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1. Introduction
D. E. Menshov proved that a measurable function finite almost everywhere

on [0, 2] can be changed on a set of measure less than c to a function whose
Fourier series converges uniformly [3]; see also [1, Chapter VI].
One may ask whether an analogous result holds for orthonormal systems

other than the trigonometric system. For the Walsh functions an affirmative
answer was given by B. D. Kotlyar [2] and, with different techniques, but
later, by the author [4]. For Haar functions the question is trivial; the Haar-
Fourier series of every continuous function converges uniformly and a finite
mesumble function grees with continuous function except on set of
measure less than c.

Nevertheless, one aspect of our results on Walsh functions suggests a non-
trivial question bout Hr functions. In the cited pper, we constructed
subsets W of the Wlsh functions with the following property: Every con-
tinuous (or finite, measurable) function can be adjusted on a small set so that
the modified function has a uniformly convergent Walsh-Fourier series involv-
ing only those Wlsh functions in W.
In this paper, we characterize families of Haar functions which have an

analogous property.
DEFINITION 1. Let be an orthonormal set of functions in L[0, 1] not

necessarily complete. Let M () be the closed linear manifold of L[0, 1]
spanned by . Then has property U if, given a continuous function f on
[0, 1] and an > 0, there exists a function g such that

(a) geM(),
(b) g (x) f(x) except on a set of measure less than ,
(c) the expansion of g in the system converges uniformly.

Our objective is to determine which subsystems of the Haar functions have
property U. We shall investigate also a similar question involving absolute
convergence of Haar series.

DEFINITION 2. An orthonormal set has property A if it satisfies the con-
ditions of Definition 1 relative to absolute convergence instead of uniform
convergence.

Recently A. A. Talayan [7] constructed certain orthonormal sets having
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property A. We shall show that the Haar functions and certain subsets of the
Haar functions have property A.
Our results are contained in the following theorem.

THEOREM 1. Let H {h.} be a family of Haar functions, total in measure on
[0, 1]. Let f be a continuous function on [0, 1] and let > 0 be given. Then
there exists a function g such that

(a) g (x f (x except on a set of measure less than ,
(b) g (x -1 c, h, (x ), the series converging uniformly and absolutely.

COROLLARY. For families of Haar functions tke following are equivalent:

(a) totality in measure (TS/I),
(b) property U,
(c) property A.

Proof. According to Theorem 1, Th/[ U and Th/[ A. Now U
This is immediate from the definition of TNI. Also A TM as can be
seen by an easy application of Egoroff’s Theorem.

2. Adjustment of step functions
We begin by quoting two results that will be needed.

THEOREM A. Let H {h,} be a family of Haar functions and let E,, denote
the support of h,. Then H is total in measure on a set G c [0, 1] if and only if
G c lim sup E, except perhaps for a set of measure zero.

THEOREM B. If a sequence of functions is total in measure on a set G, it re-
mains so when a finite number of its elements are removed.

Theorem A was proved by Robert E. Zink and the author [5]. Theorem B
is due to A. A. Talayan [6].
From now on, H {h} will denote a family of Haar functions that is total

in measure of [0, 1]. (S) will denote the Lebesgue measure of S. I(n, j)
will denote the dyadic interval [j. 2-’, (j 1). 2-’). If

is the Haar-Fourier series of f we shall set

sk(x;f) c,h(x), ak(x;f)
LEMM/k 1. Let I be a subinterval of [0, 1]. Let N be a positive integer and let
> O. Then, there exist h,1, h,,... h, in {h.} such that their supports

E, are disjoint, contained in I, and

(z Ui E.,) <
In a conversation with the author, Y. Katznelson sketched a proof that the

trigonometric functions do not have property A.
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Proof. h.} is total in measure by Theorem B. Therefore, by Theorem A,

J interior of I

then I J is a null set.
Each point of J is contained in infinitely many sets

as n --, oo, the family of supports
Since (E,,) ----> 0

S {E," n

_
N, E. interior of I}

is a coveting of J in the sense of Vitali. Therefore, by the Vitali Covering
Theorem, there exist E,, E.,, E, in which satisfy the assertion of the
lemma.

LEMMA 2. Let x be the characteristic function of I (n, j). Let m and N be
given positive integers. Then there exists a function g with the following
properties.

(a) g is a linear combination of the functions {h,}.
(b) g (x ) =- 0 outside of I (n, j).
(c) g (x x (x except on a set of measure less than 2-’*-’.
(d) g (x)] < 2m+x for all x.
(e) [s (x; g)]

_
a (x; g) < 2m+l for all x and k.

Proof. Choose a number 6 such that 0 < < 1/2 and

++... +$+1 > 1- 2-’.
This is possible since

lim,x/s (6 +,2 + + +) 1 2-- > 1 2-.
Let 5 1/2 e. By Lemma 1, there exist h,, h,, ..., h, in {h,}r with dis-
joint supports E contained in I (n, j) such that

(I (n, j) (.J E,,,) < 2e. 2-"(1)

Define

Then
lx (x) 1, x e Px,

--1, xeQ,

0, otherwise,

where P and Q are finite unions of dyadic intervals and # (P1) # (Q).
Because of the latter fact, it follows from (1) that

u(Px) u(Qz) > ({ e)2-" 6.2-".

We now apply the same technique to each component of Q. We obtain
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/(z), a linear combination of the functions {h},, N > maxn, such
that

l (x 2, x e P
-2, x e Q,

0, otherwise,

where P. and Q are finite unions of dyadic intervals, P u Q c Q1 and

g(P) g(Q) >
Then ll (x) A- l (x) 1 on P1 u P and 11 (x) A-/ (x) - 1 A- 2 for all x.
We continue in this way. After m A- 1 steps we obtain

g (x ) ll (x ) -4- l (x ) "4- "4- l’+l (x ),

a function which obviously satisfies (a) and (b). g (x) 1 on the set (j,+l p
whose measure is

Thus g (x) x (X) except perhaps on a set of measure less than 2--. Fur-
thermore, it is clear from the construction that

]g(x)] -< 1 + 2 A- 4 -4- -[- 2" < 2"+1

and that
s (x; g) --< a (x; g) < 2"+1 for all x and k.

By applying Lemma 2 in an obvious way, we can approximate step func-
tions in the sense of Lemma 2. We shall omit the routine proof and just state
the result.

LEMM 3. Letf be constant on each of the dyadic intervals I (n, j), 0

_
j < 2n.

Let m and N be given positive integers. Then there exists a function g with the
following properties.

(a) g is a linear combination of the functions {h}.
(b) g (x ) f(x ) except on a set of measure less than 2-’.
(c) max= ]g(x) < 2"+1 max= if(x)I.
(d) max(R) s (x; g) -_< max= a (x; g) < 2"+1 max= Jr(x) for all k.

3. Proof of Theorem 1.
Let a continuous function f and a positive number e be given, f may be

represented as the sum of a series

where$, is a step function constant on the intervals I (n,, j) and n} is increas-
ing so fast that

If(x) < 2-, r > 0.



Choose p such that 2- < e. For each r, pply Lemm 3 to if with
m r W p -t- 1. In this wy we my obtain sequence of functions {gl such
that

(i) g (x) f (x) except on set of mesure less thn 2---,
(ii) g, (x) is linear combination of the Hr function in H,
(iii) the Hair functions involved in g hve greter subscripts thn those

involved in g, g, ..., g_,
(iv) max g, (x) < 2-. 2++ 2-++, r > O,
(v) max s (x; g,) max a (x; g) < 2-’2++ 2-’++, for all

k,r>O.
Set

(2)

The series converges uniformly because of (iv). g (x) f(x) except for a set
of measure less than

2 < e.

If we replace each g by its expression in terms of Haar functions in H, we ob-
tain from (2) a Haar series for g. Since a subsequence of its paAial sums con-
verges uniformly to g, this Haar series is the Haar-Fourier series of g. Write
the series as

(3) c, h,(x).

There is an increasing sequence of positive integers {,} such that

If u k < u+x then

(4) s (x; + s (x;

The sum on the fight side of (4) converges uAformly to g (x) as k . Ac-
cording to (v), max ]s (x; g,+)] < 2-’++" and so

lim. s (x; g,+) 0 uory.
Therefore

lim. s (x; g) g (x) uniformly.

It remains to show that the series (3) converges absolutely. It suffices to
prove that the increasing sequence {a,, (x; g)} is bounded. Using (v), we
have for all x,

a,, (x; g) a,, (x; go) + ;=, a, (x; g.) < max a,, (z; go) + 2-’++

max a,, (x; g0) + 2+" constant.

This concludes the proof of Theorem 1.
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