left multiplicationof Bby 4 = u(a)in U = U ® 1, corresponds to the
transformation

B— B (ay)™* forall BeK

which is semilinear. The conclusions of the lemma now follow.

The essential result of the previous lemma can be used for the construction
of finite quasi-division algebras which admit an automorphism which acts
irreducibly on the algebra.

Suppose ¢ is a fixed prime power and that ¢ has exponent n modulo some
integer m prime to g. Suppose there exists a congruence of the form
14+ ¢°=¢ modm. SetF = GF(q), K = GF(¢") and let V be an n-dimen-
sional vector space over K. We may regard V as U ® K where U is an n-di-
mensional space over F. Then there is an irreducible linear transformation
z on U satisfying 2" = 1, and we can let 2’ denote its extension to V. Regard-
ing both U and V as algebras for the moment, the mapping corresponding to
the semiautomorphism y satisfying ¢ (aw) = a®y (@) foralla e K, v E V can be
defined. There exists a y-invariant eigenbasis vy, -+ + , v, of V relative to z’'.
We convert V to a non-trivial algebra A by defining v v, = 5 for some fixed
v € K and setting

ViViyg = ’Yq‘?)w;
where the subscripts are read modulo n. Then ' e Aut (4 ), and ¥ generates
Sr(A) mod Aut (4). It follows that U is a subalgebra over F. In fact U
is isomorphie to the following algebra U’:
As a vector space over F identify U’ with K. For any two elements a and
Bin K define a product « o 8 by the equation

aOﬂ — aqn-bea—b7qn—b
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where juxtaposition denotes field multiplication. This algebra U’ ~ U ad-
mits z’ so that it induces an automorphism corresponding to the linear trans-
formation zin U. In U’ it corresponds to scalar multiplication by a primitive
m-th root in K.

The quasidivision algebra mentioned in Section 1 corresponds to the case
that ¢ = 2,a = 0,b = 1 and x is scalar multiplication by a (2" — 1)-st root.

4. The trichotomy

Let V(n, p°) denote the n-dimensional vector space over the field GF (p°)
and let @ be a linear group acting on V(n, p°). If p does not divide @, the
Brauer character of the representation of G on V (n, p°) is an ordinary charac-
ter and many of the facts concerning @ can be learned from this character. As
useful as this procedure may be, many facts concerning the action of G qua
linear group are lost in passing to the ordinary complex character. In par-
ticular we lose information concerning which subgroups of @ act irreducibly on
V(n,p"). We shall recoup some of this in Theorem 3 below.

We begin with a standard

LemMa 8. Let ¢, (x) denote the cyclotomic polynomial whose roots are the
primitive n-th roots of unity and let k be an integer. Then

@ ¢ (k) = rpi* -+ Pt
where n = r™ny , and r = 1 mod ny (which makes r the largest prime divisor of n)

and p; = 1 modn. Moreover, p; does not divide ¢m (k) for any m < n. If
n>2e=0o0rl.

Proof. This is essentially the content of Theorems 94 and 95 of Nagell’s
book [14].

The primes p1, - -+ , p: oceurring in equation (7) are hereafter denoted the
normal prime divisors of ¢, (q).

Now suppose z is an element of prime order p;, lying in GL(n, p’)where
n > 1. Then z acts irreducibly on V (n, p°) if and only if p° has exponent
nmod p;. It follows that p; divides ¢, (p*), that p; = 1 mod » and that any
other element of order p; in GL(n, p°) also acts irreducibly on V (n, p°).

In this section, = will denote the set of primes dividing the order of G such
that if x is an element of prime order, r, in G, then z acts irreducibly on V (n, p*)
if and only if rew. It is easily seen that if m is the set of normal prime
divisors of ¢, (p°) then = is the subset of those primes in 7o which divide the
group order.

LeMmA 9. Assume n and g = p° fized. Then mo is empty only tf n < 2 or
elsen = 6,and ¢ = 2 (so ¢.(q) = 3).

Proof. This standard result is Theorem 6 of [5].

Lemma 10.  Let G be a linear group on V (n, p°) and let 7 be the set of primes
indicated above, t.e. * = w(G)nmy. If rem, let S be an S,-subgroup of G.
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Then

(a) Cg((8)) s cyclic and s Ce(S).

(b) Ne@(S)) = Ng(S) and [Ne(S):Ce(8S)] divides n.

(¢) SisaTl setinG.

(d) @u(S) centralizes every {p, r}’-subgroup of odd order in G which it normal-
wzes. A similar conclusion holds with S replacing @ (S).

Proof. Since all parts of the lemma hold for n = 1, assume n > 2.
Let z be an element of order r lying in the center of S. Let 6 be a primitive
r-th root, set

K=GF@") =GF@®')®) and V = V(n,p°) ® K.

Then z acts on V as a matrix similar to diag (6, 6% -- - , 6™ '), and has distinct
eigenvalues. It follows that the centralizer of x in GL(n, K) consists of
diagonal matrixes and so C¢ () is an irreducible abelian subgroup of GL (n, p°).
As a result, Cq(zx) is eyclic. From our choice of z, C¢(x) centralizes S and so
(a) holds.

Since 1 (8) is characteristicin S, N¢(S) < N¢(@1(S)). The latter normal-
izes C¢ (2 (S)) and its characteristic subgroup S. Thus N¢(2%(S)) = Ne(S).
Since Aut (2:(S)) is eyelie, so is Ne(@u(8))/Ce(@:(S)). Thus Ne(@:(S))
induces a cyclic -transitive permutation group on the eigenvalues 6% and so
the order of this eyclic group divides dimg V = n, and (b) holds.

If1 < L =8nS, forsomez e G then Q; (S) < Lso both S and S¥ centralize
Q,(S). As Sis the only S,-subgroup of Ce(@:(S)), S = S*. Thus (c¢) holds.

Let N be a {p, r}’-subgroup of G which is normalized by € (S) and suppose
N is not centralized by €1 (S). Since S and N have coprime orders, for each
prime ¢ dividing | N |, N contains an S;-subgroup normalized by €, (S). We
can find a prime such that the normalized S;-subgroup of N is not centralized
by €21(S). Choose T minimal in this subgroup with respect to being normal-
ized but not centralized by €. (S). Then T is a special {-group whose Frattini
factor group has order t" and is acted on irreducibly by 2, (S). Form the
p’-subgroup H = € (S)T and view Vo, = V (n, p") as an H-module. Then V,
has an absolutely irreducible constituent Vo whose kernel H; does not contain
T. If Hy = D(T), H/H, is Frobenius, and dim Vo = r < dim Vy = n.
This contradicts r = 1 modn. Thus T/T n H, is extraspecial and so
dim Voo = "™ < n. Since 7 is a prime exceeding n + 1 and r divides ™ — 1,
r equals £ 4 1. Sincen > 2andrem,risodd. Thenr = " + 1 forces
t = 2 contrary to the hypothesis of (d). Thus (d) holds, completing the
proof of the lemma.

The following lemma concerns T'I sets and ordinary complex characters.

LemMa 11. Let H be a T1 set in G. Suppose H is abelian and that H is em-
bedded in G so that

(a) H® < N¢(H) implies H* = H,

() 1< Hy < H implies Cq(Hy) = Co(H).
If G has a faithful character of degree < |H |* — 1 then H G.
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Proof. If H < L < @, then the hypotheses of the pair (H, G') inherit to
the pair (H, L). Thusif H< L < @G, by induction, H < L. Thus we may
assume that N¢(H ) is the unique maximal subgroup of G containing H. Now
suppose H < N <|{ G. Then H* < N < N¢(H) forall zeG. By (a), this
implies H <] G and we are done. Thus H is not contained in any proper
normal subgroup of . Now set H* = H — {1}, and set

No = {Uc Co(2)} — Z(G) = Co(H) — Z(@) by (b).

If xe Non N§, both H and H° liein C¢(H). Thus either Non N§ = N, or §.
Now set N1 = N¢(No). Then Ny = Ng(Ce(H)). Clearly, N¢(H) normal-
izes C¢(H) so Ne(H) < N1. ForanyyeN:, H < Ce(H) so H = H by
(a). Thus N1 = Ne(G@). We have thus verified the hypotheses 24.1 of [7].
It now follows from Theorem 24.3 of [7] that x(1) > |H |** — 1 for every
faithful character of G. As this is a contradiction, H < G.

Lemma 12. If S is an S,-subgroup of a linear group G acting on V (n, p*)
then S satisfies the conditions (a) and (b) of Lemma 11.

Proof. For any x¢G, S° < Ng(S) implies S = S° since S is the unique
S,-subgroup of Ng(S).

Alsoif 1 < Sy < S, then @ (S) < 8y. Thus Ce(S) < Ce(So) < Ca(@(S))
and all three are equal by Lemma 10, part (a).

TaeoreM 3.  Let G be a linear group on V (n, p°) and let w be the set of primes
(@) nm. Ifp 4 |G|, then one of the following three cases holds:

(a) @ contains a normal irreducible cyclic subgroup C of index dividing n;

(b) G s a central extension of LF (2, 2n + 1) and = = {2n + 1} or
{n+1,2n 4 1};

(¢)  contains at most the single prime n + 1, where (n + 1)* £ | G|.

Proof. Supposer ew. LetZ be the Brauer character of the representation
of G on V(n, p°). Then = is a faithful ordinary complex character of G of
degree n. Let S be an S,-subgroup of G. If |S|”* — 1 > n, S< G by
Lemmas 11 and 12. Then G = N¢(S) and so (a) holds by Lemma 10. Now
r = 1 mod n, by the definition of 7. If r > 2n + 1, again S < G and (a)
holds by a fundamental theorem of Feit and Thompson [8]. Thusr = 2n + 1
orn 4+ 1. Ifr = 2n + 1, r divides | G| to the first power only and (b) holds,
by a deep theorem of Brauer [3]. Thus we may assume = = {r} = {n + 1}.
Suppose § = * wherea > 2. Then |[S|” > ¢g=n+1s0|S|"*—1>n
contrary to what we know about 8. Thus (c) is proved.

To illustrate the usefulness of the trichotomy of Theorem 3, we include as
an easy application, an

E.-TaeoreEM. Suppose G is a p'-group acting on V (n, p°). Let 7 be defined
as tn Lemma 9. Then either G contains a w-Hall subgroup or both n + 1 and
2n + 1 are primes and G is a ceniral extension of LF (2, 2n 4 1).

Proof. We may assume | 7| > 2. Theorem 3 applies to force case (b).
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If # = m, case (¢) of Theorem 3 holds when my = {n + 1} and (n + 1)
does not divide ¢, (p°). It will be useful to us to determine at just what values
of p° and n this can occur.

Lemma 13.  Suppose k is an integer greater than 2, and suppose n is a positive
integer. Let r be the largest prime dividing n. Then if b = 0 or 1, we have

$ulk) = 1"(n + 1)
only in the following cases:
n =2, k any integer of the form 2° — 1 or 3-2° — 1;
n=4, k=3 1n+1) =10
n=6 k=3 a=0 b=1;
k=35, a=5b=1
Proof. The proof proceeds by a series of short steps.
(a) Letr, and ry be primes. Then ri*™ > max (11, ).
Ifry > 1, i7" > = max (r1,72), and if 71 < 75 then 7127 > 21270 > 1y

(b) Suppose n = nyn, where (ny,m2) = Landny > ne > 2. Lelr, 1 and
7y be the largest prime divisors of n, ny and ne respectively. Thenr = max (ry,r2).
If

(k _ 1)¢(”l) > 7'1(%1 -+ 1)

then (k — 1)*™ > r(n + 1).

Clearly
k — 1)¢ () _ ((k — 1)¢ (nx))¢ (n2) - 7‘;2_1(714 + 1)2

>max (r, r)(mne + 1) =r(n + 1).
(¢) Let q be a prime number. Then of k > 3
(k= 1) > q(¢" + 1)
unlessq® = 2andk < 7,¢" =3,4andk < 4or¢" =50r8andk = 3.

First we directly verify the inequality when ¢* = 2, 3%, 5> and k = 3, when
¢ =2 5andk =4,0r¢"” = 2’ 3and k = 5. If ¢" = 2, it is easily seen that
the inequality implies ¥ > 6. Now suppose for some value of b and k that

(k — 1) T > g( + 1).
Then raising both sides to the ¢g-th power
& — 1) > ()¢ + 1)) > ¢* (¢ + 19 > ¢(@™ + 1).

Thus (¢) holds by induction, if we can prove the inequality fora = 1, ¢ > 5.
It suffices to show this when &k = 3, ¢ > 7. But in general if s > 7, then
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2" > s(s + 1) since this holds for s = 7, and if it holds for s = ¢, then
2Tt — 9.0 S 4+ 1) > tE+ 1)+ 2+ 1) = ¢+ )¢+ 2)
and it holds for ¢ + 1. Thus (c) is proved.

(d) If k > 3, the inequality
8) k—1*">rm+1)

holds except possibly when n has the form 2-q°, where ¢ > 5 and q s an odd
prime, or when n has the form n = 2°3°5° where 0 < b,¢ < land 0 < a < 3.

This is a consequence of combining (b) and (e).
(e) The inequality (8) holds if n = 2¢° where (¢ — 1)¢" " > 6 anda > 1°

We apply the inequality 2° > s(s + 1) established in the proof of (c).
Thus if (g — 1)¢*™" > 6,

200 > (@ = 1" + 3(¢ — )¢ + 2.
Since ¢ > 3,¢ + 1 > 4qor (g — 1)* > 2¢. Thus
2@V 5 929 4 3(g — 1)g" ™ + 2
>20" +q=q@" +1)=r@n+1)
ifa > 2.
(f)  The inequality (8) holds if n = 2q where q is a prime > 7.
First, 2° > 161 = 9(2-9 4+ 1). If 2 > ¢(2¢t + 1) then
2>t +1)+3@+t)>t@+1)+4+3 if t> 3.
(g) If n = 0mod 15, then (8) holds.

Ifn = 30,0r15, (k — 1)*™ > 2° = 256 whiler = 5and r(n — 1 = 80 or
155. From (b) with n; = 15, the cases n = 60 and 120 are also covered.

(h) Ifk > 3, pu(k) > r(m + 1) unlessn = 8, 10, 12, or 14 with k = 3,
n=3ordwithk <4,n=2withk <7, orn = 6,withk < 5.

o) = TTEDP [ — wi)] = (B — 1)°®

where w; ranges over the primitive n-th roots of unity (equality holds only
when n = 1). But the right side exceeds r(n -+ 1) except possibly when
n = 14 (from (f)), whenn = 5,8 (withk = 3),n = 3,4 (with k < 4),when
n = 6,12, 24 orn = 10, 20 or 40 with k¥ = 3 (from (g)). Ifn = 5,
¢s(k) > #5(3) = 131 and this exceeds 5(5 4+ 1) = 30. If n = 20 or 40,
2™ 5 9% 5 5.41. Ifn = 24,2°™ = 2° > 3.25 = 75. The possibilities
are thus those specified in (h). The bounds on % are determined from
2*™ < y(n + 1) in each case.

We are now in a position to prove the lemma. From Theorems 94-95 of
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[14], if » > 2, the exponent of r in ¢, (k) is at most 1, and all other prime
divisors are congruent to unity modulo n. Thusif (n + 1) oceurs as a factor,
n + 1 is a prime number. Thus in the case that n = 3, 8 or 14, we have
¢, (k) = 3, 2 or 7, respectively. For n = 3, this would imply ¥ = 1. If
n=38orl4, ¢,(k) > 2*™ > 2* > max (2, 7), and so these cases are im-
possible. Ifn = 2, the equation reads & — 1 = 2°-3°so any & = 1 mod 2° or
3-2° provides a solution. If n = 10, or 12, either ¢, (k) = 5or 3, 11 or 13, or
else ¢.(k) = r(n + 1) = 55 or 39. In the former case, ¢n (k) > 2°™
> 2* > 13 and so the equation cannot hold. Thus ¢1,(3) = 55 or ¢12 (3) = 39,
since k¥ = 3 in these cases in order to avoid the inequality (8). But
$10(3) > 55 so the inequality in (b) holds. Similarly ¢2(3) =3* — 3 +1 =
73 #£ 39. Thusn = 10 and 12 are excluded. Now supposen = 4. We then
have k* + 1 = r*(n + 1) = 2°5°. The only possible solution here is k = 3,
a=1=2b TFinallyifn = 6, wehavek’ — &k + 1 = 3°7° < 21. Here we
obtain a solution when k = 5, = b = 1,ork = 2,a = 1, b = 0, against
k> 3.

In the proof of the main theorem of the next section, we require two minor
number-theoretic results.

LemMa 14. Ifn > 14 and q > 2, then

3/4n 1 q”—l
< -
e ‘n(q—1>

Proof. Suppose n > 14. Then from

4 4
<“+ 1) g(lff) <3 and 15'< 3"

n 15

we obtain from ¢ > 2 that n' < 3" < ¢*™ Thusn < (¢ —1)/(¢ — 1)
and the result follows.

Lemma 15. If n > 12,3" 7 > (2n + 1)°.
Proof. This follows at once from (27/25)% < 3.

5. The main theorem
The title of this section refers to

THEOREM 4. Let A be a finite-dimensional algebra over GF (q) and let B be
a left ideal in A with the property that B* = 0. Then left multiplication of all
the elemenis of B by a fixed element a in A induces a linear transformation
L,:B — B. Suppose L, is nilpotent for every a in A and suppose A admits a
group of automorphisms G which leaves B invariant and acts transitively on the
one-dimensional subspaces of B. If ¢ > 2, then AB = 0.

Proof. TFirst we replace A by another algebra A™ also satisfying the hy-
potheses of this theorem, and such that the conclusion of the theorem holds
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for A if and only if it holds for A*. Let W = A/B as a GF (¢)G-module and
formally set A* = W @ B as G-modules. We define multiplication as follows.
Set W? = B* = BW = 0. ForbeBandwe W wehave that wisa coset @ + B,
and that in 4 the products (¢ + B)b = ab, is a unique element of B, since
B’ = 0. Thusif w = @ + B, and b ¢ B, we may unambiguously define the
product wb in A* to be ab. It is now clear that A™ is a non-associative algebra,
containing B as a left (indeed 2-sided ) ideal and that as a G-module, A* admits
@ as a group of operators preserving all algebraic operations in A*. Clearly
A*B = 0if and only if WB = 0 if and only if AB = 0. If

G = G/(Ca(4/B)n Ca(B))

(G mod the stabilizer of the chain 4 > B > 0) then G acts as a group of
automorphisms of A*, transitively permuting the one-dimensional subspaces
of its left ideal B. Thus without loss of generality we may assume the
following

HyporuEsEs. (1) A s a non-associative finite algebra over GF (q).
Gi) A=W ® Buwhere W = B> = BW = 0and 0 % WB < B.
(i) A admits a group of automorphisms G leaving both subalgebras W and
B inwariant, and acting transitively on the 1-dimensional subspaces of B.
@iv) For each we W, the mapping L, : B — B defined by b — wb for all
b € B, is a nilpotent transformation of B.
v) ¢> 2.

The proof now proceeds by a series of short steps utilizing induction on
dim A.

(a) IfweW and wB = 0, then w = 0.

If Wo = {w|weW, wB = 0} then W, is a G-invariant subspace of W.
By (i) Wo < W. Then A, = (W/W,) @ B is a well-defined algebra ad-
mitting G = G/ (Ce (W/Wy) n Ce(B)) as a group of automorphisms. Clearly
hypotheses (i) through (v) hold with A;, W/W,, B and @ in the roles of
A, W, B, and G, respectively. If W, > 0, dim 4; < dim 4 and induction
applies to force (W/Wy)B = 0. Thus WB = 0 against (ii). Thus W, = 0
and (a) holds.

(b) W 4s an irreducible G-module.

If W is not irreducible, we can find a non-trivial submodule U. Since
W? = 0, U @ B is a proper subalgebra of 4, admitting G as a group of opera-
tors, in such manner that U @ B, U, B and G = G/Ce(U @ B) satisfy the
roles of A, W, B and @ in hypotheses (i) through (iv). By induction,
UB = 0. By (a), U = (0), contrary to the choice of U. Thus (b) holds.

(¢) @ acts faithfully on B.
Let H = Co(B)so H< G. Then forany he H, we W and b ¢ B we have



ON FINITE AUTOMORPHIC ALGEBRAS 643

wh = (wb)* = w'bso (W' — w)b = 0sow* = wby (a). Thus H fixes both
W and B. Whence H consists of the identity automorphism alone. Thus
(¢) holds.

(d) @ is a p'-group, where p is the characteristic of GF (q).
Suppose G has a non-trivial S,-subgroup P. Set

Z, = {b|b" =0b forall zelP}
and inductively define

Z;=1{b|b" —beZ;y forall zeP}.

We thus form a ‘“‘central series”
0<Z1<Zy< ++- < Znm=B.

Since P > (1), and (¢) implies that P acts non-trivially on B, we have m > 1.
Form a similar ‘“‘central series”

O<Uhh < U< - < U+ W
for W. Then
Ui ® Z, = {alaed,a” =a forall zeP}

and clearly forms a subalgebra of 4, and Z; is an idealin U; @ Z;. From a
theorem of Burnside, N¢(P) = PQ acts transitively on the one-dimensional
subspaces of Z; , so that Uy @ Z,, Uy, Z1 and Q/Cq (Uy @ Zy) satisfy the roles
of A, W, B and G in hypotheses (i) through (iv). (Note that for ue Ui,
the restriction of L, to Z; is still nilpotent.) Since Z; < B, induction applies
to yield U1 Z, = 0. Now suppose for some integer 7, such that 0 < j < m,
we have U;Z; = 0. Then for any w e U1, 216 Z1z e P,

(uzl)x =uZ =un+ (W — u)Zy = uz

sincew” — ueZ;and Z; B = 0. Thus uz1eZ;. Then Uy @ Z; is a sub-
algebra of A and Uy @ Zy, Up1, Z1, Q/Co (Ui @ Z1) satisfy the roles of
A, W, B and @ in hypotheses (i) through (iv). Since Z; < B, induction on
dim A applies to force Uj;;1Z; = 0. Mathematical induction on j now
yields WZy, = Ui Z, = 0. By (iii), Z7 = (Z{|geG) = Bandso WB = 0
against (ii). This contradiction forces P = 1 so (d) holds.

(e) Let wo be the set of prime divisors of é.(q) which are prime to n, where
n = dim B and ¢.(x) s the cyclotomic polynomial for n-th roots of unity.
Then if n > 1 all primes in m diwide | G|, and one of the following hold:

(1) @G contains a normal S,-subgroup, for some r e mq.

@) m = {n + 1,20 + 1} or {2n + 1}, G is a central extension of
LF (2, 2n + 1) where 2n + 1 7s a prime.

(iii) mo s empty or consists of the prime n + 1 alone. In the latter case
(n + 1)* does not divide | G |.
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Since G acts transitively on the (¢" — 1)/ (¢ — 1) one-dimensional subspaces
of B, ¢.(q) divides | G| orn = 1. The last part follows from the trichotomy
theorem (Theorem 3).

#) n>2.

If n = 1, L, being nilpotent implies wB = 0 for all w ¢ W. This con-
tradiets hypothesis (ii).

Suppose n = 2. Select wie W, wy # 0. Then as wuB # 0, there exists
b e wB such that w1 b = 0 and b £ 0. Since W (wy B) = 0 implies WB = 0
(against (ii)), we have W (wy B) # 0 so we(wb) # 0 for some w. ¢ W.
(Clearly w: and w, are linearly independent.) Nilpotence of L,,, now shows
that w, wy b ¢ wB. Thus {w. wy b, wy b} is a basis for B and regarding the L,
as left operators of B we have relation to this basis,

0 0 0 1
Ly, = <a1 O) y L, = (0 0) where a; # 0,

Clearly Ly,4w, is non-singular, against (iii).
(g) mo #= 0.

By (v), ¢ > 2. If m were empty, ¢,.(q) is a power of the largest prime
divisor of n by step (f) and Lemma 8. Since ¢ > 2, Lemma 9 applies to
force n = 2 and q a Mersenne prime. This is excluded by (f) so o is not
empty.

This step shows that G contains elements of prime order which act irre-
ducibly on B. The next two steps concern the action of irreducible cyclic
subgroups of G.

(h) If C is an abelian subgroup of G with distinct absolutely irreducible
constituents on B (e.g., if C s cyclic and acts trreducibly on B), then C is fixed
point free on W.

Suppose W’ is the set of fixed points of C'in W. Then as C is irreducible on
B and acts faithfully there (by (¢)), |C| = cis a divisor of ¢" — 1. Let K
be a splitting field for C over GF (¢) and form the algebra

AQK= WQ®K)® (B®K).

Then C acts on B ® K as a sum of n dictinct (if C is GF (q)-irreducible,
algebraically conjugate) absolutely irreducible representations. Since any
w®1eW ®1< A ® K generates a C-submodule of W ® K affording the
trivial representation, left multiplication of B ® K by this element is repre-
sentable as a diagonal matrix similar (in GLn, K)) to L, (as a linear trans-
formation of B). Since the latter is nilpotent and the former is diagonal,
similarity forces both to be the 0-transformation (or matrix). Thusw'B = 0
sow = 0by (a). Thus W = 0, proving (h).
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(1) Suppose C is a cyclic subgroup of G having order ¢ and acting irreducibly
on B. Then there exist at least two distinct residues by, b. mod n and residues
a1, a; mod n such that the congruence

@) 1+ ¢ = @™ 4 ¢ mod ¢
holds with as # ai(mod n). (Here g has exponent n mod c.)

Let W1 be any C-irreducible subspace of W and let K = GF (¢"). Define
the integer k& by letting 0, 6% ---, 6% be the eigenvalues on B ® K and
6%, 6%, ..., 6*° " be the eigenvalues on Wy ® K of the transformations in-
duced by a generator, y, of C. (Here 6 is a primitive ¢-th root in K since C
acts faithfully on B, although not necessarily faithfully on W;.)

Let B ® K = (20, -+, 2,-1) Where 2z; is an eigenvector of y for the root
6%, If no residue ai(mod n) exists such that
(10) grl.g = g0

for some by, then (W; ® K){z)) = 0 as a set of productsin A @ K. Lety
be a generator of the canonical group of semiautomorphisms of A ® K
defined in the remarks preceding Theorem 2, whose fixed points comprise
A ® 1. We can then choose the 2; in such manner that they are transitively
permuted by ¢. Since Wi ® K is y-invariant, iteration of ¢ forces
(W1 ® K){z;) = 0forz = 0, ,n — 1. Tt follows that Wi B = 0 (in 4)
against (a) and our choice of W1

Suppose only one pair of eigenvalues 6** and 67 exists such that 6.0 = %",
Then only one product between 2, and an eigenvector w, in W1 ® K can be
non-zero. Under these circumstances, Lemma 7 shows that in A, for any
w e W1, Ly, is a linear transformation of B which is similar (as a GF (g)-linear
mapping) to a semilinear transformation of GF(¢"). In particular, L, is
non-singular for all non-zero w in W,. This contradicts hypothes1s @iv).

Thus at least two distinct pairs of eigenvalues (9**%, 6°°*) ¢ = 1, 2 can be
found satisfying (10). The two congruences

1+ k¢" = ¢ mod ¢, 1+ kg™ = ¢” mod ¢

follow upon equating exponents (mod ¢). Multiplying the congruences through
by ¢ %, © = 1, 2, respectively, and equating the expressions for £ which
result yields (9). (Note: If by = b,, then kg™ = kq*® mod ¢ and the two
pairs of eigenvalues would agree. Also by 5% b, implies a1 # a2 mod n.)

A number of troublesome special cases are eliminated in the following two

steps.

(G) Suppose C is a self-centralizing subgroup of G which is not at To-group.
Then [Ne(C):C] < n.

Let S be an S,-subgroup of C where r e mon 7w (C). Then S acts irreducibly
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on B, and Ce(S) > Crgycy (8) = C, where, by Lemma 10, all three members
of this chain are cyclic. Since C is self centralizing, C = Cwy4(ce)(S). Also
Ne(S) > Ng(C). Now N¢(C)induces a cyclic group of automorphisms of S,
and we can find an element of y such that (y, C) = N¢(C). Suppose[Na(C):C]
= n. Then B is an absolutely irreducible module for N¢(C) and y" lies in its
center. It follows that y" acts as multiplication by a scalar w ¢ GF (¢). Since
Crgiy(8) = Cyand (n,r) = 1, {y, 8)/{y™) is a Frobenius group. For every
weW and be B, (wb)”" = w’'b*" = w@”b) = w(wb) since wbeB. Thus
(W — w)B = 0 and so w”" = w. Since ,(S) acts irreducibly on B, § acts
faithfully on W, by (k). It follows that (y, S) is represented as a Frobenius
group on W and so y fixes a non-trivial element w, of W. But y has p’-order
(by (d)) and B restricted to (y) affords the representation induced from the
irreducible representation of its subgroup (y") defined by y" — w. It follows
that (y) is represented on B with absolutely irreducible constituents which are
distinct. It follows from (h) that y acts without fixed points on W, a con-
tradiction.

(k) n s not a prime number.

Suppose n = s is a prime number. By Lemma 10, part (b), for each
rem and S,-subgroup S of G, [Ne(S):Cs(S)] divides n and so is 1 or =.
Since C¢(S) is self-centralizing, (j) implies N¢(S) = Cs(S). By Burnside’s
transfer theorem, S has a normal complement in G. Applying this result
for each prime in o, a chain of Frattini arguments shows that G has a cyclic
wo-Hall subgroup H and a normal mp-complement N. If T is a ¢-subgroup of
N chosen minimally with respect to being normalized by a S,-subgroup S in
H but not centralized by €, (S), then T is a special {-group, and every ab-
solutely irreducible representation of ST over a field of characteristic relatively
prime to ST either (a) has T in its kernel, (b) has degree greater than r — 1
or (¢) has degree r — 1. Case (c) holds only when r — 1 = [T:D (T)]"~
Since T acts faithfully on B, (¢, |ST|) = 1, and dim B = =, absolutely
irreducible ST-constituents of B have degree < n which divides r — 1. But
now n and 7 = n + 1 are both primes. This forces n = 2, against (f). Thus
1 (S) centralizes every ¢-subgroup of N which S normalizes. A Frattini
argument coupled with the use of the Schiir-Zassenhaus theorem shows that
S normalizes at least one S;-subgroup of N for each ¢ dividing | N |. Thus N
and H both lie in Cy (2:(S)), which by Lemma 10, part (a), is eyclic.

Since G is now a B-irreducible cyclic subgroup of G, by (i) there exist in-
tegers c1, ¢z, ¢ (where ¢, is distinet from ¢ and c¢;) such that for each integer
ksuchthat 0 <k <n — 1,

(11) qk + q01+k = q62+k _|_ q03+k mOd lG|-

Also |G| > 14 ¢+ -+ + ¢". When all exponents are reduced mod 7,
both sides of (11) represent distinct integers, one of which necessarily ex-
ceeds | G|. Since n > 2, it follows that this integer is exactly 2¢"~. With
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k = 0, this forces ¢z = ¢ = n — 1. Similarly, with ¥ = 1, we have
q + ¢*** = 2 forcing 2¢" " = ¢ + ¢ son = 2, against (f).

1) If case (i) of step (e) holds, then G contains & normal cyclic subgroup
C of order a multiple of (d/n)(1 + q + -+ + ¢*) where d is a divisor of n
and d > 2. Moreover n < 14 in this case.

Case (i) of step (e) implies the normality of an S,-subgroup S for some
r e m. Set C = Cg¢(8). Then C is cyclic, is its own centralizer, and
G/C = Ng(8)/Cs(8) is a proper divisor n/d of n by Lemma 10(b), and step
(j). Since G acts transitively on the 1 + ¢ + .-+ 4 ¢"' one-dimensional
subspaces of B, (d/n)(1 + ¢ + --- + ¢"") divides | C|.

Now suppose n > 14. By Lemma 14, for all ¢ > 2,

1/(¢"—1
9 3/n < = q )
(12) A A=
By step (i), there exist integers by, a» and bs such that
(13) qk + qk‘l‘bl+“2—al = q"+a2““1 + qk‘l-bz mod | CI,

fork=0,1,---,n — 1. For each integer a let @ (also denoted a™) be defined
bya=amodnand 0 < a@ < n. If we rewrite equation (13) with exponents
replaced by the ‘“barred” value of these integers, then both sides of (13)
represent distinct integers (since (0, (b1 + a2 — a1)”) and ((az — a1)™, (b2))
represent distinct pairs of residues mod 7 ) which are congruent mod | C'|. It
follows that one of the integers exceeds | C'|, and hence by (12), exceeds
2¢"*". Thus for every value of &, one of the four exponents

by bk +br— @), b+ 0 — a— &), b+ b))

represents value between (2)n and n — 1 (inclusively). Put another way,
when the four values, 0, (by + s — a1)”, (@2 — a1)~ and b, are placed on the
circle of residues mod 7, no gap can occur between adjacent members of the
quartette which exceeds one-fourth of the circle. Thus n is divisible by 4
and for some k, the four exponents are congruent to 0, (3)n, (3)n, G)n
(mod n) some order. In that case,

q(3/4)n + q(1/2)n > |C| > 2q (3/4)n,
an impossibility.
(m) Case (i) of step (e) does not hold.
Suppose case (i) of step (e) holds. By steps (f), (k) and (1) we may as-
sume 4 < n < 14 and that » is not a prime number. Thus we have n = 4, 6,
8,9, 10, 12 or 14. By (i) we have a congruence

14+4¢"=¢+ ¢ mod|C],
(max (a, b, ¢) < m, a ¢{b, ¢} and min (b, ¢c( > 0)
where |C| > (2/n)(1 + ¢+ -+ + ¢"'). By multiplying congruence (14)

(14)
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through by ¢"* if necessary, we may assume without loss of generality that
a < 3n.

Suppose n = 4. Sinceq > 3,2¢° < (1 4+ ¢ + ¢ + ¢*). Since one side
of the congruence (14) must represent an integer exceeding the modulus | C |,
one of the exponents is at least 3. Since a < 3n, without loss of generality
we may assume ¢ = 3. Multiplying (14) through by ¢, (14) becomes

q + qa+1 = 1 + qb+1.

Then either (¢ + 1)" or (b + 1) is 8. Thus either

i) ¢+ =1+7,

(i) 2q=14¢

(i) ¢+¢ =144, 0r

(iv) ¢+ =2
mod | C|. Case (iv) yields 1 + ¢ = 2¢ and case (ii) yields 2" = 1 + ¢
and in both congruences neither side can represent an integer exceeding
$0+q¢+7+¢"). InG),d+¢=1+gso

@—-1)10+¢)=0 mod|C|

and this holds mod r for some prime r e 7. This contradicts the fact that ¢
has exponent 4 modulo such an r. In case (iii),

@+1)(@—-1)=0 mod|C]|

and so (¢ + 1)(g — 1) is a multiple 2(1 + ¢ + ¢ + ¢°). Since
(¢® + 1)(¢g — 1) is positive and less than 1 + ¢ + ¢ + ¢, &k = 1. Then
2 +2¢" —2—2=14+q¢g++s0d 4+ =30+¢q)s0¢ =3,an
impossibility.

Suppose n = 6. Then |C|> (1 4+ ¢ + -+ + ¢’)/3, and since ¢ > 3
implies 3¢° 4+ 3¢* <14 ¢+ -+ + ¢’, and in the congruence (14),a < in = 3,
we may assume ¢ = max (b, ¢) > 4, with equality holding only if also b = 4.
Multiplying the congruence through by ¢ and reducing exponents mod n,
the right side is at most ¢ + ¢, an integer less than | C'|. The left side is
¢ + ¢™ and so ¢ = 3. Multiplying again by ¢, we have ¢ + 1 =
g™ 4+ ¢“™ and since (b + 3)” < (¢ + 3)” < 2, neither side represents
an integer exceeding the modulus. Since a ¢ {b, ¢}, it cannot also represent an
equation between integers; hence the congruence (14) cannot hold.

Suppose n = 8. Here

IC|> &)A+qg+ -+ + ).

Since 8¢ < 1 +3+ 3V’ <+ ¢+ ¢ wehaved + ¢® < |C|. Thus
if the sum of two powers of ¢ exceed | C |, at least one exponent is 6 or 7. In
congruence (14), wehavea < (3)n = 4and b < ¢, so we may assume ¢ > 6.
In addition 1 4+ ¢ > 4 yields 4(¢* + ¢’) < ¢ + ¢ + ¢ + ¢ and so0
¢+ ¢ < |C|. Thus¢ + ¢ exceeds | C|onlyif f = 50r6. Nowifc =7,
g+ ¢ =1+¢"andsincea +1<5b+1=7 Thenq + ¢** =
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1 4+ ¢ mod | C|, and this is a contradiction. Thus ¢ = 6, and ¢* + ¢*** =
14+a®®". Thena-+ 2 < 6forces (0 +2)" =7. Theng®+¢*P=1+44¢
soa + 3 = 7. This finally yields ¢* + 1 = ¢ + ¢’ mod | C'|, an impossibility.

Supposen =9. Then|C|> G)A+q¢+ - +¢"). Theng’+¢ < |C|
ande>7. Ifc=8,g+ ¢ =1+ ¢ forcingb + 1 = 8. This yields
¢ + ¢ =1+ ¢ mod | C|, which is impossible. Hence ¢ = 7,b = 7,
whence ¢* 4+ ¢ = 2 mod | C|, another impossibility.
If n = 10,

ICl> &)A+qg+ - +¢) and 10 < A+ g+ &)

so in congruence (14), ¢ > 8. If¢c = 9, ¢ + ¢*™ = ¢ + 1 so (since

a+1<5),b+1>8forcingg +¢P=14+qord+ ¢ =1+ ¢
This means a + 3 > 8, an impossibility. Ifc = 8, ¢ + ¢" = ¢™ + 1 50
b+2>8. Theng'+ ¢ =¢®® 4+ ¢ where (b +4)” = Oorl. This
forces @ + 4 = 8 (since @ < 4). Then ¢ + 1 = ¢ + ¢* mod ||,
which is impossible since (b + 6)” < 7.

Ifn =12,|C| > )AL+ g+ --- +¢). Sinceq>3,1+ ¢+ ¢ > 12
5012 < ¢ + " + ¢ Thus ¢ + ¢ > @A + --- + ¢") implies
max (¢, f) > 10. Thusin (14), ¢ > 10, so

q2 + qa+2 = qb+2 + q(c+2)‘ modICl

where (¢ + 2)” = 0or 1. Thena + 2 < 7 forces b + 2 = 10 or 11 so
¢+ ¢ =q" 4+ ¢“"? where0 < (b +4)" < (c+ 4)” <5. Thus
a + 4 > 10 against a < 5.

Suppose n = 14. Now

T+ <@+ <LHg+ o+ g

Thusif 0 < e<f<13and ¢ +¢ > @)A +qg+ -+ + ¢°), thenf > 11
and if f = 11, then ¢ = 11 also. Thusin (14) ¢ > 11. If ¢ = 12 or 13,
¢ + ¢ = ¢ + ¢ forcing b + 2 > 12. Then ¢ + ¢ =
g™ 4+ ¢“™ where 0 < (b + 4)” < (¢ + 4)” < 5. This forces
a + 4 > 11 against a < 6. Otherwise, b = ¢ = 11, 50 ¢* + ¢*** = 2 forcing
a + 3 > 12, another contradiction. This completes step (m).

(m) Case (ii) of step (f) does not hold.

Suppose case (ii) holds. Then 2n 4 1 is prime and G/Z(G) ~
LF (2, 2n + 1). Moreover, B is an absolutely irreducible G-module. Thus
Z (@) acts on B as scalar multiplication by elements of GF (¢). As a result,
Z (@) stabilizes every one-dimensional subspace of B and so the number of
one-dimensional subspaces of B divides the order of the central factor group
of G, i.e.

15) 14+q+ -+ + ¢ divides 2n(n + 1)(2n + 1).
By Lemma 15, if n > 12, ¢" > 3" > (2n 4 1)° and (15) is impossible.
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From the above, and steps (f) and (k) we have 4 < n < 12, 2n + 1 a prime
and n composite. This leavesn = 6, 8 or 9.
Ifn =6, [G:Z(G)] = 12-7-13 is a multiple of

@+ 1@ +qg+ 1) — g+ 1)

Clearly ¢° < 12:7-13 80 ¢* < 4-7-13s0¢ < 5. Thus ¢ = 3,4. If ¢ = 4,
g + 1 = 5, which doesn’t divide 12-7-13 asit should. And ¢ = 3 isimpossible
because 3 does not have exponent 6 mod 13.

Ifn=28[G:Z(G)] = 16-9-17 < 11° s0 ¢ < 11. Also ¢ has exponent
8 mod 17 so 17 divides ¢* + 1. Thusq = 2,8 or9 or 15. ¢ = 2 or 15 are
ruled out. If ¢ = 8, ¢ + 1 = 5-13 must divide 16-9-17 while if ¢ = 9,
g+ 1 = 2.5 divides 16-9-17, both absurdities.

Ifn =9, [Z(@G)] = 283"-5-19. If ¢ > 19, then

14+qg+ - +¢>¢F>198= @+ 1P°> 200+ 1)2n + 1)

and (15) cannot hold. Thusq = 3or4. Ifg=4,1+4 ¢+ ¢ = 3-7 must
divide [G:Z(G)] # 0 mod 7. But g # 3, since 3 does not have exponent
9 mod 19 (¢ (3) #£ 0(19)). This concludes step (n).

(o) Case (iii) of (e) cannot hold.

Here mo consists of n + 1 alone. Moreover, (n + 1)* /' |G|, since other-
wise G has a normal m-Hall subgroup and case (i) of (e) obtains, against (m).
Thus ¢.(q) = 7°(n + 1) where r is the largest prime dividing n. From
Lemma 13, n = 2,4 0r 6. Butn = 2, by (f). Ilf n = 4, ¢u(g) = 5 and
q = 2, an excluded case, or else ¢4(¢) = 10and ¢ = 3. Ifn = 6,¢.(q) = 7
or 21 which occurs with ¢ = 3 or 5. We examine these cases separately.

First suppose ¢1(¢) = 10, ¢ = 3. Here, B contains 40 one-dimensional
subspaces, so 40 | |G|. Suppose 13||G|. Let R be a 13-Sylow sub-
group of G. Then R acts on B with an irreducible 3-dimensional subspace
[B,R] = (b — b |zeR) and Cz(R) = GF(3) as an additive group. Since
G < GL(4, 3), which has order 2°3°5-13, and since G is a 3'-group by step
(d), it follows that N¢(R) is a {2, 13}-group. Since R is irreducible on the
3-dimensional space [B, R] stabilized by N¢(R), it follows that N¢(R)/Cs(R)
is a subgroup of Z;. Since3 { |G|, Ne¢(R) = Cs(R), and so R has a normal
complement in G. Since 5| |G|, a Frattini argument shows that G' must
contain a cyeclic subgroup of order 65. This is impossible since such a group
does not lie in GL (4, 3). Thus 13 does not divide |G|. It follows that G
divides 2°5 and so, by a famous theorem of Burnside, G is solvable.

By Lemma 10 (d), a 5-Sylow subgroup S of G centralizes O;(G). Thus
0:2 (G) = 8 + 0:(@) and so Sisnormalin G. By Lemma 10 (a), C = Cs(8S)
is cyclic, and acts semiregularly on the one-dimensional subspaces of B.
Since G/C is a subgroup of Z, and 40 | | G |, we see that C has even order. An
involution in C is necessarily acting as scalar multiplication by —1, Let Gy
be the subgroup of G which stabilizes a one dimensional subspace of B.
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Then any element z in Gy n C stabilizes all of the 5 or more lines lying in some
C-orbit of the one-dimensional subspaces, and acts on these lines as scalar-
multiplication by a common scalar « (z). It follows that Gy n C = Z,. Since
G/C is abelian, G; has a normal supplement N such that N n G; = C n G;.
Then, since N is itself transitive on the one-dimensional subspaces of B, we
may assume N = G and that G1 = G1n Cis generated by the transformation of
scalar multiplication by —1. Thus |G| = 80 and regularly permutes the
80 non-zero elements of B. Thus a 2-Sylow subgroup T of G has a unique
involution. Moreover 20 divides | C|.

Now suppose | C| = 20. Then T possesses a factor group which is cyclic
of order 4 and so cannot be generalized quaternion. Thus T is eyclic and

G=grplaz|d=1=2%a"ax =d)

At this point, no help can be gained from the congruence of step (i) since solu-
tions exist modulo 20 as well as modulo 16, the orders of the maximal eyclie
subgroups of G. Instead, we argue that G is not a subgroup of GL(4, 3),
1. e. that G cannot act on B (recall from step (c¢) that G acts faithfully on
B). Let K be the field GF (3*) = GF (3) (0, w) where 6 and u are primitive
5-th and 4-th roots of unity. Then B ® K is a KG-module. Suppose U is an
irreducible KG-submodule of B ® K. Then U is a sum of homogeneous
KG-components U = Uy + Uy + U, 4+ U; in which a generator z'a of
(z*a) = C acts on U, as scalar multiplication by u6*. The U, are transitively
permuted by z and so z* acts on U as scalar multiplication by u. Since
dimg(B ® K) = dim B = 4, U = B ® K. But this is impossible since
[«'] >~ Z, and acts on B as two irreducible GF (3)(z*)-modules B; and B, of
dimension 2. Thus B ® K contains at least two distinct algebraically
conjugate K(z")-modules associated with the two primitive 4-th roots u and
u’ = u~'. This contradicts the action of z* forced above by the defining rela-
tions of G. Thus G cannot act on B and so we may dispense with this case.

Thus | C'| = 40 or 80. In either case, we must obtain a solution (a, by, bs)
of the congruence

14 3= 3" 4+ 32 mod40

witha < 2,0 5 b, < by < 3. Since 1 + 3° < 40, 3" + 3° must exceed 40.
Since the b; are less than 4, this can only occur if by = b, = 3. In that case
1+ 3% = 54 — 40 = 14, which has no solution for a. Thus |C| = 40 or 80
is impossible, and the case n = 4, ¢ = 3 cannot occur.

Suppose n = 6 and ¢ = 3. Then 13 | |G|. Then by a theorem of Brauer
[3], either G contains a normal 13-Sylow subgroup or else G is a central ex-
tension of LF (2, 13). In the latter case ¢ = 3 | | G| against (d). Thus G
contains a normal subgroup of order 13 or 13°. By Lemma 10, part (d),
this group is centralized by the 7-Sylow subgroup of @, and so G contains a
cyclic subgroup of order 91 which acts irreducibly on B. Thus by step (i)
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we obtain a congruence of the form
143" =3"+ 3" mod9l

where @, = 0, 1 or 2, b, < by < 5, and {0, ai} n {bs, by} is empty. Then
3 + 3" exceeds 91. Ifbyis 5, then 3 4+ 3" =1 4+ 3" s0g, + 1 < 3
impliesb, + 1 = 5. Then 9 4+ 3" = 4 mod 91, which is impossible since the
left side is 18, 36 or 90. Thus b < 4 and 9 + 3™ = 1 + 3"*. Since the
left side of this congruence is at most 90, the right side must exceed 91 whence
by + 2 = 5. The original equation is then 1 + 3% = 3* 4+ 3* = 17 mod 91,
which is impossible since a; = 0, 1 or 2.

Now supposen = 6 and ¢ = 5. Then by a theorem of Feit and Thompson
[8], G contains a normal 31-Sylow subgroup, normalized by a 7-Sylow sub-
group of . By Lemma 10 (d), G contains a cyclic subgroup of order 217,
which acts irreducibly on B. Again, we have a congruence

14 5" = 5" 4+ 52 mod 217

witha; = 0,1 0r2,b, < b < 5and {by, b2} n {0, 1} empty. The right side
must exceed 217 and so either by = b, = 3 or by > 4. Suppose by = by = 3.
Then 5° + 5™ = 2. This is impossible since the possible residues for the
left side are 33,99, or 214, Now supposeb; = 4. Then 5’ + 577 =1 4 5™*%,
The left side of this congruence yields residues 50, 150, or 216. This excludes
by = 0or4sob, = 1, 2 or 3, yielding 126, 200 or 90 as possible residues. Thus
by=5and5+ 5" =1+ b""andso4 <b,+1<5. Thenl+ 5" =192
or 88 mod 217. Since 5 + 5“1 = 10, 30 or 130 the congruence is impossible.

The theorem now follows from the patent incompatibility of (f), (m),
(n) and (o).

We conclude with the

Proof of Theorem 1. Let A be a finite automorphic algebra which is not a
quasidivision algebra (this includes the assertion that 4  {0}) and assume
the ground field contains ¢ > 2 elements. By Lemma 3, 4 is a nil algebra.
Let G = Aut (A). Construct a G-module A; @ A, where pu;: A — A; is an
isomorphism as G-modules. Convert 4; @ A, into an algebra by setting
A} = 0 = A} = A, A, and defining products A; 4, by setting

(@) (d) = we(ab) e A, foralla,beA.

Then G acts as a group of automorphisms of 4; @ A., As is a left ideal, and
as A is a nil algebra, left multiplications induced nilpotent transformations
of A;. Thus A1 @ A., A2 and G satisfy the roles of A, B and G in Theorem 4.
This forces A1 4; = 0 and so pe2(ab) = O for all a, be A, As ps is monie,
Az = 0.
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