SOME NON-SOLUBLE FACTORIZABLE GROUPS

BY
A. R. Camina and T. M. Gagen

1. Introduction

In this paper we prove the following theorem:
Theorem. Let G be a finite non-soluble group such that $G=A B$ where A is a cyclic group and B is a metacyclic group. Then $G / S(G) \cong P G L(2, p)$, where p is a prime greater than 3.

Metacyclic group will mean throughout a finite group all of whose Sylow subgroups are cyclic. $S(G)$ is the maximal soluble normal subgroup of G and $P G L(2, p), P S L(2, p)$ denotes the projective general linear and the projective special linear groups respectively of dimension 2 over a finite field of p elements.

It will be shown in Section 3 that $S(G)$ is not necessarily a direct factor of G.
For any subset T of a group $G, C(T), N(T)$ and $|T|$ denote respectively the centralizer, normalizer and the number of elements in T. The subgroup generated by T will be written $\langle T\rangle$ and a Sylow p-subgroup of G will be called an S_{p}-subgroup of G. A subgroup H of a group G is called a T.I. subgroup if from $x^{-1} H x \cap H \neq 1$ it follows that $x \in N(H)$. All groups considered will be finite.

2. Proof of the theorem

We note some properties of a metacyclic group G, see for example [9]. G / G^{\prime} and G^{\prime} are cyclic groups of co-prime orders and $G^{\prime} \cap Z(G)=1$, where $Z(G)$ denotes the center of G.

We begin with two easy lemmas.
Lemma 1. Let G be a group which satisfies the following conditions:
(i) G contains a maximal subgroup B which is metacyclic.
(ii) G has no non-trivial normal soluble subgroup.
(iii) G has no normal subgroup of index prime to $[G: B]$.

Then $Z(B)=1$ and B^{\prime} is a T.I. subgroup.
Proof. Let $x \in B^{\prime} \cap B^{\prime g}, g \in G$. If $x \neq 1$, we have $N(\langle x\rangle) \geqq B, B^{a}$ since $\langle x\rangle$ is a characteristic subgroup of B^{\prime}. Since B is maximal, $N(\langle x\rangle)=B$ by (ii). Hence $B^{g}=B$ and so $g \in B$ by (i) and (ii). Note that only conditions (i) and (ii) are used so far.

Now let $x \in Z(B)$ have prime order p. Then $N(\langle x\rangle)=B$ by (i) and (ii). We have two cases:
(a) An S_{p}-subgroup of G is not contained in B. Let P be an S_{p}-subgroup

[^0]of B and $P_{1} \geqq P$ an S_{p}-subgroup of G. The normalizer of P in P_{1} contains P properly if $P_{1}>P$. But $\langle x\rangle$ is characteristic in the cyclic group P and so if $P_{1}>P, N(\langle x\rangle) \cap P_{1}>P$. This contradicts $N(\langle x\rangle)=B$.
(b) An S_{p}-subgroup of G is contained in B. Then since $\langle x\rangle$ is characteristic in $P, N\langle x\rangle \geqq N(P)$. But $N(\langle x\rangle)=B$ has a normal p-complement and so does $N(P) \leqq N(\langle x\rangle)$. By Burnside's Theorem [9, p. 137] G has a normal p complement. But p does not divide $[G: B]$. This contradicts condition (iii). This completes the proof.

Lemma 2. Let G be a group satisfying conditions (i), (ii) and (iii) of Lemma (i) which is doubly transitive as a permutation group on the cosets of B. If $C \leqq B$ is the stabilizer of two points, then $B^{\prime} C=B$ and $B^{\prime} \cap C=1$.

Proof. By Lemma 1, $B^{\prime} \cap C=1$. For if $x \in B^{\prime} \cap C$ then there exists $g \in G \backslash B$ such that $B g x=B g$. It follows that $g \in N(\langle x\rangle)=B$, a contradiction.

Now let P be an S_{p}-subgroup of B which is not contained in B^{\prime}. Assume that P fixes only one point. Then $N(P)$ fixes just one point. Thus $N(P) \leqq B$. But now $P \leqq Z(N(P))$ and P is an S_{p}-subgroup of G. By Burnside's Theorem [9, p. 137], G has a normal p-complement. But $p \nmid[G: B]$. This contradicts condition (iii).

Since G is doubly transitive, B is transitive on the cosets $B x, x \notin B$. Thus the stabilizers of each of these cosets are conjugate. Hence C contains an S_{p}-subgroup of B for all p such that $p \nmid\left|B^{\prime}\right|$. Thus $B^{\prime} C=B$. This completes the proof.

Note that as G is doubly transitive, B has only two double cosets and so

$$
|B|+|B|^{2} /|C|=[G: B]|B|
$$

Thus

$$
1+\left|B^{\prime}\right|=[G: B]
$$

We begin the proof of the main theorem. Let G be a minimal counter example. We show that G has a unique non-abelian composition factor and it is isomorphic to $P S L(2, p)$, for some prime $p>3$. It is easy to see that we are then done. For let \bar{N} be a minimal normal subgroup of $\bar{G}=G / S(G)$. Then $\bar{N} \cong P S L(2, p)$ and \bar{G} / \bar{N} induces a group of automorphisms on \bar{N}. Thus by [3], $|\bar{G} / \bar{N}| \leqq 2$. But $\operatorname{PSL}(2, p)$ is not factorizable as a product of a metacyclic and a cyclic group and so $\bar{G} \neq \bar{N}$. Thus $|\bar{G} / \bar{N}|=2$ and $\bar{G} \cong P G L(2, p)$ by [3].
(1) $S(G)=1$.

For if $S(G) \neq 1$, let $\bar{G}=G / S(G)$. Then since $\bar{G}=\overline{A B}$, where $\bar{A}=A S(G) / S(G), \bar{B}=B S(G) / S(G)$ by the minimality of G we have the result.
(2) $A \cap B=1$.

Let $N=\left\langle(A \cap B)^{x}: x \in G\right\rangle$. Then $N \unlhd G$ and if $x \in G, x=a b$ where $a \in A$, $b \in B$.

$$
(A \cap B)^{x}=(A \cap B)^{b} \leqq B
$$

Hence N is a soluble normal subgroup of G and so $N=1$.
(3) G has at least 2 classes of involutions.

If either $|A|$ is odd or $|B|$ is odd, an S_{2}-subgroup of G is cyclic, whence G has a normal 2 -complement M. If for example $M \geqq A$ then $M=A(B \cap M)$ is factorizable as a product of a metacyclic group and a cyclic group of odd order.

Then M is soluble by [7, Satz 5]. This is a contradiction.
Thus we may assume that both $|A|$ and $|B|$ are even. Now an involution of A is never conjugate to an involution of B by (2).
(4) G is not 2-nilpotent.

For let M be a normal 2-complement of G, S an S_{2}-subgroup of G which contains an S_{2}-subgroup Y of A. Let $S_{1} \unlhd S$ be a proper normal subgroup of S containing Y. Then $M S_{1} \unlhd M S=G$ and $M S_{1} \geqq A$. Thus $M S_{1}=\left(M S_{1} \cap B\right) A$ and by induction $M S_{1}$ is soluble. Then G is soluble, a contradiction.
(5) $|A|$ and $|B|$ are both divisible by 4 .

If $|A|$ or $|B|$ is exactly divisible by 2 , then an S_{2}-subgroup S of G has a cyclic subgroup of index 2. But then S is either dihedral, semi-dihedral, semi-abelian or abelian.

If S is abelian or semi-abelian, G is 2 -nilpotent by Burnside's Theorem if S is abelian, since G has 2 classes of involutions, and by [11, Theorem 1], if S is semi-abelian. This contradicts (4). If S is semi-dihedral, $S(G) \neq 1$ by [11] Theorem 2 because G has 2 classes of involutions. This contradicts (1).

If S is dihedral, by [5], G contains a normal subgroup $H \cong \operatorname{PGL}(2, q)$, where $q=p^{n}, n \geqq 1, p$ an odd prime, and $|G / H|$ is an odd divisor of n or $G \cong A_{7}$. Remember G has 2 classes of involutions. Now A_{7} is not factorizable as a product of a metacyclic and a cyclic group. Since the $S_{p^{-}}$ subgroups of G are extensions of a cyclic group by a cyclic group, by [6], $n \leqq 2$ if $H \cong P G L(2, q)$. But then $G \cong P G L(2, q)$. Now $P G L\left(2, p^{2}\right)$ is not factorizable as a product of a metacyclic and a cyclic group. Hence $G \cong P G L(2, p)$, a contradiction.
(6) There exists a unique minimal normal subgroup M of G.

For if $M_{1}, M_{2} \unlhd G, M_{1} \cap M_{2}=1$, are minimal normal subgroups of G, induction on $G / M_{1}, G / M_{2}$ shows that G has precisely two non-abelian composition factors so that M_{1}, M_{2} are simple and isomorphic to $P S L\left(2, p_{1}\right), \operatorname{PSL}\left(2, p_{2}\right)$ respectively, for some primes p_{1}, p_{2}. Now $M_{1} M_{2} \unlhd G$ and so $C\left(M_{1} M_{2}\right) \unlhd G$. It is clear that $C\left(M_{1} M_{2}\right) \cap M_{1} M_{2}=1$ and so $C\left(M_{1} M_{2}\right)=1$ because it is solvable. Now $\left|G / M_{1} C\left(M_{1}\right)\right| \leqq 2$ since $M_{1} \cong P S L\left(2, p_{1}\right)$; see for example [3]. Let $D=C\left(M_{1}\right)$ and consider $C\left(M_{2}\right) \cap D$. Then $C\left(M_{2}\right) \cap D$
$=C\left(M_{1} M_{2}\right)=1$. Thus $\left|D / M_{2}\right| \leqq 2$ and so $\left|G / M_{1} M_{2}\right| \leqq 4$. Now $G / M_{1} M_{2}$ is not cyclic of order 4 because if $x \in G \backslash M_{1} M_{2}$, then

$$
x^{2} \in M_{1} C\left(M_{1}\right) \cap M_{2} C\left(M_{2}\right)=M_{1} M_{2} .
$$

Now let S be an S_{2}-subgroup of G. It follows that S is a product of two cyclic groups. By Satz 2, Huppert [6], the Frattini subgroup $\phi(S)$ of such a group S is itself a product of two cyclic groups and in particular is 2 -generated. It follows that $|\phi(S) / \phi(\phi(S))| \leqq 4$. Since S is 2-generated, $|S / \phi(S)| \leqq 4$. Now $S / S \cap M_{1} M_{2}$ is an elementary abelian group and so

$$
\phi(S) \leqq S \cap M_{1} M_{2} \quad \text { and } \quad\left[S \cap M_{1} M_{2}: \phi(S)\right] \leqq 2
$$

Put $T=S \cap M_{1} M_{2}$. Then T is an S_{2}-subgroup of $M_{1} M_{2}$ and $T / \phi(T)=16$. Hence $\phi(S) / \phi(T) \cap \phi(S)$ is elementary abelian of order at least 8, a contradiction. Now let M be the unique minimal normal subgroup of G. Then $C(M) \unlhd G, C(M) \cap M=1$ and so $C(M)=1$.

Now if $M \cong P S L(2, p)$ we are done because $|G / M| \leqq 2$ by [3] and as before $G \cong P G L(2, p)$. Also $G=M A=M B$ for if $M A<G, M A=(M A \cap B) A$ and by the minimality of $G, M \cong P S L(2, p)$. Note that, if K is any proper normal subgroup of G which is factorizable into a product of a cyclic and a metacyclic group, we are done since $K \geqq M$.
(7) B is maximal in G.

Let $R \geqq B$ be a maximal subgroup of G. Then $R=B(R \cap A)$ and by the minimality of G, R has at most one non-abelian composition factor and this is isomorphic to $\operatorname{PSL}(2, p)$. But

$$
U=\left\langle(R \cap A)^{x}: x \in G\right\rangle \triangleleft G
$$

Now

$$
(R \cap A)^{x}=(R \cap A)^{a b}=(R \cap A)^{b} \leqq R, \quad a \in A, b \in B
$$

Thus R contains a normal subgroup U of G and so $M \leqq R$. Then $M \cong \operatorname{PSL}(2, p)$ and we are done. Hence B is maximal in G.
(8) G satisfies the conditions of Lemmas 1 and 2. We consider G as a permutation group on the cosets of B. Since B is maximal, G is primitive.

We have already verified conditions (i) and (ii) of Lemma 1. Let $|A|=\alpha$. As $B \cap A=1,[G: B]=\alpha$. Let K be a normal subgroup with $[G: K]$ prime to α. Then $A \leqq K$. But $K \geqq M$ and $M A=G$ by (6). Hence $K=G$ and we have condition (iii) of Lemma 1.

Now α is not prime by (5) and so G is doubly transitive by Theorem 25.4 of [10].
(9) If $B=B^{\prime} C, B^{\prime} \cap C=1,|N(C)|=2|C|$.

For $N(C) \cap B=C$ by Lemma 1. The result follows from the double transitivity of G and Theorem 9.4 of [10].

Let $t \in A$ be the involution in A. We may suppose without loss that $t \in N(C)$.
(10) Any subgroup K of G containing A satisfies $K \cap B^{\prime}=1$.

For $\left(K \cap B^{\prime}\right)^{b a}=\left(K \cap B^{\prime}\right)^{a} \leqq K, a \in A, b \in B$, and so K contains a proper normal subgroup of G, the normal closure of $K \cap B^{\prime}$. But $K=A(K \cap B)$ is of known type and so $K \geqq M$ and $M \cong P S L(2, p)$.

Hence any maximal subgroup of G containing A is a product of two cyclic groups and so is supersoluble by [6] and metabelian by [9], 13.3.2.

$$
\begin{align*}
& C(A)=A . \tag{11}\\
& L
\end{align*} \quad=\left\langle(C(A) \cap B)^{x}: x \in G\right\rangle \triangleleft G .
$$

Thus L is soluble normal subgroup of G and $L=1$.
(12) An S_{2}-subgroup of $C(t)$ is an extension of a cyclic group by a cyclic group.

Let $T=C(t) \geqq A$. Then T is supersoluble and metabelian. Consider $A T^{\prime}$. Since T^{\prime} is abelian by Fitting's Lemma [9, 4.5.6], $T^{\prime}=T_{1} \oplus T_{2}$ where $A T_{1}$ is nilpotent and $\left[A, T_{2}\right]=T_{2}$.

Suppose $A T_{1}>A$. Then $A T_{1} \cap B \neq 1$ and we may choose

$$
x \in A T_{1} \cap B \cap N(A)
$$

of order p, a prime. Note that $N(A) \cap A T_{1}=A\left(N_{A T_{1}}(A) \cap B\right)$. Then if $y \in A$ has order prime to $p,[x, y]=1$ since $A T_{1}$ is nilpotent. Now $[x, A] \neq 1$, because by (11), $C(A)=A$. Let an S_{p}-subgroup of A be $\langle z\rangle$, where z has order p^{n}. If p is odd, $z^{x}=z^{1+p^{n-1}}$ and so $|C(x) \cap\langle z\rangle|=p^{n-1}$. Thus in the permutation representation of G, x fixes $|A| / p=\gamma=|C(x) \cap A|$ points.

Now $\gamma||A|$ and $\gamma-1||A|-1=\left|B^{\prime}\right| \geqq 5$. Thus $\gamma^{2} \leqq|A|$. Hence $|A| \leqq p^{2}$. If $|A|=p^{2}$, we have a contradiction since p is odd. If $|A|<p^{2}$, $[x, A]=1$, again impossible.

If $p=2, z^{x}=z^{-1}$ or $z^{x}=z^{2^{n-1}-1}$ since if $z^{x}=z^{1+2^{n-1}}, n \geqq 2$, we may argue as for p odd. Thus $|C(x) \cap\langle z\rangle|=2$ and in the permutation representation of G on the cosets of B, x fixes $\gamma=|A| / 2^{n-1}$ points, and $\gamma=2 \delta$, where δ is odd. Let $|B|=2^{m} \rho$, where ρ is odd.

Then $2^{m} \rho_{1}+\gamma=|A|$, for some ρ_{1}.
Thus either $|A|$ is exactly divisible by 2 or $m=1$. This is not the case by (5).

Hence we have $A T_{1}=A$. Now $\left|T_{2}\right|$ is odd because $A T_{2}$ is supersoluble and if $\left|T_{2}\right|$ is even there exists an element of order 2 in T_{2} normalized by A. Since $A \cap T_{2}=1$ we have a contradiction to (11).

Thus $A T_{2} / T_{2} \unlhd C(t) / T_{2}$ and an S_{2}-subgroup R of $C(t)$ contains a normal cyclic subgroup $Y \leqq A$ such that R / Y is also cyclic.
(13) If R is non-abelian or if R is abelian and $|Y|>|R / Y|$, an $S_{2^{-}}$ subgroup of $C(t)$ is an S_{2}-subgroup of G.

For if R is non-abelian or if R is abelian with $|Y|>|R / Y|,\langle t\rangle$ is a characteristic subgroup of R. Clearly, then R is an S_{2}-subgroup of G.
(14) An S_{2}-subgroup S of G is not an extension of a cyclic group by a cyclic group.

We apply the result of [2] to show that if S has a normal cyclic subgroup S_{1} such that S / S_{1} is cyclic of order $\geqq 4, G$ is soluble. We thus have that, applying (12) and (13), an S_{2}-subgroup of $C(t)$ is abelian and $|Y| \leqq|R / Y|$. Now let $X \leqq C$ be an S_{2}-subgroup of $C, t \in N(C), X=\langle x\rangle$. Then $|C(t) \cap X|$ $\geqq|Y| \geqq 4$. It is clear that if $x^{2^{m}}=1, t^{-1} x t=x^{1+2^{m-1}}$. Thus $x^{2} \in C(t)$. Let $Y=\langle y\rangle, y^{2 n}=1, y^{2 n-1}=t$. Then by (13) $n \leqq m-1$. Now $\left[x^{2}, y\right]=1$ because an S_{2}-subgroup of $C(t)$ is abelian.

It follows that $y^{x}=y^{-1} x^{2 j}$. Note that $t \notin Z(\langle x, y\rangle)$.
Let $x^{2^{m-1}} \in U$ where U is an elementary abelian group, $U \leqq\langle x, y\rangle$. Then $|U| \leqq 4$ since if $|U| \geqq 8, U \cap\left\langle x^{2}, y\right\rangle=\left\langle t, x^{2^{m-1}}\right\rangle$. But

$$
C(t) \cap\langle x, y\rangle=\left\langle x^{2}, y\right\rangle
$$

Calculate $C(U) \cap\langle x, y\rangle$. Let $t_{1} \in U \backslash\left\langle x^{2 m-1}\right\rangle$ be an involution. Then

$$
C(U) \cap\langle x, y\rangle=C\left(t_{1}\right) \cap\langle x, y\rangle=\left\langle t_{1}\right\rangle \times\left\langle x^{2}\right\rangle
$$

But then $C(U) \cap\langle x, y\rangle$ is of type $\left(2^{n}, 2\right)$ where $n>1$. For if $n=1,|\langle x, y\rangle|=8$ and an S_{2}-subgroup of G is dihedral of order 8 , a contradiction.

Now apply Theorem 4 of [4]. Since $x^{2^{2-1}}$ is not weakly closed in $\langle x, y\rangle$, there exists $g \epsilon G$ of odd order such that

$$
g \in N(C(U) \cap\langle x, y\rangle) \cap N(U)
$$

such that $x^{2 m-1} \neq x^{2 m-1}$. But $\left\langle x^{2^{m-1}}\right\rangle$ is a characteristic subgroup of

$$
C(U) \cap\langle x, y\rangle=\left\langle t_{1}\right\rangle \times\left\langle x^{2}\right\rangle
$$

This is a contradiction and completes the proof.
Note. Professor N. Itô has communicated a proof of the following unpublished result to the authors.

Theorem. Let G be a simple doubly transitive group such that the stabilizer B of a single point is metacyclic. Then $G \cong P S L(2, p)$, for some prime $p>3$.

Using this result the above proof can be considerably shortened. In particular, steps (10)-(13) can be eliminated. Also the use of the main result in [5] can then be avoided.

Some examples. The following groups were introduced by Schur [8]. They
contain a normal subgroup $H \cong S L(2, p), p>3$ a prime. There are two cases:

1. If $p \equiv-1(\bmod 4)$, let $U(p)$ denote the group of all 2×2 matrices over $G F(p)$ of determinant ± 1.
2. If $p \equiv+1(\bmod 4)$, let $U(p) \leqq G L\left(2, p^{2}\right)$ be the group generated by the following matrices

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right), \quad\left(\begin{array}{cc}
\sigma & 0 \\
0 & -\sigma^{-1}
\end{array}\right)
$$

where $\sigma \epsilon G F\left(p^{2}\right)$ is a primitive $2(p-1)$ root of unity.
It can be shown, see [8], that $U(p) / Z(U(p) \cong P G L(2, p))$. We show that the groups $U(p)$ can be factored into a product $A B$ where A is cyclic and B is metacyclic. $|U(p)|=2 p\left(p^{2}-1\right)$. Again there are two cases:

1. $p \equiv-1(\bmod 4)$. Let $\alpha \in G F(p)$ be a primitive $(p-1) / 2$ root of unity. Let

$$
B=\left\langle\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
\alpha & 0 \\
0 & -\alpha^{-1}
\end{array}\right)\right\rangle
$$

Then $|B|=p(p-1)$ and B is metacyclic, $\left|B^{\prime}\right|=p$.
We construct a matrix of order $2(p+1)$ such that the cyclic subgroup A it generates intersects B trivially. Let $\rho \in G F\left(p^{2}\right)$ be a primitive $2(p+1)$ root of unity. Then

$$
x=\left(\begin{array}{cc}
\rho & 0 \\
0 & -\rho^{-1}
\end{array}\right) \epsilon G L\left(2, p^{2}\right)
$$

has order $2(p+1)$. Let

$$
y=\frac{1}{\rho^{2}+1}\left(\begin{array}{rr}
\rho & 1 \\
-1 & \rho
\end{array}\right)
$$

Then $y^{-1} x y \in U(p)$ as may be verified. Now $A=\left\langle y^{-1} x y\right\rangle$. Since the unique element of order 2 in A is central in $U(p)$ and $|A \cap B| \leqq 2$, it is clear that $A \cap B=1$.
2. $\quad p \equiv 1(\bmod 4) . \quad$ Let B be the group generated by the matrices

$$
\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \quad\left(\begin{array}{cc}
\sigma & 0 \\
0 & -\sigma^{-1}
\end{array}\right)
$$

Then $|B|=2 p(p-1)$ and B is metacyclic.
We construct a matrix of order $(p+1)$ as follows. If $\rho^{4}=\tau$,

$$
x_{1}=\left(\begin{array}{cc}
\tau & 0 \\
0 & -\tau^{-1}
\end{array}\right) \epsilon G L\left(2, p^{2}\right)
$$

has order $(p+1)$ since $p \equiv 1(\bmod 4)$ and again conjugation gives $y^{-1} x_{1} y \in U(p)$. Similar argument shows that $A \cap B=1$ and $U(p)=A B$.

References

1. W. Burnside, The theory of qroups of finite order, C.U.P., 1911.
2. A. R. Camina and T. M. Gagen, Groups with metacyclic Sylow 2-subgroups, Canad. J. Math., to appear.
3. J. Dieudonne, La geometrie des groupes classique, Erg. Mat., Springer-Verlag, Berlin, 1955.
4. G. Glauberman, Central elements in core free groups, J. Algebra, vol. 4 (1966), pp. 403-420.
5. D. Gorenstein and J. H. Walter, The characterization of finite groups with dihedral Sylow 2-subgroups, J. Algebra, vol. 2 (1965), pp. 85-151, 218-270, 354-393.
6. B. Huppert, Über das Produht von paarweise vertausbaren zyklischen Gruppen, Math. Zeitschr., vol. 58 (1953), pp. 243-264.
7. B. Huppert and N. Ito, Über die Auflösbarkeit faktorisierbaren Gruppen II, Math. Zeitschr., vol. 61 (1954), pp. 94-99.
8. I. Schur, Untersuchung über die Darstellung der endlichen Gruppen, J. Reine Angew. Math., vol. 132 (1907), pp. 85-137.
9. W. R. Scotr, Group theory, Prentice Hall, New Jersey, 1964.
10. H. Wielandt, Finite permutation groups, Academic Press, New York, 1964.
11. W. Wong, On finite groups whose 2-Sylow subgroups have cyclic subgroups of index 2, J. Austral. Math. Soc., vol. 4 (1964), pp. 90-112.

University of Illinois
Urbana, Illinots

[^0]: Received January 23, 1968.

