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1. Introduction

In this paper we prove the following theorem:

THEOREM. Let G be a finite non-soluble group such that G AB where A is a
cyclic group and B is a metacyclic group. Then G/S (G) - PGL (2, p ), where
p is a prime greater than 3.

Metacyclic group will mean throughout a finite group all of whose Sylow
subgroups are cyclic. S (G) is the maximal soluble normal subgroup of G
and PGL (2, p), PSL (2, p) denotes the projective general linear and the pro-
jective special linear groups respectively of dimension 2 over a finite field of p
elements.

It will be shown in Section 3 that S (G) is not necessarily a direct factor of G.
For any subset T of a group G, C (T), N (T) and T denote respectively

the centralizer, normalizer and the number of elements in T. The subgroup
generated by T will be written (T) and a Sylow p-subgroup of G will be called
an S-subgroup of G. A subgroup H of a group G is called a T.I. subgroup
if from x-Hx n H 1 it follows that x e N (H). All groups considered will be
finite.

2. Proof of the theorem
We note some properties of a metacyclic group G, see for example [9].

GIG’ and G’ are cyclic groups of co-prime orders and G’ n Z (G) 1, where
Z (G) denotes the center of G.
We begin with two easy lemmas.

LEMMA 1. Let G be a group which satisfies the following conditions:
(i) G contains a maximal subgroup B which is metacyclic.
(ii) G has no non-trivial normal soluble subgroup.
(iii) G has no normal subgroup of index prime to [G:B].

Then Z (B 1 and B’ is a T.I. subgroup.

Proof. LetxeB’nB’,geG. Ifx 1, we have N ((x} => B,Bsince
(x) is a characteristic subgroup of B’. Since B is maximal, N ((x}) B by
(ii). Hence B B and so g e B by (i) and (ii). Note that .only conditions
(i) and (ii) are used so far.
Now let x e Z (B) have prime order p. Then N ((x}) B by (i) and (ii).

We have two cases:
(a) An S-subgroup of G is not contained in B. Let P be an S-subgroup
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of B and P1 -> P an S-subgroup of G. The normalizer of P in P1 contains P
properly if P > P. But (x) is characteristic in the cyclic group P and so if
P > P, N ((x)) n P > P. This contradicts N ((x)) B.

(b) An S-subgroup of G is contained in B. Then since (x) is characteristic
in P, N(x) >- N (P). But N ((x)) B has a normal p-complement and so does
N (P) _-< N ((x)). By Burnside’s Theorem [9, p. 137] G has a normal p-
complement. But p does not divide [G:B]. This contradicts condition (iii).
This completes the proof.

LEMM 2. Let G be a group satisfying conditions (i), (ii) and (iii) of Lemma
(i) which is doubly transitive as a permutation group on the cosets of B. If
C <- B is the stabilizer of two points, then BPC B and B n C 1.

Proof. By Lemma 1, B’ n C 1. For ifxeB’n C then there exists
g G\B such that Bgx Bg. It follows that g e N ((x)) B, a contradiction.
Now let P be an S-subgroup of B which is not contained in B’. Assume

that P fixes only one point. Then N(P) fixes just one point. Thus
N(P) -< B. But nowP =< Z(N(P)) and P is an S-subgroup of G. By
Burnside’sTheorem [9, p. 137], G hasa normal p-complement. Butp [G:B].
This contradicts condition (iii).

Since G is doubly transitive, B is transitive on the cosets Bx, x B. Thus
the stabilizers of each of these cosets are conjugate. Hence C contains an
S-subgroup of B for all p such that p B’ !. Thus B’C B. This com-
pletes the proof.

Note that as G is doubly transitive, B has only two double cosets and so

IBI + IBI/IC[ [G’BI IBI
Thus 1 + B’[ [G’B].
We begin the proof of the main theorem. Let G be a minimal counter ex-

ample. We show that G has a unique non-abelian composition factor and it is
isomorphic to PSL (2, p), for some prime p > 3. It is easy to see that we are
then done. For let be a minimal normal subgroup of G/S (G). Then
fi . PSL (2, p) and/ induces a group of automorphisms on fir. Thus by
[3], 0/2 <- 2. But PSL (2, p) is not factorizable as a product of a meta-
cyclic and a cyclic grouu and so 2. Thus /2 2 and PGL (2, p)
by [3].

(1) S(G)= 1.

For if S(G) 1, let G/S(G). Then since A--, where
.Zl AS (G)/S (G), [ BS (G)/S (G) by the minimality of G we have the
result.

(2) A n B 1.

LetN= ((AaB)’xeG}. ThenNGandifxeG, x=abwhereaA,
beB.

(A nB) (A aB) <= B.
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Hence N is a soluble normal subgroup of G and so N 1.

(3) G has at leas 2 classes of involutions.

If either A is odd or [B is odd, an S.-subgroup of G is cyclic, whence G
has a normal 2-complement M. If for example M ->_ A then M A (B M)
is factorizable as a product of a metacyclic group and a cyclic group of odd
order.
Then M is soluble by [7, Satz 5]. This is a contradiction.
Thus we may assume that both [A and [B] are even. Now an involution

of A is never conjugate to an involution of B by (2).

(4) G is not 2-nilpotent.

For let M be a normal 2-complement of G, S an S-subgroup of G which
contains an S-subgroup Y of A. Let S S be a proper normal subgroup of
S containing Y. Then MS MS G and MS

_
A. Thus

MS (MS r, B)A and by induction MS is soluble. Then G is soluble, a
contradiction.

(5) AI and IBI are both divisible by 4.

If Ai or BI is exactly divisible by 2, then an S-subgroup S of G has a
cyclic subgroup of index 2. But then S is either dihedral, semi-dihedral,
semi-abelian or abelian.

If S is abelian or semi-abelian, G is 2-nilpotent by Burnside’s Theorem if S
is abelian, since G has 2 classes of involutions, and by [11, Theorem 1], if S is
semi-abelian. This contradicts (4). If S is semi-dihedral, S (G) 1 by [11]
Theorem 2 because G has 2 classes of involutions. This contradicts (1).

If S is dihedral, by [5], G contains a normal subgroup H ’ PGL(2, q),
where q p, n => 1, p an odd prime, and ]G/H is an odd divisor of n or
G - A. Remember G has 2 classes of involutions. Now A is not fac-
torizable as a product of a metacyclic and a cyclic group. Since the S-
subgroups of G are extensions of a cyclic group by a cyclic group, by [6],
n <- 2 if H PGL (2, q). But then G PGL (2, q). Now PGL (2, p) is not
factorizable as a product of a metacyclic and a cyclic group. Hence
G PGL (2, p ), a contradiction.

(6) There exists a unique minimal normal subgroup M of G.

For if M,, M, G, M M, 1, are minimal normal subgroups of G, in-
duction on G/M, G/M, shows that G has precisely two non-abelian composi-
tion factors so thatM, M, are simple and isomorphic to PSL (2, p), PSL (2, p)
respectively, for some primes p, p. NowM M, G and so C(M M.) G.
It is clear that C(M M) a M, M. 1 and so C(M M.) 1 because it is
solvable. Now G/M C(M) -< 2 since M . PSL (2, p); see for example
[3]. Let D C(M) and consider C(M) D. Then C(M) n D
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C(M1 M) 1. Thus ]D/M[

_
2 and so [G/MI MI -< 4. Now

G/MM is not cyclic of order 4 because if x G\M M, then

x e M C(M) n M C(M.) M1 M.
Now let S be an S-subgroup of G. It follows that S is a product of two

cyclic groups. By Satz 2, Huppert [6], the Fmttini subgroup
group S is itself a product of two cyclic groups and in particular is 2-generated.
It follows that [4(S)/4(4(S))

_
4. Since S is 2-generated, IS/ok(S) <- 4.

Now SIS M M2 is an elementary abelian group and so

(S) -< qMM and [SMM.’(S)]

_
2.

Put T S M M. Then T is an S.-subgroup of M1M and T/O(T) 16.
Hence (S)/O (T) k (S) is elementary abelian of order at least 8, a contra-
diction. Now let M be the unique minimal normal subgroup of G. Then
C(M)_.G,C(M)nM and soC(M) 1.
Now if M PSL (2, p we are done because G/M <- 2 by [3] and as before

G PGL (2, p ). AlsoG= MA MB forif MA < G, MA (MA r B)A
and by the minimality of G, M PSL (2, p). Note that, if K is any proper
normal subgroup of G which is factorizable into a product of a cyclic and a
metacyclic group, we are done since K => M.

(7) B is maximal in G.

Let R >- B be a maximal subgroup of G. Then R B (R n A and by the
minimality of G, R has at most one non-abelian composition factor and this is
isomorphic to PSL (2, p). But

V ((RnA)’xeG)<:IG.
Now (R A (R r A ab (R r A )b <= R, a A, b B

Thus R contains a normal subgroup U of G and so M =< R. Then
M " PSL (2, p) and we are done. Hence B is maximal in G.

(8) G satisfies the conditions of Lemmas 1 and 2. We consider G as a
permutation group on the cosets of B. Since B is maximal, G is primitive.

We have already verified conditions (i) and (ii) of Lemma 1. Let A
As B n A 1, [G" B] a. Let K be a normal subgroup with [G" K] prime to
a. ThenA _<_ K. ButK_-> MandMA Gby (6). HenceK Gand
we have condition (iii) of Lemma 1.
Now a is not prime by (5) and so G is doubly transitive by Theorem 25.4 of

[10].

(9) IfB B’C,B’ r C

ForN (C) B C by Lemma 1. The result follows from the double transi-
tivity of G and Theorem 9.4 of [10].



SOME NON-SOLUBLE FACTORIZABLE GROUPS 95

Let e A be the involution in A. We may suppose without loss that e N (C).

(10) Any subgroup K of G containing A satisfies K n B’ 1.

For (K n B’)b (K n B’)

_
K, a e A, b e B, and so K contains a proper

normal subgroup of G, the normal closure of K n B’. But K A (K n B)
is of known type and so K _-> M and M -- PSL (2, p).
Hence any maximal subgroup of G containing A is a product of two ,cyclic

groups and so is supersoluble by [6] and metabelian by [9], 13.3.2.

(11) C(A) A.

L <(C(A) n B)’x e G> <:l G.

(C(A) n S)"b (C(A) n B) <= B.

Thus L is soluble normal subgroup of G and L 1.

(12) An S-subgroup of C (t) is an extension of a cyclic group by a cyclic
group.

Let T C (t) => A. Then T is supersoluble and metabelian. Consider
AT’. Since T’ is abelian by Fitting’s Lemma [9, 4.5.6], T’ T1 @ T2 where
AT1 is nilpotent and [A, T.] T..
Suppose AT, > A. Then AT1 n B 1 and we may choose

x e ATl n B n N (A

of order p, a prime. Note that N (A) n AT, A (Nrl (A) n B). Then if
y e A has order prime to p, [x, y] 1 since AT1 is nilpotent. Now Ix, A] 1,
because by (11), C(A) A. Let an S-subgroup of A be <z>, where z has
order pn. If p is odd, z z1+"-1 and so C(x) n <z>l p"-’. Thus in the
permutation representation of G, x fixes A liP ")’ C (x n A points.
Now[[Aland/- I[IAI- 1 B’]>_- 5. ThuslY<_- A]. Hence
A -< P. If A p, we have a contradiction since p is odd. If lA < P,

Ix, A] 1, again impossible.
1--1 Zx zl-2n--If p 2, z z-1 or z z since if n _>- 2, we may argue

as for p odd. Thus C (x) n (z) 2 and in the permutation representation of
G on the cosets of B, x fixes , [A [/2"-1 points, and 2, where is odd.
Let BI 2p, where p is odd.
Then 2pl -{- , A [, for some pl.

Thus either A is exactly divisible by 2 or m 1. This is not the case by
(5).
Hence we have AT1 A. Now TI is odd because AT is supersoluble

and if T.I is even there exists an element of order 2 in T normalized by A.
Since A n T 1 we have a contradiction to (11).
Thus AT/T C (t)/T2 and an S.-subgroup R of C (t) contains normal

cyclic subgroup Y =< A such that R/Y is also cyclic.



96 A. R. CAMINA AND T. M. GAGEN

(13) If R is non-abelian or if R is abelian and Y > R/Y [, an S-
subgroup of C (t) is an S-subgroup of G.

For if R is non-abelian or if R is abelian with Y > R/Y i, (t) is a charac-
teristic subgroup of R. Clearly, then R is an S-subgroup of G.

(14) An S-subgroup S of G is not an extension of a cyclic group by a cyclic
group.

We apply the result of [2] to show that if S has a normal cyclic subgroup $1
such that S/SI is cyclic of order _>-4, G is soluble. We thus have that, apply-
ing (12) and (13), an S-subgroup of C (t) is abelian and Y R/Y i.
Now let X -< C be an S-subgroup of C, e N (C), X (x). Then C (t) n X
=> YI > 4. It is clear that ifxm 1, t-lxt x+-I. ThusxeC(t).

--1LetY= (y),y’= 1, y" t. Then by (13)n=<m- 1. Now[x,y] 1
because an S-subgroup of C (t) is abelian.

It follows that y y-xj. Note that e Z ((x, y)).
Let x

-1
e U where U is an elementary abelian group, U -< (x, y). Then

U -< 4 since if U

_
8, U n (x, y) (t, x-). But

c (x, y) (x y).

Calculate C (U) n (x, y). Let t U\(x-) be an involution. Then

But then C (U n (x, y) is of type (2,2)wheren > 1. Forifn 1, I(x,y)l 8
and an S-subgroup of G is dihedral of order 8, a contradiction.
Now apply Theorem 4 of [4]. Since x- is not weakly closed in (x, y), there

exists g e G of odd order such that

lg X2m--such that xm- But (x-) is a characteristic subgroup of

This is a contradiction and completes the proof.

Note. Professor N. It5 has communicated a proof of the following unpub-
lished result to the authors.

TEOnEM. Let G be a simple doubly transitive group such that the stabilizer
B of a single point is metacyclic. Then G " PSL (2, p), for some prime p > 3.

Using this result the above proof can be considerably shortened. In par-
ticular, steps (10)-(13) can be eliminated. Also the use of the main result in
[5] can then be voided.

Some examples. The following groups were introduced by Schur [8]. They
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contain a normal subgroup H ._ SL (2, p), p > 3 a prime. There are two
cases"

1. If p =-- --1 (rood 4), let U (p) denote the group of all 2 2 matrices
over GF (p) of determinant -*-1.

2. If p -= W 1 (mod 4), let U (p) <= GL(2, p) be the group generated by
the following matrices

11) (110 ), (;
where e GF (p) is a primitive 2 (p 1 root of unity.

It can be shown, see [8], that U (p)/Z (U (p) PGL(2, p ). We show that
the groups U (p) can be factored into a product AB where A is cyclic and B is
metacyclic. U (p)] 2p (p 1). Again there are two cases"

1. p -1 (rood4). LetaeGF(p) be a primitive (p 1)/2rootof
unity. Let

l),(x
Then B P (P 1) and B is metacyclic, B’ p.
We construct a matrix of order 2 (p W 1 such that the cyclic subgroup A it

generates intersects B trivially. Let p e GF (p) be a primitive 2 (p W 1 root
of unity. Then

x= _p-1 e GL(2, )

has order 2 (p -F 1). Let - o-t 1 -1

Then -ly U (p) as may be verified. Now A -( g}. Since the unique
element of order 2 in A is central in U (p) and A n B]

_
2, it is clear that

AraB 1.
2. p-- 1 (mod4). Let B be the group generated by the matrices

(;
Then B 2p (p 1) and B is metacyclic.
We construct a matrix of order (p - 1) as follows. If p4 r,

(; o)x _r- e GL(2, p)

has order (p W 1) since p 1 (mod 4) and again conjugation gives
--1y xl y e U (p). Similar argument shows that A n B 1 and U (p) AB.
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