RETRACTING THREE-MANIFOLDS ONTO FINITE GRAPHS

BY
William Jaco and D. R. McMillan, Jr.
\section*{1. Introduction and Definitions}

A piecewise-linear 3-manifold-with-boundary M is called a cube-with-handles of genus n if M is orientable and is a regular neighborhood of a finite connected graph of Euler characteristic $1-n$. If M is a polyhedral cube-with-handles of genus n in S^{3}, then S^{3} - $\operatorname{Int} M$ is called a cube-with-holes of genus n. We call a cube-with-holes N retractable if N can be retracted onto a wedge of n simple closed curves, where n is the genus of N. If such a wedge can be chosen in $\operatorname{Bd} N$, then N is boundary-retractable.

In [2], Lambert showed that for each $n \geq 2$, there exists N_{n}, a cube-withholes of genus n, such that no mapping of N_{n} onto a cube-with-handles of genus n, H_{n}, can take $\mathrm{Bd} N_{n}$ homeomorphically onto $\mathrm{Bd} H_{n}$. By our Theorem $2, N_{n}$ is retractable. It is our purpose here to note that the existence of such a "boundary-preserving" mapping for a cube-with-holes is equivalent to its being boundary-retractable, and to give examples of cubes-with-holes of arbitrary genus $n \geq 3$ which are not even retractable. Our examples also show that the fundamental group G of a cube-with-holes of genus $n \geq 3$ can be residually nilpotent (Theorem 6) and in fact can have $G / G_{m} \approx F / F_{m}$ for each $m \geq 1$, where F is free of rank n (see Corollary 5.14.1, page 353 of [3]), and yet G can fail to be a free group. See the definitions below.

We also give (Theorem 5) a necessary condition for a cube-with-holes to be boundary-retractable, and indicate how to apply it to Lambert's example. We are grateful to Joseph Martin for several helpful conversations about this matter. We have not been able to prove the existence or nonexistence of a non-retractable cube-with-holes of genus two, but Theorem 4 gives a criterion in terms of mappings into the torus which may prove useful.

If G is any group, and $a, b \in G$, we denote the commutator $a^{-1} b^{-1} a b$ of a and b by $[a, b]$. For non-empty subsets A and B of $G,[A, B]$ denotes the subgroup of G generated by the set S of all commutators $[a, b]$, where $a \in A, b \in B$. That is, $[A, B]$ is the smallest subgroup of G containing S. We let G_{m} denote the $m^{\text {th }}$ term in the lower central series of G. Specifically, $G_{1}=G, G_{2}=\left[G_{1}, G\right]$, and, in general, $G_{m+1}=\left[G_{m}, G\right]$ for each $m \geq 1$. Each G_{m} is a normal subgroup of G. We call G_{2} the commutator subgroup of G, and G / G_{2} is G abelianized. It is also convenient to introduce the notation G_{ω} for the normal subgroup $\bigcap_{m \geq 1} G_{m}$. Finally, if $G_{m+1}=1$, we say that G is nilpotent of class m, and if $G_{\omega}=1$ we say that G is residually nilpotent.

We will be using some known results from the literature. For example, a theorem of Magnus (see pages 311 and 312 of [3]) asserts that any free group

[^0]is residually nilpotent. Another useful fact is that a finitely-generated, residually nilpotent group is Hopfian (see Theorem 5.5, page 296 of [3]). That is, any homomorphism of such a group onto itself is necessarily an isomorphism. In particular, if F is a free group of finite rank, then F / F_{m} is Hopfian, for any $m \leq \omega$.

2. Constructing Retractions

The next theorem can also be proved by the more sophisticated methods of Stallings in [4].

Theorem 1. Let F be a free group of rank n. Suppose G is a group and h is a homomorphism of G into F which induces an isomorphism of G / G_{2} onto F / F_{2}. Then the kernel of h is precisely G_{ω}.

Proof. Let K be the kernel of h. Since $h\left(G_{\omega}\right) \subset F_{\omega}=1$ (as remarked above), we have $G_{\omega} \subset K$. For the reverse implication, we consider the homomorphisms $h_{m}, m \geq 2$, induced by h :

$$
h_{m}: G / G_{m} \rightarrow F / F_{m}
$$

Let f_{1}, \cdots, f_{n} be a free basis for F, let α_{m} be the natural homomorphism of G onto G / G_{m}, and let β_{m} be the natural homomorphism of F onto F / F_{m}. By hypothesis, h_{2} is an isomorphism of G / G_{2} onto F / F_{2}. Choose g_{1}, \cdots, g_{n}, elements of G, so that $h_{2} \alpha_{2}\left(g_{i}\right)=\beta_{2}\left(f_{i}\right)$ for each $i, 1 \leq i \leq n$. Then

$$
\alpha_{2}\left(g_{1}\right), \cdots, \alpha_{2}\left(g_{n}\right)
$$

generate G / G_{2}. Using Lemma 5.9, page 350 of [3], $\alpha_{m}\left(g_{1}\right), \cdots, \alpha_{m}\left(g_{n}\right)$ generate G / G_{m} for each m. It follows that for each m, there is a homomorphism, k_{m}, of F / F_{m} onto G / G_{m} determined by $\beta_{m}\left(f_{i}\right) \rightarrow \alpha_{m}\left(g_{i}\right), 1 \leq i \leq n$.

Repeating the argument of the previous paragraph, the elements

$$
\beta_{m} h\left(g_{1}\right), \cdots, \beta_{m} h\left(g_{n}\right)
$$

generate F / F_{m} for each $m \geq 2$. Since $h_{m} \alpha_{m}=\beta_{m} h$, it follows that h_{m} is an epimorphism. By the Hopfian property of $F / F_{m}, h_{m} k_{m}$ is an isomorphism onto for each m. Hence, h_{m} is actually an isomorphism of G / G_{m} onto F / F_{m} for each m. We obtain $K \subset G_{\omega}$, as desired.

Corollary. Let G be a group such that G abelianized is free abelian of rank n. Let h be a homomorphism of G onto F, the free group of rank n. Then the kernel of h is precisely G_{ω}.

Proof. If h_{2} denotes the induced homorphism of G / G_{2} into F / F_{2}, then h_{2} is a homomorphism of the free abelian group of rank n onto the free abelian group of rank n. Hence, h_{2} is an isomorphism onto, and the theorem applies.

Theorem 2. Let M be a compact 3-manifold, possibly with boundary, and let G denote its fundamental group. Let F be a free group of rank n. If there is a
homomorphism φ of G into F which induces an isomorphism of G / G_{2} onto F / F_{2}, then there is a retraction of M onto a wedge of n simple closed curves.

Proof. First we show that under the hypothesis of the theorem, there is a homomorphism of G onto F. By Theorem 1, the kernel of the homomorphism φ is G_{ω}. Hence, G / G_{ω} is a finitely generated, free group. Since G / G_{ω} abelianized is isomorphic to G / G_{2}, which is free abelian of rank n, we conclude that G / G_{ω} is free of rank n. Thus, there is a homomorphism ψ of G onto F.

Let B be a wedge of n simple closed curves, S_{1}, \cdots, S_{n}, and assume x_{1}, \cdots, x_{n} are points of B, x_{i} is a point of S_{i}, and each x_{i} is distinct from the wedge point which we denote x_{0}. The homomorphism ψ of G onto F may be realized by a simplicial map f of M into B so that $f_{*}=\psi$. We choose x_{i} so that under the triangulation of B which makes f simplicial, x_{i} is not a vertex for any $i>0$. Each component of $N_{i}=f^{-1}\left(x_{i}\right)$ is a regularly embedded, twosided, compact, polyhedral surface in M.

Let \bar{x}_{i} denote the generator of $\pi_{1}\left(S_{i}, x_{0}\right), 1 \leq i \leq n$. Since $f_{*}=\psi$ is an epimorphism, for each $i>0$ there is a simple closed curve l_{i} in M based at some point in $f^{-1}\left(x_{0}\right)$ so that $f_{*}\left[l_{i}\right]=\bar{x}_{i}$, where $\left[l_{i}\right]$ denotes the homotopy class of l_{i}. Furthermore, l_{i} is in general position with respect to $\bigcup_{i=1}^{n} N_{i}$ and except for base point, the curve l_{i} is disjoint from the curve $l_{j}, i \neq j$.

By considering the orientation of \bar{x}_{i} and looking at the inverse image under f of a small neighborhood of x_{i}, we can choose an orientation for l_{i} and find the word of $\pi_{1}\left(B, x_{0}\right)$ corresponding to $f_{*}\left[l_{i}\right]$ by following l_{i} in a positive direction and recording its intersections with $\bigcup_{i=1}^{n} N_{i}$; the sign of each entry is determined by the two-sidedness of each N_{i}. Using the fact that $\pi_{1}\left(B, x_{0}\right)$ is a free group and that the word corresponding to $f_{*}\left[l_{i}\right]$ is equal to \bar{x}_{i}, it must be true that either l_{i} meets only one component of N_{i} or that there is a cancellation of the form $\bar{x}_{j} \bar{x}_{j}^{-1}\left(\right.$ or $\left.\bar{x}_{j}^{-1} \bar{x}_{j}\right)$ in $\pi_{1}\left(B, x_{0}\right)$.

A cancellation of the form $\bar{x}_{j} \bar{x}_{j}^{-1}$ (or $\left.\bar{x}_{j}^{-1} \bar{x}_{j}\right)$ in $\pi_{1}\left(B, x_{0}\right)$ has as its geometric counterpart in M a subarc α of l_{i} which meets $\bigcup_{i=1}^{n} N_{i}$ only in its endpoints which are both in N_{j} (possibly not the same component of N_{j}). We shall use this geometric interpretation of the reduction of $f_{*}\left[l_{i}\right]$ in $\pi_{1}\left(B, x_{0}\right)$ to \bar{x}_{i} to obtain a collection of surfaces L_{1}, \cdots, L_{n} in M so that $l_{i} \cap L_{i}$ is precisely one point and l_{i} pierces L_{i} at this point. Furthermore, $l_{i} \cap L_{j}$ is void for $i \neq j$. To be precise: if α is a subarc of l_{i} with its endpoints in N_{j} and corresponding to a cancellation $\bar{x}_{j} \bar{x}_{j}^{-1}$ (or $\bar{x}_{j}^{-1} \bar{x}_{j}$), we let Q denote a small, regular neighborhood of α which is disjoint from $N_{h}, h \neq j$, and which has been cut off at its intersection with N_{j}. Hence, Q meets N_{j} in two disks in $\operatorname{Bd} Q, D_{1}$ and D_{2}. Each $D_{k}, k=1,2$, is a small regular neighborhood in N_{j} of an endpoint of α. Let N_{j}^{\prime} be obtained from N_{j} and $\mathrm{Bd} Q$ by replacing the disks D_{1} and D_{2} in $N_{j} \cap \mathrm{Bd} Q$ by the closed annulus in $\operatorname{Bd} Q$ complementary in $\operatorname{Bd} Q$ to Int $D_{1} \cup \operatorname{Int} D_{2}$.

We now have a collection $N_{1}^{\prime}, \cdots, N_{j}^{\prime}, \cdots, N_{n}^{\prime}$, the components of which are regularly embedded, two-sided, compact, polyhedral surfaces and $N_{h}^{\prime}=N_{h}, h \neq j$ and N_{j}^{\prime} is obtained from N_{j} as described. The word for the
simple closed curve l_{i} has been reduced with respect to this collection since the cancellation $\bar{x}_{j} \bar{x}_{j}^{-1}$ (or $\bar{x}_{j}^{-1} \bar{x}_{j}$) has been eliminated as viewed geometrically. In other words, we have reduced the number of components of $l_{i} \cap \bigcup_{i=1}^{n} N_{i}$. In a finite number of steps, we obtain the collection of regularly embedded, two-sided, polyhedral surfaces L_{1}, \cdots, L_{n} in M. The surface L_{i} will be the component meeting $l_{i}, 1 \leq i \leq n$.

The collection of surfaces L_{1}, \cdots, L_{n} does not separate M. Let $U\left(L_{i}\right)$, $1 \leq i \leq n$, denote the interior of a small regular neighborhood of L_{i}. For each i, let p_{i} be the point of L_{i} common to l_{i}. If W denotes the wedge determined by the n simple closed curves l_{1}, \cdots, l_{n} and $U\left(L_{i}\right)$ is properly chosen, then $W-U\left(L_{i}\right)$ is a tree. Hence, the projection of L_{i} onto $p_{i}, 1 \leq i \leq n$, can be extended to a retraction of M onto W. The construction of the retraction is similar to the construction of the map of Theorem 2 of [2].
Corollary. Let M denote a cube-with-holes and let G denote the fundamental group of M. Let F be a free group of rank n. Then there is a homomorphism of G onto F if and only if there is a retraction of M onto a wedge of n simple closed curves.

Proof. If there is a retraction r of M onto a wedge of n simple closed curves, B, then the homomorphism of G onto $\pi_{1}(B)$ induced by r is the desired epimorphism.

The converse follows by the techniques of the previous theorem.
Theorem 3. Let M be a cube-with-holes of genus n. Then M is boundaryretractable if and only if there is a map of M onto a cube with handles, H, which induces a homeomorphism of $\operatorname{Bd} M$ onto $\operatorname{Bd} H$.

Proof. Suppose there is a map f of M onto the cube with handles H so that $f \mid \operatorname{Bd} M$ is a homeomorphism of $\operatorname{Bd} M$ onto $\operatorname{Bd} H$. Let B denote a wedge of n simple closed curves J_{1}, \cdots, J_{n} on $\mathrm{Bd} H$ so that H is a regular neighborhood of B. Choose disks D_{1}, \cdots, D_{n} in H so that for each $i=1, \cdots, n$, $D_{i} \cap \operatorname{Bd} H=\operatorname{Bd} D_{i}, D_{i} \cap J_{j}=\emptyset, D_{i} \cap D_{j}=\emptyset, i \neq j$, and $D_{i} \cap J_{i}=\left\{x_{i}\right\}, \mathrm{a}$ single point in $\operatorname{Bd} D_{i}$.
We choose the map f to be simplicial and choose the disks D_{1}, \cdots, D_{n} to be in general position with respect to the subdivision of H for which f is simplicial. Hence, the inverse image under f of B gives the desired wedge on $\operatorname{Bd} M$. The construction of the retraction is like that of Theorem 2 using the component of $f^{-1}\left(D_{i}\right)$ containing $f^{-1}\left(\operatorname{Bd} D_{i}\right)$ for the surface $L_{i}, i=1, \cdots, n$. This establishes the conclusion in this direction.

Conversely, suppose there is a retraction r of M onto the wedge $X=\bigcup_{i=1}^{n} J_{i}$ of n simple closed curves J_{1}, \cdots, J_{n} in Bd M. We choose r simplicial. Note that this may be done preserving the property that r is a retraction, see for example [6]. Let x_{0} denote the wedge point of X and for each $i=1, \cdots, n$, let $x_{i} \epsilon J_{i}-\left\{x_{0}\right\}$ be a nonvertex point of the subdivision for which r is simplicial.

Let F_{i} denote the component of $r^{-1}\left(x_{i}\right)$ containing x_{i}, and let K_{i} denote the boundary component of $\mathrm{Bd} F_{i}$ containing $x_{i}, i=1, \cdots, n$. The simple closed curve K_{i} crosses J_{i} at the point $x_{i} \in K_{i} \cap J_{i}$.

We have on $\operatorname{Bd} M$ simple closed curves J_{1}, \cdots, J_{n} and K_{1}, \cdots, K_{n} so that $J_{i} \cap J_{j}=\left\{x_{0}\right\}, J_{i} \cap K_{j}=\emptyset, K_{i} \cap K_{j}=\emptyset, i \neq j$, and $J_{i} \cap K_{i}=\left\{x_{i}\right\}$ for each $i=1, \cdots, n$. Let $X^{\prime}=\bigcup_{i=1}^{n} K_{i}$.

Then X u X^{\prime} does not separate $\operatorname{Bd} M$. This follows from the fact that K_{i} crosses J_{i} at x_{i} and the manner in which the mutually exclusive collection of curves K_{1}, \cdots, K_{n} meets X. Furthermore, if N is a regular neighborhood in $\operatorname{Bd} M$ of $X \cup X^{\prime}$, then $\operatorname{Bd} N$ has only one component and thus $\mathrm{Bd} N$ is a simple closed curve. Using an Euler characteristic argument, we have that $\operatorname{Bd} M-\operatorname{Int} N$ is a disk.

It now follows that each boundary component of F_{i} distinct from K_{i} bounds a disk on $\mathrm{Bd} M$ missing X ч X^{\prime}. Thus using standard techniques, we cap off any such boundary components and push the newly obtained surfaces into the interior of M except for the one boundary component K_{i}. Let L_{1}, \cdots, L_{n} denote the collection of surfaces obtained in this manner. The collection L_{1}, \cdots, L_{n} does not separate $M, L_{i} \cap L_{j}=\emptyset, i \neq j$ and L_{i} has precisely the one boundary component K_{i} which remains in $\mathrm{Bd} M, i=1, \cdots, n$. Also, the collection K_{1}, \cdots, K_{n} does not separate Bd M.

The argument establishing the desired map is like that of Theorem 2 of [2] and that of Theorem 2 of this article.
Suppose f is a mapping of a space X onto a space Y. Then f is called unstable if it is homotopic to a mapping into a proper subset of Y. Otherwise, f is stable.

Theorem 4. Let M be a compact 3-manifold, possibly with boundary, with $H_{1}(M ; Z)$ a free abelian group of rank two. Then, there is a retraction of M onto a wedge of two simple closed curves if and only if every mapping of M into the torus $T=S^{1} \times S^{1}$ is unstable .

Proof. Suppose each mapping of M into T is unstable. Since $H_{1}(M ; Z)$ is free abelian of rank two, there is a homomorphism φ of $G=\pi_{1}(M)$ onto $\pi_{1}(T)$ with $\operatorname{kernel} \varphi=G_{2}$.

Let f be a mapping of M into T so that $f_{*}=\varphi$. By hypothesis, we may choose f so that f maps M into $B=\left(S^{1} \times q\right) \cup\left(p \times S^{1}\right)$, a wedge of two circles at $(p, q) \in T$. Since $\pi_{1}(B)$ is a free group of rank two and the inclusion of B into T induces an isomorphism of $H_{1}(B ; Z)$ onto $H_{1}(T ; Z)$, the homomorphism f_{*} satisfies the hypothesis of Theorem 2, and hence the required retraction exists.

Conversely, suppose there is a retraction r of M onto B, a wedge of two simple closed curves. Then r_{*} is a homomorphism of $G=\pi_{1}(M)$ onto $F=\pi_{1}(B)$.

Now let f be any mapping of M into T. Since F is a free group and since

$$
\text { kernel } r_{*}=G_{\omega} \subset G_{2} \subset \text { kernel } f_{*}
$$

there is a homomorphism ψ of F into $\pi_{1}(T)$ so that $\psi r_{*}=f_{*}$. Let h be a piece-wise-linear mapping of B into T inducing ψ, so that $(h r)_{*}=\psi r_{*}=f_{*}$. By a standard argument using the asphericity of T, f is homotopic to $h r$. But since B is a one-dimensional complex, $h r$ is not onto. Hence f is unstable.

3. Cubes-with-holes

If X is an arcwise-connected space, and f is any mapping of S^{1} into X, we denote by $\{f\}$ the conjugate class of elements in $\pi_{1}(X)$ determined by f. Thus, if N is a normal subgroup of $\pi_{1}(X)$, the statement " $\{f\} \in N$ " is well defined. Using the notation introduced earlier, we define the second derived group $G^{(2)}$ of the group G to be $\left[G_{2}, G_{2}\right]$ (see page 293 of [3]). $G^{(2)}$ is a normal subgroup of G.

Theorem 5. Let M be a cube-with-holes and let $G=\pi_{1}(M)$. If M is boundary-retractable and J is a simple closed curve in $\mathrm{Bd} M$ such that $\{J\} \in G_{\omega}$, then $\{J\} \in G^{(2)}$.

Proof. Let H be a cube-with-handles of the same genus as M. By Theorem 3 there is a piecewise-linear mapping of M onto H so that $f \mid \mathrm{Bd} M$ is a homeomorphism onto $\mathrm{Bd} H$. Assuming, as we may, that J is polyhedral, $f(J)$ is a polyhedral simple closed curve in $\mathrm{Bd} H$. Since $\{J\} \in G_{\omega}, f(J)$ is contractible in H and hence bounds a polyhedral disk D in H such that $D \cap \operatorname{Bd} H=\operatorname{Bd} D$.

By choosing the disk D in general position with respect to f (possibly adjusting J slightly to achieve this), we ensure that each component of $f^{-1}(D)$ is a properly embedded, 2 -sided polyhedral surface in M. Let F be the component of $f^{-1}(D)$ containing J. Since

$$
\text { kernel } f_{*}=G_{\omega} \subset G_{2},
$$

each loop in F is in G_{2}, and since $J=\operatorname{Bd} F$ it follows that $\{J\} \in G^{(2)}$.
Example. Let M be the cube-with-holes of genus two used in Theorem 1 of [2] (see pages 151 and 152 of [5] for the details of computing $G=\pi_{1}(M)$). G has the presentation

$$
G=\{c, g, x ;[c,[g, x]]=x\}
$$

and the class $\{x\}$ can be represented by a simple closed curve in $\mathrm{Bd} M$. As Zeeman shows in [5], $\{x\} \in G_{\omega}$. Hence, if M were boundary-retractable, it would follow from Theorem 5 that $\{x\} \in G^{(2)}$. But the homomorphism φ of G onto the permutation group on three symbols defined by

$$
\varphi(x)=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right), \quad \varphi(c)=\varphi(g)=(12)
$$

does not send x to (1), while the second derived group of this permutation group is (1). Hence, Theorem 5 gives an alternate proof that M is not bound-ary-retractable. It is clear that there is a homomorphism of G onto the free group of rank two, so that M is retractable.

Theorem 6. For each $n \geq 3$, there is a cube-with-holes M^{3} of genus n whose fundamental group is residually nilpotent yet is not a free group. Hence, this group admits no homomorphism onto the free group of rank n.

Proof. The last part of the conclusion follows from the first part and from Theorem 1. Consider first the case $n=3$, and let M^{3} be the cube-with-holes of genus three shown in the figure. A routine computation using van Kampen's Theorem gives the following presentation for $G=\pi_{1}\left(M^{3}, x_{0}\right)$:

$$
G=\left\{a, b, x, y: a^{2} b^{3}=x^{2} y^{3}\right\}
$$

Perhaps it will be helpful to the reader in verifying the presentation given, to remark that G is obtained by amalgamating two free groups of rank two along an infinite cyclic subgroup and that the geometric counterpart of this fact is that M can be expressed as $M_{1} \cup M_{2}$, where M_{i} is a cube-with-two-handles and $M_{1} \cap M_{2}$ is an annulus S.

To see that G is not a free group, we note first that G abelianized is free abelian of rank three, and hence it suffices to show that $\rho(G)=4$, where $\rho(G)$ is the minimum number of generators of G. We remark also that if G_{1} and G_{2} are finitely-generated groups, then it follows from the Grushko-Neumann Theorem that $\rho\left(G_{1} * G_{2}\right)$ is defined and is equal to $\rho\left(G_{1}\right)+\rho\left(G_{2}\right)$ (see [3],
page 192). In particular, if

$$
G_{i}=\left\{\alpha, \beta: \alpha^{2} \beta^{3}=1\right\}
$$

for $i=1,2$, then $\rho\left(G_{i}\right)=2$ (G_{i} is the group of the trefoil knot) and there is a homomorphism of G onto $G_{1} * G_{2}$. Hence, $\rho(G) \geq \rho\left(G_{1} * G_{2}\right)=4$. Thus G is not a free group.

In [1], Baumslag proves that the (unrestricted) direct product J of countably many copies of the free group of rank two contains an isomorphic copy of G as a subgroup. Since the product of residually nilpotent groups is residually nilpotent, J and each of its subgroups is residually nilpotent. This completes the proof for $n=3$.

We digress for a moment to give a brief description of an explicit embedding of G in J for the reader not familiar with [1]. Let F be the free group with free basis a, b and let $u=a^{2} b^{3} \in F$. Consider the epimorphisms

$$
\delta_{i}: G \rightarrow F \quad(i=1,2,3, \cdots)
$$

defined by $\delta_{i}(a)=a, \delta_{i}(b)=b, \delta_{i}(x)=u^{-i} a u^{i}$, and $\delta_{i}(y)=u^{-i} b u^{i}$. Then Proposition 1 of [1] and the fact that an element $f \in F$ commutes with u if and only if it is a power of u, imply that the homomorphism δ of G given by

$$
\delta(g)=\left(\delta_{1}(g), \delta_{2}(g), \cdots\right) \in J
$$

is one-to-one. It is perhaps of interest to note that G cannot be embedded in the direct product of a finite number of copies of F (this follows from Theorem 3 of [1].

The required examples of genus $n>3$ are obtained by adding $(n-3)$ orientable handles of index one to $\mathrm{Bd} M^{3}$. If N^{3} is such a cube-with-holes of genus $n>3$, then

$$
H^{n}=\pi_{1}\left(N^{3}\right)=G *(\text { free group of rank } n-3)
$$

and $\rho\left(H^{n}\right)=4+(n-3)=n+1$, while $\rho\left(H^{n} / H_{2}^{n}\right)=n$. Hence H^{n} is not a free group.

To see that H^{n} is residually nilpotent when n is odd and greater than three, we can argue just as before to obtain an embedding of H^{n} in the direct product of countably many copies of the free group of rank $(n+1) / 2$. If n is even and greater than three, we have only to note that $H^{n+1}=H^{n} * Z$, so that H^{n} is a subgroup of the residually nilpotent group H^{n+1}.

References

1. Gilbert Baumslag, On generalized free products, Math. Zeitschrift, vol. 78 (1962), pp. 423-438.
2. H. W. Lambert, Mapping cubes with holes onto cubes with handles, Illinois J. Math., vol. 13 (1969), pp. 606-615.
3. W. Magnus, A. Karrass, and D. Solitar, Combinatorial group theory, Interscience, New York, 1966.
4. John Stallings, Homology and central series of groups, J. Algebra, vol. 2 (1965), pp. 170-181.
5. E. C. Zeeman, Linking spheres, Abh. Math. Sem. Univ. Hamburg, vol. 24 (1960), pp. 149-153.
6. ——, Relative simplicial approximation, Proc. Cambridge Philos. Soc., vol. 60 (1964), pp. 39-43.

University of Wisconsin
Madison, Wisconsin

[^0]: Received February 12, 1968.

