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O. Introduction
This paper is a study of the asymptotic distribution of Beurling’s generalized

numbers which improves previous estimates of the error term. Our approach
to the problem is first to show how measures of a certain type may be expressed
as "exponentials." We then apply this formalism to the counting measure of
generalized integers and Lebesgue measure and estimate the one measure by
the other. With this representation we show how a hypothesis on the distri-
bution of generalized primes leads to an estimate of the distribution of gen-
eralized numbers.

Let /P} i1 be a sequence of real numbers subject to the following three
conditions but otherwise arbitrary"

(i) pl > 1, (ii) p,+ >_ p, (iii) p --*

Following Beurling [1] we call such a collection {p} a set of generalized (hence-
forth g-) primes. The multiplicative semigroup generated by the {p} is
countable and may be arranged in a nondecreasing sequence {n,}. Setting
no 1, we call {n,}0 the set of g-integers associated with {p,}.
The function v (x) is defined to be the number of g-primes less than or equal

to x, and II (x) is defined by

n
Let N (x) be the number of g-integers less than or equal to x.
With these definitions, our main results take the following form"

THEOREM. Suppose there exist positive numbers c and a such that for large x
the following relation holds"

dII()/ (1 -)d,/( log ) -t- log e-t-O(log-x).

+ 0 log

’ro. Sppoe here ei mber > 0d (0, 1)

()/ (1 C) d/( log ) + log + 0 exp( lo) }.
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N (x) cx - O{x exp (- [log x log log x]’ )}, a’ a/(1 - a).

These theorems sharpen results previously obtained by Nyman [5] and
Malliavin [3] respectively. While Nyman and Malliavin use Fourier analysis
and tauberian arguments, our method involves neither of these techniques.
The proofs of the two theorems have a common beginning and are in principle
similar, but they require separate estimates. We shall prove the second in
detail and content ourselves with indicating the estimates necessary for the
first.
We remark that one may showN (x) cx (with no error term) using weaker

hypotheses than our first theorem, by methods of Wirsing [7].

1. Definitions and preliminaries
1.1. Measures. Let i) denote the collection of complex valued set func-

tions on the Borel subsets of [1, with the property that on any finite in-
terval [1, x] each is a finite measure. The set functions that appear in what
follows will all be members of l, and we shall call such functions measures.
By "a set" we shall always mean a bounded Borel set contained in [1, ).
We denote the elements of 9 by such symbols as da or d. We do this so

that we may conveniently refer to the distribution function of d, say, by
(x). Precisely, for d e set (x) 0 for x <: 1, and forx >_ 1 let
(x) f+ d. (x) as so defined is right continuous. To achieve additivity

of the integral we adopt the convention that f d means f d except when
x 1, in which case we taken the lower limit to be 1-.
Throughout this paper, the symbol will represent point mass 1 at 1.

1.2. Generalized numbers. If N(x) is defined as in the introduction, dN
is a pure point measure. We have made no assumption about unique fac-
torization of the g-integers, and for a g-integer, dNI l} equals the number of
distinct representations of in prime factors.
The function II was defined in the introduction by a formally infinite series.

We show II to be well defined and close to v in the following

LEMMA. For each x the series for II (x) is terminating, and if we assume
r(x) 0 (x), then II (x) r(x) 0 (%/’).

Proof. xTM p for n > log x/log p. For such n, r (xTM) O, and the
series is finite. Also,

(xm log x Kx.0

_
II(x) (x)

_
r ) -- 10g Pi r(x/ -As is usual in prime number theory, it is II rather than v which is important

in the sequel. The Borel-Stielties measure dII is a pure point measure whose
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support is the set of all (positive integral) powers of g-primes. Precisely,

diI{/} a -t- -t- -t- if/= p, p p
0 if is not a prime power.

We define the generalized Chebychev @ function by setting
d@ (t) log dII (t). One verifies that @ (x) log p, where the summation
extends over all g-integers n

_
x with n( p" for some g-prime p.

1.3. Convolution. We define a map, DE X DE --+ DE called multiplica-
tire convolution or, briefly, convolution. For da, d DE and a set E let

f da , d ff, da(s) d(t).

It is well known [2; pp. 643-644] that da d as so defined is a Borel measure.
Since da and dl have support contained in [1, ), the same holds for da d,
and da d e DE. Convolution is associative and commutative because R and
C have these properties. (DE, -t-, *,) is an algebra over R or C with as unit.

Define da i for all da e DE, and define da by da’- da, n 1, 2, ....
We shall frequently use the following convolution formulas. Let da, d DE,

let E be a set, and let f be a Borel function which is bounded on every bounded
set [1, X]. Then

(1.3a) da, d a(x/t) d(t) (x/t) da(t),

(1.3b) ,f f(da d) ff, f(st) da(s) d(t).
tB

The first formula follows from the definition of convolution and Fubini’s
Theorem. In the casef x for some set F, equation (1.3b) is just the defini-
tion of fa da d. By linearity, this formula is valid for simple functions,
and finally (1.3b) holds for all bounded Borel functions by uniform approxi-
mation by simple functions.

1.4. The derivation L. We define a map L DE DE by

f Lda= ft, log tda(t).

L is a derivation, i.e. linear operator satisfying

(1.4a) L (da d) da L d + L da d for da, d . fig,.

To show (1.4a) note that

f logt(da,d)(t) ff logxy da(x) d(y).,
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Define L by L da d, L da L (Ln-1 da), n 1, 2,
ing formulas involving L may be verified by induction"

(1.4b) L (da

(1.4c) L (da d) o ()Ljda Ln- d,

... Thefollow-

1.5. The Mellin transform. Although we shall not make use of Fourier
techniques in proofs, we mention here the Mellin transform (Fourier trans-
form on a multiplicative group) to illustrate analogues with classical methods
and results.
Let

a e 9r there exists n such that lim sup- x da

For da e ’ there exist s e C for which the integral f x-" da (x) converges, in-
deed absolutely. This integral is called the Mellin transform of da and is an
analytic function of s (at least) in the interior of the region of absolute con-
vergence.

This transform is important in analytic arguments involving multiplicative
convolution because it preserves algebraic structure. Precisely, if A (s)
f x-" da (x) and B (s) f x-’ dfl (x) are absolutely convergent for some s,
then for such s we have f x-" (da d) (x) A (s)B (s).
To see the effect of the L mapping on the Mellin transform, note that if

A (s) f x da (x), then A’ (s) f x log x da (x) (provided the latter
integral converges absolutely). Thus the L mapping in ’ corresponds to
--d/ds in the transform space, and formulas (1.4a, b, and c) correspond to
well-known rules in calculus.

1.6. Topology. We define a set of functionals on by d ]] f
for all x e [1, ). One verifies that {I]" I1} is a family of semi norms. Let
(, +, *, 1]" I]) be the algebra with the set of semi norms {11" I1}. The
topological space (r, ]1" ]] ) satisfies the first axiom of countability. By con-
vergence in we mean convergence with respect to each semi norm
Let (91,, +,., ]]. ]]) be the algebra of measures on [1, x] with norm

PROPOSITION 1.6. (9, +,.., !I" II is a semi normed algebra complete under
each semi norm.

Proof. It is well known that (gr,, if" II ) is complete (cf. [2; pp. 160-
162]). The norm inequality

(1.6a)

follows from the fact that Ida (s) dfl (t) is integrated over the set

I(s,t)" l <_s<_x,l <_t<_x}

on the right hand side of (1.6a), while on the left hand side, it is integrated
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over the subset
{(s, t) s >_ , > , t _< }.

In the sequel we will use the well-known fact that in a Banach space, an
absolutely convergent series is convergent. Thus, to show d,, convergent
in it suffices to show d, [Ix < , for each x > 1.

The semi norms induce a partial ordering on . We say da is smaller
than d on [1, x] and write da .< d if f d fl dl and da II < II d !1
for all y < x. If these two conditions hold for all x, we say da is smaller than
d and write da -< d. Examples of - and - are the following" da < x da I!
and d/ -( d I, for all da, d e .

This partial ordering is preserved under addition and convolution. Pre-
cisely, da .< dA and d < dB imply da dfl .< dA + dB and da. d .<
dA dB. Verification of these statements is easy.

2. The exponential representation theorem
2.1. Power series. Power series of a measure will play a central role in

this chapter, and we begin with a discussion of convergence. A treatment of
functions of operators by means of power series may be found in [4; pp.
369-372].

PROPOSITION 2.1. Letf(z be an arbitrary function holomorphic at zero whose
Maclaurin series a, z" has radius ofconvergence p. Letd and d{ 1 < p.
Then f(&,) a, &," converges in

Proof. It suffices to establish the following "spectral radius formula""
each x e [1, ),

(2.1a) lm (11 d I])TM ]d{1} [.

:For

On the one hand, we have for all n and x > 1,

Ida{l}[ ([[dnil, --< ([Id’ll
On the other hand, we shall show that d{ 1} < implies that

lim sup (]] d" I!)1/n < .
Since d ][ is right continuous as a function of x and lim.+ li d ]] < ,

there is a number c 1 such that ]] d ]]o < . Set

r 11 d I]. and dfl (t) x[,) (t) d (t).

For fixed x, note that df -< 0 for j > J (log x)/(log c) + 1].
since d (t) has no support for < c and for all y _< x we have

This is so

f" d= f,,...,<_,.., f d(s).., d(s).

For j _> J, there is at least one s in the product s s; satisfying
s, _< yl/. _< x/ < c, and the multiple integral is zero.
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Now

and for n >_ J,

where c c (x). Thus

lira sup (11 < <
and (2.1a) is established. The proposition follows at once from this formula,
since a d converges absolutely on each interval [1, x].

Remarks. If d,{ 1} > p, a, d," does not converge in i). It is clear from
the proof that if d, has no support in some neighborhood of 1, then for each x
there exists a J such that d -, 0 for allj _> J, and the formally infinite series
reduces to a polynomial in d,.

Within its circle of convergence, an. ordinary power series is a continuous
function. An analogous result holds for power series in .
COROLLARY 2.2 (Continuity). Let f and d be as in Proposition 2.1.

dr,, d in 9, then f
Proof. Let r, c, and d be as in the proof of Proposition 2.1, and let r

satisfy r < r’ < p. Let x be arbitrary but fixed. Since d -- d in ,
I! d d il < r’ r for all sufficiently large n. For such n,

Also d < r’ W d. We set g (z) a. z" and note that g is holomorphic
for z < p. By the proposition, f(d.), f(d), and g’ (r’ + d) are all con-
vergent, and indeed absolutely convergent. Now

f(d) f(d.) a(d d)

d--.d}.(d_d,)y- ay
L=o

g’(r’Wd),d- dp[O in[.],

proving the assertion.

COROLLARY 2.3. Let f and d be as in Proposition 2.1, and let L be the log
mapping defined in Section 1.4. Then

(2.3a) Lf(&, f’ (d L d.

Proof. By Proposition 2.1, f(dp) converges. The L map is linear and con-
tinuous, as is the map defined by convolution with a fixed element of i). Thus

L( a d)

_
a Ld (a nd"- L(d)
a, nd’- Ld.
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2.4. Inverses. Let da e. We sy da hs n inverse if there exists df i
such that da d , Obviously, dthen hs n inverse ss well. The usual
lgebric proof shows that n element of hs t most one inverse.
The invertible elements of 9 re characterized in the following

PROPOSITION 2.4. da 9 is invertible iff da{ 1} 0.

Proof. If da is invertible with inverse d, then da{ 1}d{ 1} 1 and
da{ 1} 0. Conversely, if da{ 1} a 0, we will exhibit an inverse for da.
By an easy normalization, we may assume a 1 or, equivalently, da - d.
with d/e i) and d,{ 1} 0.

We proceed with the same proof that shows an element of a Banach algebra
that is close to the identity is invertible, f(z) (1 -t- z)- (-z)"
converges for z < 1. Since dT{ 11 0, by Proposition 2.1 f(d.) converges
in 9. Now f(dT) da . This may be seen by estimating f by a partial
sum and passing to the limit.

Remark. The algebra has precisely one maximal ideal, namely

{da e 9 da{1} 0}.

2.5. Quotient space. Anticipating the multivalued property of the loga-
rithm of a measure, we introduce here a quotient space modulo which the
logarithm is single valued. Let denote the elements of which have non
zero point mass at 1. Let (, ) be the quotient of the groups (, W and
(2riZ, W ), where the latter group consists of all integral multiples of 2ri.
Let ( be the subset of consisting of real-valued measures with positive
point mass at 1. And let (, - ) be the subgroup of real valued measures in

+).
By Proposition 2.4, (1), ,) and ((R, ,) are abelian groups. Since i) is

a semi normed algebra, each of

(;, -, ]I" I[ ), (, *, I[" ), (, -, II" I]) and (t, ,,
is a topological group.
To help achieve clarity, the following convention will be in force for the re-

mainder of this chapter. ARoman letter will denote a member of (, ,, I1" ),
a Greek letter in parentheses represents a eoset in (, W, I]" ), and the same
Greek letter without parentheses is a representative of the coset.

A_ neighborhood of a point da in (, ,, ii" ) is given by

{db 9, II db da-1 I[ < },

while a neighborhood of (d) in (, -t-, I!" ) is given by

With proper identification, convergence in (, +, I[" !t is equivalent to con-
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vergence in . It is easy to see that the convergence of a sequence of ele-
ments in (1, *, ll’ Ii implies its convergence in 9E. However, the example
/n shows the converse to be false. The same remarks hold for except that
cosets are unnecessary.
The following result, the representation theorem, shows the pair of 9r (re-

spectively, ) groups to be algebraic and topological copies of one another.

2.6. The exponential representation.

THEORE 2.6. Let E" (, -, i1" !i) -’ (1, *, I1" I!) be defined/or (dk e

by E ((dX)) e where dX is a representative of (dX in . E is a group iso-
morphism and a homeomorphism.

Let da e 9, da{ 1} l O. The measure dX satisfies e da iff dX is
given by either of the following euivalent conditions"

(2.6a) L dX L da da-, dX{ 1} log k

(2.6b) dX log da.

The symbolic expression (2.6b) has the following meaning: For any c satis]ying

(2.6b’) dX (log c) :_, (l/n)( da/c)" (log c) + log (da/c).

Moreover, E the restricgon of E to , maps (, +, !]" isomorphically and
homeomorphically onto (,., ]1" II ).

Proof. First, E is a well-defined map from : into. For (dX) 9, the
expression ex is convergent in by Proposition 2.1. The rnge of E is con-
tained in since e{ 1} el 0. If dX’ is nother representative f
(dX), then dX’ dX - 2rni nd (by the next paragraph)

We now show E((dk - d)) E((dX)) E((d)). The series for
e, e, edx+", and ex e converge absolutely in . Thus we may sum the
doubly infinite matrix

by rectangles to yield e e or by triangles (Cauchy product) to yield
ea’d.
By Corollary 2.2, the exponential is a continuous map from to and

remains so in the topology of (, W, Ii" ). Thus E is continuous.
Suppose e da, da{ll O. Then k e{1} ex elds

d{ 1} log k (rood 2ri). By (2.3a), Lda Le= LdX. da. Convolvg
both sides of the last expression by d, we see that (2.6a) holds.
To show E is 1-1, it suffices to show e (dX) 0. If ex , (2.6a)
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implies L dX L5 0. Thus support dX support 5, and dX c5, where c
is a constant which may be found by evaluation at 1. That is,

1 {1} extl dX{1} logl 2,rni,

n some integer. Thus dX 2,rni or (dX) 0.
We must prove that the conditions (2.6a) and (2.6b’) are equivalent. First

we note that, for da e 9r with da{ 1} k and c satisfying 1 k/c < 1, the
following equation holds"

(2.6c) L{(log c)- := (l/n)(-- da-)},_ ( da/c)’- L da/c= L da da-.
The first equality is obtained by applying L under the summation sign, the
second by summing ( da/c)’- to c da-. If (2.6a) is valid, then by
(2.6c) we have

L{ (log c) (l/n) ( da/c)} L

This equality proves (2.6b’) for (1, oo and direct evaluation at 1 establishes
(2.6b’) at that point. Conversely, if (2.6b’) holds, then dX{ 1} log k, and
we read from (2.6c) that L d). L da da-1, proving the validity of (2.6a).

Because of the log-1 factor in its representation, it is not evident a priori
that a set function dk defined by (2.6a) lies in . However, it is not hard to
see that dX as given by (2.6W) has finite total variation on any compact set
and thus is an element of .
Now suppose dX satisfies (2.6a). We show that e da from which we

deduce that E maps onto igl. Our method is to prove that L (e da-1) O.
This implies that e da- c5 and by evaluation at 1 with the second condi-
tion of (2.6a), one sees that c 1. We need the following equation, obtained
by expanding 0 L5 L (da da-I):

(2.6d)

Now

da L da- -da- L da.

L (e da-) ex (L dX da- + L da-)
egX, da- (L dk -+- L da- da) 0,

where we have successively used (2.3a) to evaluate Le, (2.6d) to transform
L da- da, and the hypotheses (2.6a).
Given da , define a measure dX by (2.6a). By the above paragraph

ex da, and thus there exists (d),) e such that E ((dX)) da, which shows
that E maps onto
We now show E-1 is continuous. Let da, da in (9,., I[" il ). This

means da,, da-1 in i). In particular, for sufficiently large n we have
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(da,{ 1} )/c 1 < 1 where c da{ 1}. For such n,

dh. (log c)8 ’1 (l/j)(8 dan/c)

converges to dh (log c)8 (l/j) (8 dale) by Corollary 2.2. Thus
E-1 is continuous.
Now (, -, II" I] ) can be regarded as a closed subgroup of (, +, ]!’ ) and

thus E(t) is a closed subgroup of (,., I1’11). We claim that
E(t) (,., I1" il ). Indeed,

d,eteeh and da e log (da e

(with proper choice of the branch of log). It is clear thatE is an isomorphism
and a homeomorphism. This completes the proof of the representation
theorem.

Remarks. The representation theorem yields certain canonical decomposi-
tions for measures in

If da e 9Z, with da e, we decompose dX into real and imaginary parts
dk da - id. Then da dA dB, where dA e e and dB e
cos (dB) -t- i sin (d), giving a representation for 9r by measures in "polar
form." If lim,, ]] d I1 < , f dS 1.

If da e 5h with da e, we make a Jordan decomposition of dX into a dif-
ference of two non-negative mutually singular measures, d da d. Let
e dA and e dB. Then da dA dB-, and every member of h is
expressible as a quotient of positive exponentials.
By analogy with common fractions and meromorphic functions, we call a

measure in h integral if its quotient representation has a unit denominator.
c e(*)* is an integral measure iff c >_ 1. More significant examples of
integral measures, as we shall see, are dn, the counting measure of positive
integers, and 8 dr, where dt is Lebesgue measure on [1, ). Integral meas-
ures are clearly non negative and form a semi group under convolution.
An important property of an integral measure is that it majorizes its inverse"

Ifda e,dx>_O;da- e-xand
(2.6e) da-’= (-dX)/n! < dZ/n! da.

From the exponential form we see that any measure da e possesses pre-
cisely n distinct n* roots in, where an n* root of da is a measure db satisfy-
ing db da. For a fixed determination of log(da) they are given by

(l/n) log da thdb o oan root of unity, k 0, 1, 2, ..., n 1. It is routine
to check that these are n roots, are distinct, and include all n roots. Note
that an integral measure has an integral nt root.

3. Distribution of generalized integers
3.1. Representation of dN as an exponential. By Theorem 2.6 we know

that dN may be written as the exponential of some measure: We show this
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measure to be dII in

PROPOSITION 3.1. dN= e

Proof. It suffices to show

(3.1a) de, dN L dN.

If this expression is valid, convolution by dN- will yield L dII= de,, L dN
dN- which by (2.6a) implies dN e’m.
It is clear that the support of the measures in both sides of (3.1a) is con-

tained in {n}, the set of g-integers. Thus it suffices to prove (3.1a) is valid
at each {nl.

In case dN{ II 1, is uniquely expressible as II P? and we may use
the following classical argument to prove (3.1a).

(db dN){l} ’.. db{j} dN{k}

where the sum need only extend over such pairs (j, ]) for which j p,
1 _< S _< aandk 1/j. For all other (j,k) withjk= latleastoneof
dC{j}, dN{ k} vanishes. Since unique factorization holds for l, it holds for all
divisors of l. Thus we have db{p} log p, 1 _< _< a and dN{ lipS} 1,
/ _< a. Thus

(db dN){l} ,"U log p, X a, log p, log l.

This proves (3.1a) in case dN{1} 1.
Where we do not have unique faetoriation, it is possible for a number to

divide product without dividing any of the factors. For example, consider
the set of g-primes 2, /6, 3, for which the g-prime v/6 divides 2.3 but
divides neither factor. To facilitate discussion in the ease of nonunique fae-
toriation, we make the following definition. We ssy q belongs to the fae-
torisation IX p.’ and write q 17I p’ if q p, some k, and 1 _< _< a.
The above example shows that prime power may belong to one faetorisation
of a number and not belong to another.
We now prove (3.1a) holds at in the case dN{ l} > 1. We could make

a slight "perturbation" of the g-primes to achieve unique faetoriation, use the
result we have just proved in this ease, and pass to the limit. Such a proof
would require a weaker topology than that of (, I[" [[ ), and it is more con-
venient to give instead a combinational proof.

Let II "p, j 1, -.., , be the representations of l. Let (s, t) be a
pair for which st and db{ s} dN{ t} O, i.e. s q q,/ > 1 and

1-I qT’ 1-I qTX, X > 1. The contribution to d/ dN at (s, t)
is =1 log q. By assigning the value log q to the representation
(q, II q.) and summing over all representations of (s, t), we also get the
number Y- log q. Thus ,t- dq/{s} dN{t} log q where the
inner sum is over {q q e 1- p/} and the outer sum is over j 1, ..., .
By the proof in the case of unique factorization, the inner sum is log l. This
establishes (3.1a) and completes the proof of Proposition 3.1.
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3.2. Lebesgue measure as an exponential. For c a fixed real number,
define a map T "gr -- by E a ga(t). From the definition of
convolution and the distributivity of multiplication over addition, is an
algebra isomorphism of (, -, ,) into itself.
We denote by t Lebesgue measure on the Borel subsets of [1, ). The

measure T_I dt is translation invariant on the multiplicative semiroup of
real numbers greater than or equal to 1, and therefore has the following
property"

LEMMA.

(3.2a)

For any da

da T_I dt a (t dt/t.

Proof. f da dt/t f a (x/t) dt/t f a (u du/u. Since the distribu-
tion functions coincide, so must the measures.

LEMMA.

(3.2b) (dt) log-1 dt/(n 1)!, n 1, 2, ....
Proof. We will show by induction on n that dt’/t log’-I dt/t (n 1

which implies the lemma. The equality for dt’*/t is true for n 1, and we
assume its truth for the n case. We apply successively the isomorphic
property of the T_ map, the inductive hypothesis, and the formula for con-
volution by dt/t from the previous lemma, giving

(dt)’+ (dt) dt log’-t dt dt log’t dt, ,__..
(n- 1)!t nit

This proves the truth of the (n -- 1) case, whence the lemma.

LEMMA.

(3.2c)

Proof. This formula for the inverse of 6 dt can be verified by noting
with the help of Lemma 3.2a that dt/t (6 + dt) dr. Without prior knowl-
edge of the result, we could obtain the formula from the proof of existence of
inverses (Section 2.4) by summing the series for (-dt)" with the aid of
the previous lemma.

Define a measure dr by r (x) f (1 -) dt/log t.

LEMMA.

(3.2d)

Proof.
(3.2e)

.+. dt e

By (2.6) it suffices to show that

{L( -- dt)} (6 dt/t) L dr.

The left hnd side of (3.2e) L dt (6 dr dt dt (6 dt/t
dt , (6 -t- dr) 6} , (6 dt/t) dt dt , (6 dt/t) dt , dt/t
(t 1)dt/t the right hnd side of (3.2).
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This establishes the lemma. Another method of proof would be to evalu-
ate log ( W dr) with the aid of Lemma 3.2b.
An exampl of ,R. H. Malliavin [3] showed that the Riemannian hy-

pothesis could not hold for g-numbers, even if N (x) x 0 (1). We
show how to simplify his example by use of the above representation. For
c (0, 1/2), we consider the "zeta function"

8 1 fx-(Wcdx), Res > 1,

whose continuation has a zero at s 1 c > 1/2. Now

( + c d) cz + 0()

and
+ cdx e.,

where the measure dr is defined by

.f 1To(X)
log

dr.

r, (x) is an increasing function and

r(x) li(x)
(1 c) log x klog x]

Thus we have represented the "teger cotg measure" by an exponential
of a positive measure, and the Riemannian hypothesis is false, at least for
such general types of "number systems."

3.3. The distribution of generalized integers. We now have the machin-
ery with which to prove our main theorem, which asserts that if the g-primes
are well distributed, then so too are the g-integers. Although formulated with
the measures dII and dN associated with generalized numbers, the theorem is
valid for an arbitrary integral measure dN. After proving the theorem we
shall consider the effect of a hypothesis upon the behavior of II (x) or b (x)
instead of f dII/t.
THEOREM 3.3a. Suppose there exist positive numbers c and a such that for

large x the following inequalities hold:

dII (t)/t (1 -) dt/(t log t) -t- log c -t- 0(log x).

Then N (x cx - 0 (x log-" x).

THEOREM 3.3b. Suppose there exist numbers c > 0 and a (0, 1) such that

dII(t)/t (1 -) dt/(t log t) -t- log c -t- 0 exp ( log x) }.
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Then
N (x) cx - O{ x exp (- [log x log log x]a’ }, a a/(1 - a).

Proof. Let (x) ft-l{dII dr (log c)} " and let l(x) (x).
We have

and

Thus we have

dN e c, ( - dt), e-d-(lc) c( - dr), e

(3.3c) N (x) cx cx _,jffi ,(x)/j!,

and we will show the sum to be suitably small.
The essential step in the proof of (3.3a) is to show that there exist constants

A0 and A, independent of n, such that

’,, (x) <- nAo (2 log log x - A)- log-" x.

The theorem follows by inserting this estimate into (3.3c). We shall not
pursue further the proof of (3.3a) but turn our attention to estimating (x)
for Theorem 3.3b.

Define X(x) fdr(t)/t f (1 -) dt/(t log t). Note that for
x_.e

X() _< d/ + dt/( log ) 1 -t- log log .
L. Suppose h for ome b >_ 0 d (0, 1),

1’ ()i -< A log ex exp I- (log )"l, 1

Then there exists a constant A such that for 1 <_ x <
(3.34) ’,, (x) <- nAo (2X (x) - A)’- log ex exp (n-1 log x

Remark. The raison d’etre of the factor log ex is Corollary 3.3.

Proof (by induction). The case n 1 is true. Assume the truth of the
n case, and set y x(’+) and z x/y.

d(t)

+
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f (/) a()_
nAo(2X(x/t) -t- A1)’*-1 log (exit) exp {-(n- log (x/t))"l d

nAo(2X(x) + A:)’-x log ex exp (n-x log z)} dv

nAo(2k(x) + A)"- lo ex exp {-(In + 1]- log x)}
(2X(x) + S + 2llogc l),

whereB supl(x) < .
f" (x/t) d(t)

A0 log ex exp (log x/z)’} dv

(y)(z) BAo(2x(z) + A)-1 lo ex exp (-([ +
Thus

.+ (x) (n + )A0 (2x (z) + A)" og ex exp (In + 1- og

with A 2B + 2log

Proof of the theorem.

A0 n (2h (x) + A)’- exp (n- log x)}/n! + +.
To estimate the first sum we maximize

exp (n- og x)} / N 1 )

on n. For e a ed arbitrarily small positive number, here exists x0 such
tha for all x x0 and all n,

exp (n- og )’/ (n )
(3.3e)

< exp (e (1 + a)/(+a) (log x log log x)’}.
Let A (e, x, a) A (e) denote the right hand side of (3.3e).
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provided 2k (x) + A 2.

+ < Ao (2 (x) + A)"/nl 2A0 (2 (x) + A)/KI
provided K 2 (2 (x) + Ax).
Take K (log x)’, and recall that k (x) 0 (log log x). For e any

number greater than e, there exists an x such that for x xx, we have
+ +x < A (e’). Choose e and e such that (1 + a)v(+") e > 1.

This proves (3.3b) with "a little to spare."

Coaoanv 3.3. Let dH 0 and

(3.3) (x) r (x) + 0 (x exp (log x)} ).

Th if a’ a (1 + a ), there exists a cstant c ch that

N (x) cx + O (x exp{-(logxloglogx)’}).
Rark. (3.3f) is the hypoChesis tha appears MMiiavin’s paper [3].

Proof of Corollary 3.3.

dr)t-l(d

(n() ,())/ + (n() ,()) a/’

0{"’’] + (n(t) ,(t)) t/t

(:."O{U(=’)’} + log c + O (o=,). dt/t

The last tegral is asymptotic to (l/a)(log x)-’U(’) as may be seen by
use of l’Hospital’s rule. Thus (3.3f) implies that there is a number log c
ha

(3.3g) UldH dr (log c)} O{(log

The left hand side of (3.3g) is the feion u(x). We esimaCe , (x) by
(3.3d), tang b i a. Proceeding wiCh the proof of he heorem as
before, we oba

IN(x) cx]/x < (log x)-’A(e, x, a), x x.
We may absorb the (log x)-" factor into A by choosing an e" > e bug

so small that (1 + a)(+) e" 1. Thus, there exisCs x such Chat for

](x) vz ]/ < A (g’ x, a) exp (log x log log x)’}, a a/(1 W a).
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