HAAR SERIES AND ADJUSTMENT OF FUNCTIONS ON SMALL SETS

BY
J. J. Price ${ }^{1}$

1. Introduction

D. E. Menshov proved that a measurable function finite almost everywhere on $[0,2 \pi]$ can be changed on a set of measure less than ε to a function whose Fourier series converges uniformly [3]; see also [1, Chapter VI].

One may ask whether an analogous result holds for orthonormal systems other than the trigonometric system. For the Walsh functions an affirmative answer was given by B. D. Kotlyar [2] and, with different techniques, but later, by the author [4]. For Haar functions the question is trivial; the HaarFourier series of every continuous function converges uniformly and a finite measurable function agrees with a continuous function except on a set of measure less than ε.
Nevertheless, one aspect of our results on Walsh functions suggests a nontrivial question about Haar functions. In the cited paper, we constructed subsets W of the Walsh functions with the following property: Every continuous (or finite, measurable) function can be adjusted on a small set so that the modified function has a uniformly convergent Walsh-Fourier series involving only those Walsh functions in W.
In this paper, we characterize families of Haar functions which have an analogous property.
Definition 1. Let Φ be an orthonormal set of functions in $L^{2}[0,1]$ not necessarily complete. Let $M(\Phi)$ be the closed linear manifold of $L^{2}[0,1]$ spanned by Φ. Then Φ has property U if, given a continuous function f on $[0,1]$ and an $\varepsilon>0$, there exists a function g such that
(a) $g \in M(\Phi)$,
(b) $g(x)=f(x)$ except on a set of measure less than ε,
(c) the expansion of g in the system Φ converges uniformly.

Our objective is to determine which subsystems of the Haar functions have property U . We shall investigate also a similar question involving absolute convergence of Haar series.

Definition 2. An orthonormal set has property A if it satisfies the conditions of Definition 1 relative to absolute convergence instead of uniform convergence.
Recently A. A. Talayan [7] constructed certain orthonormal sets having

[^0]property A. We shall show that the Haar functions and certain subsets of the Haar functions have property A. ${ }^{2}$

Our results are contained in the following theorem.
Theorem 1. Let $H=\left\{h_{n}\right\}$ be a family of Haar functions, total in measure on $[0,1]$. Let f be a continuous function on $[0,1]$ and let $\varepsilon>0$ be given. Then there exists a function g such that
(a) $g(x)=f(x)$ except on a set of measure less than ε,
(b) $g(x)=\sum_{n=1}^{\infty} c_{n} h_{n}(x)$, the series converging uniformly and absolutely.

Corollary. For families of Haar functions tke following are equivalent:
(a) totality in measure (TM),
(b) property U ,
(c) property A.

Proof. According to Theorem 1, $\mathrm{TM} \Rightarrow \mathrm{U}$ and $\mathrm{TM} \Rightarrow \mathrm{A}$. Now $\mathrm{U} \Rightarrow \mathrm{TM}$. This is immediate from the definition of TM. Also $A \Rightarrow T M$ as can be seen by an easy application of Egoroff's Theorem.

2. Adjustment of step functions

We begin by quoting two results that will be needed.
Theorem A. Let $H=\left\{h_{n}\right\}$ be a family of Haar functions and let E_{n} denote the support of h_{n}. Then H is total in measure on a set $G \subset[0,1]$ if and only if $G \subset \lim \sup E_{n}$ except perhaps for a set of measure zero.

Theorem B. If a sequence of functions is total in measure on a set G, it remains so when a finite number of its elements are removed.

Theorem A was proved by Robert E. Zink and the author [5]. Theorem B is due to A. A. Talayan [6].

From now on, $H=\left\{h_{n}\right\}_{1}^{\infty}$ will denote a family of Haar functions that is total in measure of $[0,1] . \mu(S)$ will denote the Lebesgue measure of $S . \quad I(n, j)$ will denote the dyadic interval $\left[j \cdot 2^{-n},(j+1) \cdot 2^{-n}\right)$. If

$$
\sum_{1}^{\infty} c_{n} h_{n}(x)
$$

is the Haar-Fourier series of f we shall set

$$
s_{k}(x ; f)=\sum_{1}^{k} c_{n} h_{n}(x), \quad a_{k}(x ; f)=\sum_{1}^{k}\left|c_{n} h_{n}(x)\right|
$$

Lemma 1. Let I be a subinterval of $[0,1]$. Let N be a positive integer and let $\varepsilon>0$. Then, there exist $h_{n_{1}}, h_{n_{2}}, \cdots, h_{n_{k}}$ in $\left\{h_{n}\right\}_{N}^{\infty}$ such that their supports $E_{n_{i}}$ are disjoint, contained in I, and

$$
\mu\left(I-\bigcup_{1}^{k} E_{n_{i}}\right)<\varepsilon
$$

[^1]Proof. $\left\{h_{n}\right\}_{N}^{\infty}$ is total in measure by Theorem B. Therefore, by Theorem A, if

$$
J=\text { interior of } I \cap \lim \sup _{n \geqq N} E_{n}
$$

then $I-J$ is a null set.
Each point of J is contained in infinitely many sets E_{n}. Since $\mu\left(E_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$, the family of supports

$$
\mathcal{E}=\left\{E_{n}: n \geqq N, E_{n} \subset \text { interior of } I\right\}
$$

is a covering of J in the sense of Vitali. Therefore, by the Vitali Covering Theorem, there exist $E_{n_{1}}, E_{n_{2}}, \cdots, E_{n_{k}}$ in \& which satisfy the assertion of the lemma.

Lemma 2. Let χ be the characteristic function of $I(n, j)$. Let m and N be given positive integers. Then there exists a function g with the following properties.
(a) g is a linear combination of the functions $\left\{h_{n}\right\}_{N}^{\infty}$.
(b) $g(x) \equiv 0$ outside of $I(n, j)$.
(c) $g(x)=\chi(x)$ except on a set of measure less than 2^{-n-m}.
(d) $|g(x)|<2^{m+1}$ for all x.
(e) $\left|s_{k}(x ; g)\right| \leqq a_{k}(x ; g)<2^{m+1}$ for all x and k.

Proof. Choose a number δ such that $0<\delta<\frac{1}{2}$ and

$$
\delta+\delta^{2}+\cdots+\delta^{m+1}>1-2^{-m}
$$

This is possible since

$$
\lim _{\delta \rightarrow 1 / 2}\left(\delta+\delta^{2}+\cdots+\delta^{m+1}\right)=1-2^{-m-1}>1-2^{-m}
$$

Let $\delta=\frac{1}{2}-\varepsilon . \quad$ By Lemma 1 , there exist $h_{n_{1}}, h_{n_{2}}, \cdots, h_{n_{k}}$ in $\left\{h_{n}\right\}_{N}^{\infty}$ with disjoint supports $E_{n_{i}}$ contained in $I(n, j)$ such that

$$
\begin{equation*}
\mu\left(I(n, j)-U_{1}^{k} E_{n_{i}}\right)<2 \varepsilon \cdot 2^{-n} \tag{1}
\end{equation*}
$$

Define

$$
l_{1}(x)=\sum_{1}^{k} h_{n_{i}}(x)\left|h_{n_{i}}(x)\right|^{-1}
$$

Then

$$
\begin{aligned}
l_{1}(x) & =1, & & x \in P_{1} \\
& =-1, & & x \in Q_{1} \\
& =0, & & \text { otherwise }
\end{aligned}
$$

where P_{1} and Q_{1} are finite unions of dyadic intervals and $\mu\left(P_{1}\right)=\mu\left(Q_{1}\right)$. Because of the latter fact, it follows from (1) that

$$
\mu\left(P_{1}\right)=\mu\left(Q_{1}\right)>\left(\frac{1}{2}-\varepsilon\right) 2^{-n}=\delta \cdot 2^{-n} .
$$

We now apply the same technique to each component of Q_{1}. We obtain
$l_{2}(x)$, a linear combination of the functions $\left\{h_{n}\right\}_{N_{2}}^{\infty}, N_{2}>\max _{1 \leqq i \leqq k} n_{i}$, such that

$$
\begin{aligned}
l_{2}(x) & =2, & & x \in P_{2} \\
& =-2, & & x \in Q_{2} \\
& =0, & & \text { otherwise }
\end{aligned}
$$

where P_{2} and Q_{2} are finite unions of dyadic intervals, $P_{2} \cup Q_{2} \subset Q_{1}$ and

$$
\mu\left(P_{2}\right)=\mu\left(Q_{2}\right)>\delta \cdot \mu\left(Q_{1}\right)
$$

Then $l_{1}(x)+l_{2}(x)=1$ on $P_{1} \cup P_{2}$ and $\left|l_{1}(x)+l_{2}(x)\right| \leqq 1+2$ for all x.
We continue in this way. After $m+1$ steps we obtain

$$
g(x)=l_{1}(x)+l_{2}(x)+\cdots+l_{m+1}(x)
$$

a function which obviously satisfies (a) and (b). $g(x)=1$ on the set $U_{1}^{m+1} P_{i}$ whose measure is

$$
\sum_{1}^{m+1} \mu\left(P_{i}\right)>2^{-n} \sum_{1}^{m+1} \delta^{i}>2^{-n}\left(1-2^{-m}\right)
$$

Thus $g(x)=\chi(x)$ except perhaps on a set of measure less than 2^{-n-m}. Furthermore, it is clear from the construction that

$$
|g(x)| \leqq 1+2+4+\cdots+2^{m}<2^{m+1}
$$

and that

$$
\left|s_{k}(x ; g)\right| \leqq a_{k}(x ; g)<2^{m+1} \quad \text { for all } x \text { and } k
$$

By applying Lemma 2 in an obvious way, we can approximate step functions in the sense of Lemma 2. We shall omit the routine proof and just state the result.

Lemma 3. Let f be constant on each of the dyadic intervals $I(n, j), 0 \leqq j<2^{n}$. Let m and N be given positive integers. Then there exists a function g with the following properties.
(a) g is a linear combination of the functions $\left\{h_{i}\right\}_{N}^{\infty}$.
(b) $g(x)=f(x)$ except on a set of measure less than 2^{-m}.
(c) $\max _{x}|g(x)|<2^{m+1} \max _{x}|f(x)|$.
(d) $\max _{x}\left|s_{k}(x ; g)\right| \leqq \max _{x} a_{k}(x ; g)<2^{m+1} \max _{x}|f(x)|$ for all k.

3. Proof of Theorem 1.

Let a continuous function f and a positive number ε be given. f may be represented as the sum of a series

$$
f(x)=\sum_{r=0}^{\infty} f_{r}(x)
$$

where f_{r} is a step function constant on the intervals $I\left(n_{r}, j\right)$ and $\left\{n_{r}\right\}$ is increasing so fast that

$$
\left|f_{r}(x)\right|<2^{-2 r}
$$

Choose p such that $2^{-p}<\varepsilon$. For each r, apply Lemma 3 to f_{r} with $m=r+p+1$. In this way we may obtain a sequence of functions $\left\{g_{r}\right\}$ such that
(i) $g_{r}(x)=f_{r}(x)$ except on a set of measure less than 2^{-r-p-1},
(ii) $g_{r}(x)$ is a linear combination of the Haar function in H,
(iii) the Haar functions involved in g_{r} have greater subscripts than those involved in $g_{1}, g_{2}, \cdots, g_{r-1}$,
(iv) $\max _{x}\left|g_{r}(x)\right|<2^{-2 r} \cdot 2^{r+p+2}=2^{-r+p+2}, r>0$,
(v) $\max _{x}\left|s_{k}\left(x ; g_{r}\right)\right| \leqq \max _{x} a_{k}\left(x ; g_{r}\right)<2^{-2 r} 2^{r+p+2}=2^{-r+p+2}$, for all $k, r>0$.
Set

$$
\begin{equation*}
g(x)=\sum_{r=0}^{\infty} g_{r}(x) \tag{2}
\end{equation*}
$$

The series converges uniformly because of (iv). $g(x)=f(x)$ except for a set of measure less than

$$
\sum_{0}^{\infty} 2^{-r-p-1}=2^{-p}<\varepsilon
$$

If we replace each g_{r} by its expression in terms of Haar functions in H, we obtain from (2) a Haar series for g. Since a subsequence of its partial sums converges uniformly to g, this Haar series is the Haar-Fourier series of g. Write the series as

$$
\begin{equation*}
\sum_{0}^{\infty} c_{n} h_{n}(x) \tag{3}
\end{equation*}
$$

There is an increasing sequence of positive integers $\left\{\nu_{r}\right\}$ such that

$$
\sum_{n=1}^{\nu_{r}} c_{n} h_{n}(x)=\sum_{i=1}^{r} g_{i}(x)
$$

If $\nu_{r} \leqq k<\nu_{r+1}$ then

$$
\begin{equation*}
s_{k}(x ; g)=\sum_{i=1}^{r} g_{i}(x)+s_{k}\left(x ; g_{r+1}\right) \tag{4}
\end{equation*}
$$

The sum on the right side of (4) converges uniformly to $g(x)$ as $k \rightarrow \infty$. According to (v), $\max _{x}\left|s_{k}\left(x ; g_{r+1}\right)\right|<2^{-r+p+2}$ and so

$$
\lim _{k \rightarrow \infty} s_{k}\left(x ; g_{r+1}\right)=0 \quad \text { uniformly }
$$

Therefore

$$
\lim _{k \rightarrow \infty} s_{k}(x ; g)=g(x) \quad \text { uniformly. }
$$

It remains to show that the series (3) converges absolutely. It suffices to prove that the increasing sequence $\left\{a_{\nu_{r}}(x ; g)\right\}$ is bounded. Using (v), we have for all x,

$$
\begin{aligned}
a_{\nu_{r}}(x ; g) & =a_{\nu_{0}}\left(x ; g_{0}\right)+\sum_{j=1}^{r} a_{\nu_{j}}\left(x ; g_{j}\right)<\max _{x} a_{\nu_{0}}\left(x ; g_{0}\right)+\sum_{j=1}^{\infty} 2^{-r+p+2} \\
& =\max _{x} a_{\nu_{0}}\left(x ; g_{0}\right)+2^{p+2}=\text { constant. }
\end{aligned}
$$

This concludes the proof of Theorem 1.

References

1. N. Bary, A treatise on trigonometric series, Pergamon Press, Oxford, 1964.
2. B. D. Kotlyar, Walsh series and adjustment of functions on small sets, Izv. Akad. Nauk SSSR, vol. 30(1966), pp. 1183-1200 (Russian).
3. D. E. Menshov, Sur les series de Fourier des fonctions continues, Mat. Sb., vol. 11 (1940), pp. 493-518.
4. J. J. Price, Walsh series and adjustment of functions on small sets, Illinois J. Math., vol. 13 (1969), pp. 131-136.
5. J. J. Price and Robert E. Zink, On sets of completeness for families of Haar functions, Trans. Amer. Math. Soc., Vol. 110(1965), pp. 262-269.
6. A. A. Talalyan, On the convergence almost everywhere of subsequences of sums of general orthogonal series, Izv. Akad. Nauk Armjan SSR Ser. Fiz.-Mat., vol. 10(1957), pp. 17-34.
7. -, Complete systems of unconditional convergence in the weak sense, Akad. Nauk SSSR (English Translation), vol. 29(1964), pp. 247-254.

Purdue University
Lafayette, Indiana

[^0]: Received January 22, 1968.
 ${ }^{1}$ This work was supported by a National Science Foundation grant.

[^1]: ${ }^{2}$ In a conversation with the author, Y. Katznelson sketched a proof that the trigonometric functions do not have property A.

