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In 1922 Knaster [7] constructed the first hereditarily indecomposable con-
tinuum. In 1948 M:oise [13] described an indecomposable, chainable con-
tinuum which was homeomorphic to each of its subcontinua. Because of this
property, he called it a pseudo-arc. Bing [2] proved in 1951 that every two
hereditarily indecomposable, chainable continua were homeomorphic and
hence pseudo-arcs.

In the same year Bing [2] constructed an hereditarily indecomposable con-
tinuum which was topologically different from a pseudo-arc. Since this con-
tinuum was circularly chainable, Bing called it a pseudo-circle. It seems
natural to the author to extend the term pseudo-circle to include any heredi-
tarily indecomposable circularly chainable continuum which is not chainable.
The purpose of this study is to investigate the class of pseudo-circles.
The author constructs c topologically distinct pseudo-circles. In fact, there

exists a collection of c pseudo-circles with the property that no one can be
mapped continuously onto another.
There exists a pseudo-circle which can be mapped continuously onto any

circularly chainable continuum and onto any chainable continuum. The
pseudo-circles described in this study are called universal pseudo-circles (in
this paper, the term "universal" does not refer to embeddings; it refers instead
to a particular inverse limit). Exactly one of the universal pseudo-circles is
planar. The author proves that it can be mapped continuously onto any planar
circularly chainable continuum and onto any chainable continuum.
These pseudo-circles are the "only" ones in the sense that any other one

which is universal for a suitable class of continua is homeomorphic to one al-
ready described. Each constructed pseudo-circle can be mapped continuously
onto any planar pseudo-circle, and no planar pseudo-circle can be mapped
continuously onto any non-planar pseudo-circle. Each constructed pseudo-
circle can be mapped continuously onto the pseudo-arc, and the pseudo-arc
cannot be mapped continuously onto any pseudo-circle.

Since the pseudo-arc, and hence all chainable continua, are continuous
images of these pseudo-circles, it is natural to inquire what characterizes the
largest class of continua for which one of these pseudo-circles is universal. A
very natural characterization is given in Section III in terms of the simple
concept of q-chainability. Through different techniques, L. Fearnley has ob-
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rained independently this characterization for planar pseudo-circles [15]. In
correspondence with Fearnley, the author has also learned that he has inde-
pendently obtained a Uniformization Theorem by much different methods and
has used it to obtain many of the theorems of the second section.

In this study a continuum is a nondegenerate, compact, connected subset of
metric space. A map is a continuous single-valued function. If a term is left
undefined, the definition is that of [4].

Uniformization theorem

1. Structure of double graphs in the unit square. Let f and g be two
maps of a topological space X onto itself. The subset of X

If, g] {(x, y) f(x) g(y)}

is called the double graph of f and g.
Let I denote the unit interval, and let T denote the class of simplicial (piece-

wise linear) maps of I onto I. If f and g are in T, then If, g] is the union of a
finite number of isolated points, straight line segments, and rectangular disks.
Distinguishing certain subintervals of I will make it possible to analyze the
structure of the double graph of two functions f and g belonging to T.

Let A [a, a] be a subinterval of I such that f(A I but f(Int (A))
does not contain 0 or 1. Denote such an interval by A- if f(a) 0 and
f(a) 1 and by A if f(a) 1 and f(a.) 0.

Let B [b, b] be a maximal subinterval of I such that f(B) I and
f(b) 0 f(b) orf(b) 1 f(b.). Let B- denote the former condition
and B- the latter.
Denote similar intervals for g by A’-, A’-, B’-, and B’-. These desig-

nations form rectangles in I of the form A X A’, A B’, B X A’, and B X B’.
The following four lemmas, which characterize the behavior of If, g] in these
rectangles, were formulated by Mioduszewski [12].

LEMMA 1. [f g] n Fr (A X A contains two opposite vertices ofA X A’, which
are joined in If, g] (A X A’) by a continuum. The vertices are the upper right
and lower left if the signs of A and A’ are the same and the upper left and lower
right if the signs are different.

LEMMA 2. If, g] n Fr (A X B’ contains two a(iacent vertices ofA X B’, which
arejoined in , g] n (A X B’) by a continuum. The vertices lies on the right side
or on the left side of A X B’ according as the signs of A and B’ are the same or

different.

LEMMA 3. [f g] Fr (B X A contains two adjacent vertices ofB X A’, which
arejoined in If, g] (B X A’) by a continuum. The vertices lie on the upper side
or on the lower side of B X. A’ according as the signs of B and A’ are the same or

different.
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LEMMA 4. If, g] n Fr (B X B’) contains all or none of the vertices of B X B’
according as the signs of B and B are the same or different. Furthermore if the
signs of B and B’ are plus and the maximum attained by f on B is greater than or
equal to the maximum attained by g on B, then the vertices on the left (right) side
of B X B’ are joined by a continuum in [, g] (B X B’). Similar results are
true if the signs of B and B are negative or if g is greater than f over the respective
intervals.

The preceding lemmas state that some pairs of vertices of a certain rectangle
may be joined by continua lying in If, g] and in the rectangle. For each such
pair of vertices, pick an arbitrary arc, lying in If, g] and in the rectangle, which
joins the vertices. The collection of such arcs, one for each appropriate pair of
vertices of each of the rectangles into which we have partitioned I, is said to
be the collection of admissible arcs of If, g]. A continuum contained in If, g] is
said to be a path if it is the union of admissible arcs.

2. Uniformization theorem for circles. Let K be a category and f and g
be morphisms of K. A pair a and of morphisms of K is said to be a uni-
formization of f and g if

The purpose of this chapter is to investigate the uniformization problem for the
category of simplicial maps of the unit circle onto itself.
Double graphs are useful in the investigation of this problem because of the

following property, the proof of which is obvious"

PROPERTY 1. Let C denote the unit circle and let f and g be maps of C onto it-
self. The curve x a (t), y (t), C, lies in If, g] if and only iffa g.

Since a uniformization is possible for each pair of simplicial maps of I onto
itself [12], it is tempting to conjecture that the same result holds for simplicial
maps of C onto itself. That this is not the case is shown by

Example 1. Let C be realized as I with the points 0 and 1 identified. Let
maps of C onto C be defined by straight line segments in I as follows: Let g
be defined by segments joining (0, 0) and (1/2, 1 ) and joining (1/2, 0) and (1, 0).
Let f be defined by segments joining (0, 0) and (1/2, 1 and joining (1/2, 0) and
(1, 1 ). As one may see from If, g], no possible uniformization curve in If, g]
has parametric equations x a (t), y B (t), e C, such that a maps onto C.
The map g, however, has degree zero (intuitively the degree of a map is the

"winding number"). Maps of degree zero are somewhat pathological in that
they are homotopic to a constant map and thus, in some sense, are not really
onto. Theorem I will show that a uniformization is possible for pairs of maps
in the class U of simplicial maps of C onto C which have nonzero degree.

Orient C once and for all so that there exists a definite sense of rotation. Let
p be a fixed point in C and let f e U. Let z0, zl, zk be the boundary points
off-1 (p) ordered by positive rotation. For each i, 0

_
i <: k, let [z, z+l] de-
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note the rc of C such that z is the initial point when ordered by positive rota-
tion. Iff [z, Z+l] is onto, call [z, Z+l] aa A-t- or A- according as the image
of f [z, z+l] emanates from p in the positive or negative direction. Denote
the other intervals by B- or B-l- according as the image off restricted to such
an interval emanates from p in the positive or negative direction. It is obvious
that this definition of A and B is similar to the definition of A and B for the
unit interval and that Lemmas 1-4 are applicable to the double graph of maps
in U.
The proofs of the following lemmas are standard.

LEMMA 5, Let f, g U. Then deg (r o g) (degf) (deg g).

LEMMA 6. Let f U. Then the degree of f equals the number of A +’s off
diminished by the number of A-’s of f. The degree of f is independent of the
point p.

Lemma 6 motivates the following definition: If Ix1, x] is an arc in C such
that f(xl) p f(x.), then the degree of Ix1, x]], or simply the degree of
Ix1, x], is the number of A-l-’s of f] Ix1, x] diminished by the number of A -’s
of f [x, x].

Let S denote the class of simplicial maps of C onto itself which have positive
degree. In order to uniformie maps of U, it is sufficient to uniformize maps of
S. For let f, g be in U, and let h e U be a simplicial homeomorphism of degree
minus one. Assume that f has negative degree and g has positive degree.
Thenf o h and g belong to S; hence there exist a, f S such thatf o h o a g o f.
Then h o a and is a uniformization of f and g.
For the remainder of Section I, let f, g be two fixed functions of S. The

definition of A and B partitions C into rectangles as in the previous section.
Points which are vertices of such rectangles are said to be vertices of If, g].

LEMMA 7. There exists an even number of admissible arcs emanating from
each vertex of f, g].

Proof by computation.
The definition of A and B also partitions the domain off into a finite collec-

tion W (f) of A’s and B’s. An enumeration V {vl, w., v,} of the ele-
ments of W (f) is a canonical ordering of W (f) if the order of V agrees with
positive rotation and the degree of any initial segment of V is positive. The
initial point of v is said to be the initial point of V.

LEMMA 8. There exists a canonical ordering of W (f).

Proof. Let D1 {dl, d, ..., d} be an ordering of W (f), which agrees
with positive rotation. Suppose that D is not canonical. Then there exists
a smallest initial segment $1 [dl, d] such that degree ($1) -< 0. Let D. be
the sequence {d+l, ..., d.}. If some initial segment of D2 has nonpositive
degree, let $2 be the smallest such segment and let D3 D S.
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Continue this process as many times as possible. All of D1 cannot be dis-
carded in this manner because degree (f) is positive. Hence there is a re-
mainder D Ida+l, "", d} satisfying the hypothesis of the lemma.

Consider now the ordering V of W (f) given by {D, $1, S,., ..., S}. V
agrees with positive rotation. Suppose that there exists a smallest initial
segment Z of V such that degree (Z)

_
0. Clearly D c Z. Hence

and d belongs to some S. If d is the last element of S, then f has nonposi-
rive degree, and if d. is not the last element of S, then S was not chosen to be
the smallest such initial segment. This contradiction proves that V is the
desired sequence.

Let U {Ul, u2, Un} and V {v,, v2, v} be canonical orderings
of W (f) and W (g) respectively with initial points x0 and y0 respectively. Cut
C" along the circles x0 C and C y0 then C" may be realized as a rectangle
in the plane with opposite sides identified. In particular, let this rectangle be
R [0, n] [0, m] with us realized as [i 1, i], v realized as [i 1, i], and
(x0, y0) realized as the origin. Then the vertices of If, g] are precisely the lat-
tice points of R. Point sets in C and their realizations in R will be inter-
changed without mention where no confusion is likely to arise.

Let P be a path in R. The largest integer y such that, for some x, (x, y) is a
vertex of P is said to be the maximum of P. The minimum of P is defined to
be the smallest integer y such that, for some x, (x, y) is a vertex of P. The
variation of P is the maximum of P minus the minimum of P.

LEMMA 9. If X

_
X2 and P is a path from (x, y) to (x2, y), then the degree

of [x x2] is zero.

Proof by induction on the variation. The case n 0 is obvious, since Ix1, x2]
consists solely of B’s. Assume now that the lemma is true for variations
n, 0 _-< n _-< ]c, and let P be a path of variation ]c - 1. Let z x, z., z3,

z x be the sequence of points, ordered by their occurrence in P, such that
(z, y) is in P. In order to prove the lemma, it suffices to prove that the degree
of [z, z+] is zero.

Assume that z < z+ and that y is the minimum of that part of P between
(z, y) and (z+,, y) (denoted by P [z, z+]). The case where (z, y) and
(z+l, y) are the only vertices of P [z, z+] reduces to the case n 0; so as-
sume there exist other vertices. Let (a, y 1) be the vertex immediately
following (z, y) in the order of P and let (b, y W 1 be the vertex immediately
preceding (z+,, y). Then P [a, b] is a path with variation less than ]c - 1.
Hence the degree of [a, b] is zero.
There are now four cases, depending on whether the symbol associated with

[y, y - 1] is AW, A-, B-, or B-. Assume the symbol is AT; the other
cases are similar. In order to go from the level y 1 to the level y, the symbol
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associated with the interval between z and a must be A+ or A- according as
z is less than or greater than a. Accordingly, by adding P [z, a] to P [z, b],
we either add an A-t- or subtract an A-. In either case the net effect is to
make the degree of [z, b] equal to one. But by adjoining P [b, z+l], we either
add an A- or subtract an A+. Thus one end nullifies the other, and the de-
gree of [z, z+l] is zero.
The same method proves

LEMMA 10. If y <= y2 and P is a path from (x, y) to (x, y2), then the degree
of [y y.] is zero.

Consider a process by which paths in [f, g] may be associated with paths in
the first quadrant Q of the plane. Fill up Q with copies of R. These copies
may be described as [ln, (l 1)n] X [km, (/ + 1)m], where l, k are natural
numbers. Define an equivalence relation on Q by (x, y) (x’, y’) if and only
ifx x’ (modn) andy y’ (modm).
The canonical ordering of W (f) and W (g) provides an admissible arc join-

ing (0, 0) and (1, 1 ). Consider an arbitrary path P constructed by adding at
each step an admissible arc not equivalent to one used in a previous stage.
Lemma 7 asserts the existence of such different admissible arcs for vertices
not equivalent to the origin. Terminate the path P when it reaches a vertex
equivalent to the origin, and call such a vertex the terminal point of P. P has
a terminal point because there exist less than 4ran distinct admissible arcs.
Lemmas 9 and 10 say that P intersects the coordinate axes only at the origin.
For such a path P, let P’ denote the set of points in R equivalent to points of

P. In C realized as R, P’ is not only a subset of If, g] but a simplicial image of
C in If, g]. Furthermore if x a(t), y (t), e C, denote parametric equa-
tions of the realization of P’ and if (1,/c) denotes the terminal point of P, then
the degree of a is and the degree of is k. In particular, a and f are both onto
because k and are positive. These remarks prove

THEOREM 1. Iff and g are simplicial maps of C onto C of nonzero (positive)
degree, then there exists simplicial maps a and of C onto C of nonzero (positive)
degree such that f o a g .
LEMMA 11. If P is a path in R which originates at (0, O) and terminates at

(n, h ), then the degree of [0, h]g equals the degree of [0, hi/.

Proof. Define a larger rectangle by assigning symbols to intervals in
In, n + h] on the x-axis. Namely, if the symbol in [j, j + 1]g, 0 <- j < h, is an
A, assign an A of the opposite sign to [j -t- n, j + 1 + n], and if the symbol is a
B, assign a B of the same sign. Hence in each rectangle

[n -4-j,n + j -t- 1] X [j,j q- 1]

there exists an admissible are joining the upper left and lower right vertices.
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The addition of these arcs to P forms a path P1 which originates and terminates
on the x-axis. Lemma 9 yields

deg [0, n - hi deg [0, n] deg [n, n - hi 0,

and hence deg [0, n] -deg [n, n h]. By construction, deg [0, h]
-deg [n, n h]. Thus the lemma is proved.

LEMMA 12. If P is a path in R which originates at (0, O) and terminates at
(k, m ), then the degree of [0, h]i equals the degree of [0, m]g.

THEOREM 2. Suppose that deg g b. Let c be the least common multiple of
a and b. Then a, in Theorem 1 have degree c/a, c/b respectively.

Proof. It suffices to consider any path P in the rectangulation of Q by W (f)
and W (g) and show that the terminal point of P is (nc/a, mc/b).

Suppose that the terminal point of P is not (nc/a, mc/b). Let L denote the
sum of the two rays in Q emanating from (nc/a, mc/b) and parallel to one of
the axes. L intersects P.
Suppose (d, mc/b) is the first point of P which is also in L. Let (nc/a, h)

be the first point of P which is also in the line x nc/a, and let (nc/a, i) be the
last such point before (d, mc/b). By Lemma 10, deg [h, i]g 0, and by Lemma
11,

deg [0, h] deg [0, nc/a] c.

Since deg [0, mc/b] c, deg [i, mc/b] O.
Consider the rectangle [nc/a, d] X [0, mc/b] and place it and the part of P

between (nc/a, i) and (d, mc/b) in a new copy of Q. Assign to each interval

[j,j- 1], mc/b _j < mc/b- d-nc/a,

on the y-axis a symbol determined by [nc/a - j, nc/a - j - 1] in the same
manner as in the proof of Lemma 11. Exactly as in that proof, it follows that
deg [mc/b, mc/b - d nc/a] is negative. But the degree of [i, mc/b - d nc/a]
is ero; hence the degree of [i, mc/b] is positive. This contradiction proves the
theorem.

Induction extends Theorem 2 to the more general
UNIFORMIZATION THEOREM. Let f, f, f,, e S and let deg f k.

Then there exist al, a., ..., a, e S such that for 1 <- j

_
n, f a f a,

deg a least common multiple of {k} .. divided by k and each a] has the same
triangulation in its domain as

Pseudo-circles

1. Construction of pseudo-circles. A chain [14] is a finite sequence
L, L, L, of open sets such that L.L. 0 if and only if i j -< 1. If
L1 is allowed to intersect Ln, the sequence is called a circular chain. Each
L is called a link. If e > 0 and the diameter of each link is less that , then
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the sequence is called an e-chain. A continuum is said to be chainable if for
each s > 0, it can be covered by an e-chain. Circularly chainable continua are
defined similarly.

Mardesic and Segal [9] have shown that circularly chainable continua may be
regarded as inverse limits of sequences of unit circles with onto bonding maps.
Furthermore, it is obvious that a continuum H is circularly chainable with a
defining sequence of circular chains {C} such that C+1 circles/ times in C
(in the sense of [3] if and only if there exists an inverse limit representation
X, f+l} for H such that X is the unit circle and the degree of +1 is/.
A pseudo-arc is an hereditarily indecomposable, chainable continuum. A

pseudo-circle is an hereditarily indecomposable, circularly chainable continuum
which is not chainable. Mioduszewski [10] used an uniformization theorem
for the unit interval to construct a pseudo-arc. The author adopts a similar
development whenever convenient in constructing pseudo-circles by use of the
Uniformization Theorem.

Let C’ be a division of C into equal segments and let n (C) denote the number
of segments of C’. If C" is another division of this kind, let Map (C’, C") de-
note the class of simplicial maps of C’ onto C" which have positive degree.

Let S’ be a subclass of S and assume that each map of S’ has domain C’.
The map g in S is said to be a majorant for S’ if for each pair of maps f, f’ in
S’ there exists a in S such that fa f’g.

LEMMA 13. There exists a majorant for S’.

Remark 1. Maps af belong to Map (C", C’).

Remark 2. If P is a set of primes and if the degree of each fi is a product of
nonnegative powers of elements of P, then so is the degree of g.

Let C1, C., C, be a sequence of unit circles. Consider for every C, a
sequence of subdivisions C..}, r

_
n 1, of C. into equal segments. Assume

that C,.+ is a subdivision of C. with the property that the length of each seg-
ment of C,+ is at most a half of that of C... The following matrix illustrates
this construction.

C,0

C, - C,

C, *- C,., *--

Arrows between objects indicate that there exist maps of S between the two
objects.
Assume that Map (C., C,.) Map (C., C,.) for p < r. Call a map
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f admissible if f e Map (C,, Cn.) for some m. The sequence {Cn} and all
admissible maps form a category W. W is said to be an A-category if

(*) lin
n(Cr.r) n 1, 2, ....
n(C.,,)

Lemma 13 says that there exists a majorant for

U,_,{Map (C,.,,

Assume that such a majorant II+1 belongs to the set Map (C,+1., C,.,). The
inverse limit of unit circles with this sequence of majorants as bonding maps
is called the universal circularly chainable continuum in W and is denoted by
UCC(W).
The existence of A-categories satisfying the above assumptions and the

hereditary indecomposability of UCC (W) may be proved by techniques similar
to those of [10].

If N is a set of natural numbers and if the admissible maps of W are restricted
to those the degree of which is a product of nonnegative powers of elements of
N, then W is called an A (N)-category and UCC(W) is also denoted
U (N)CC(W ).

2. Properties of pseudo-circles. Define the distance between two points
of C to be the length of the shorter of the two arcs into which these points
divide C. Let e > 0.

If f and g are maps define f = g if If(x) g (x) - e for each x in C.

LEMMA 14. Let f C -- C be a continuous onto map of positive degree and let
c > O. Then there exists an integer n such that whenever C and C’ are divisions
ofC such thatn (C )In (C’ >- n and mesh C

_
e/4, there exists a g Map (C, C

such that f g.

Proof. Choose h e S such that h = f. It satisfies a Lipschitz condition,
so that for every x, x’ C, h (x) h (x’)

_
K Ix x’ I.

Let n [K] -t- 1, and let C’, C satisfy the hypotheses of the lemma. The
image of any segment of C" (under h) lies in two adjacent segments of C’.
Map g e Map (C’, C’) with the property that g =. h will now be defined.

Let e0, e, ..., e, be the division points of C" ordered by positive rotation.
Define a simplicial map g by g (e) c, where c is the least division point in
C’ which is greater than or equal to h (e). Map g is simplicial because of the
condition n(C)/n(C’) ->- [K] 1. Since g =f, then if 1 > , degf deg g
and hence g is onto.
Lemma 14 together with condition (*) implies an

APPROXIMATION PROPERTY. Let 0 1, an inger n, and an onto map
f C --, C be given. There exists ro such that for any r >- ro there exists g in
Map (C. C,.r) such that f g.
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A circularly chainable continuum is said to be embeddable in an A-category
W if it has an inverse limit representation {X., a} such that each X, is an
object of W and each a: is admissible in W.

THEOREM 3. Let X {X,, a} be a circularly chainable continuum such that
n+leach , has positive degree. Let P be a set ofprimes with the property that if p is

a prime factor of the degree of some , then p P. Then X is embeddable in an
arbitrary A (P )-category W.

Proof. Let {e.} be a sequence of positive numbers tending to zero. Define
the following diagram, equivalent to the existence of a homeomorphism be-
tween the two inverse limits, (see [1] and also [11]

where el, e., are identities and

(1) Ie H. e,
_--l-m --1(2) .e 11 =n ’em,

and Y, II+1} is in W.
The construction is by induction. Let Y C.1. Assume that Y and

e are already defined for j

_
n so that the above requirements are satisfied.

According to the approximation property, there exist an integer r and a map
n-Ig e Map (Cr.r, Cm,r), such that the difference between and g is so small that

(1) and (2) hold for anyj

_
n and m n W 1. LetH+ g and Y+ C,.

The next two theorems can be proved by methods of [1] and also [11] coupled
with the fact that bonding maps of the UCC are majorants.

THEORE 4. Let N be a set of natural numbers, and let U and W be A (N )-
categories. Then UCC (U) and UCC (W) are homeomorphic.

THEORE 5. If the circularly chainable continuum X can be embedded in an
A (N)-category, then X is a continuous image of U (N)CC.

A continuum Z is said to be universal for a class of circularly chainable con-
tinua if each member of that class can be embedded in an A-category (or an
A (N)-category in which Z is the universal circularly chainable continuum.
Continua which are universal circularly chainable continua in some A-category
or A (N)-category will sometimes be called universal pseudo-circles for the
sake of brevity.
Theorems 3 and 4 imply
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THEOREM 6. There exists exactly one circularly chainable continuum which is
universal for the class of continua which are both circularly chainable and embed-
dable in an A-category.

The following theorem may also be proved by considering (ech cohomology
groups.

THEOREM 7. There exists a collection of c pseudo-circles such that no one is a
continuous image of another.

Proof. Let P {P,} be a collection of c sequences of primes with the prop-
erty that any prime occurs at most once in any sequence and that any two se-
quences have at most a finite number of primes in common.

Consider a U (P,)CC, for each sequence of P. Let {en} be a sequence of
positive numbers with limn en 0. Let U (P)CC lim {Xn, a} and let
U (Pa)CC lira Y., II}. The existence of a continuous map from U (P)CC
onto U (PaCC) is equivalent to the existence of the following diagram (see [1]
and also [11]

where {m} and {nk} are non-decreasing and unbounded sequences of positive
integers and

mk(3) n h h.O’nk ek IIm
Let k > 1 be so large that e < 1. Then (3) implies

(4) deg (h ",) deg (IIm hi)

Let j be so large that there exists a prime p which does not occur in P and
which does not divide the degree of h but which does divide the degree of
IIm The existence of p, obvious from the construction of P, contradicts (4).
Hence there exists no continuous map of U (P)CC onto U (Pa)CC.

THEOREM 8. There exist continuum-many topologically distinct pseudo-circles.

THEOREM 9. All pseudo-circles are embeddable in E. U (1)CC is the only
universal pseudo-circle which is embeddable in the plane.

Proof. The first fact follows immediately from known results. The second
fact is a consequence of an embedding theorem by Bing [3], together with the
equivalence between inverse limits and circular chains which was noted at the
beginning of this section.
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THEOREM 10. Any universal pseudo-circle can be mapped continuously onto
any planar pseudo-circle.

Proof. Since one is a product of nonnegative powers of elements of any set
of natural numbers, U (1)CC is embeddable in any A-category. Any planar
pseudo-circle, however, is a continuous image of U (1)CC, by Theorem 9.

An argument (with degrees of maps) similar to the proof of Theorem 7 shows

THEOREM 11. No non-planar pseudo-circle is a continuous image of a planar
pseudo-circle.

Theorems 10 and 11 give a kind of duality between planar and non-planar
pseudo-circles. Theorems 12 and 14 yield the same duality for pseudo-circles
and the pseudo-arc.

THEOREM 12. The pseudo-arc M is a continuous image of each universal
pseudo-circle.

Proof. Let M be chainable between p and q. Join M to another copy ofM
at the points p and q. The resulting continuum H is circularly chainable of
degree one. Hence H is a continuous image of U(1)CC and thus of each uni-
versal pseudo-circle. The map of H onto M obtained by folding M over into
its copy homeomorphically is continuous. Consequently M is a continuous
image of each universal pseudo-circle.
Theorem 6 implies that the UCC is universal for all circularly chainable

continua embeddable in some A-category. This takes into consideration all
circularly chainable continua except those which have a defining sequence of
circular chains {Cs} such that Cs+l circles zero times in Cs. Ingram [6] has
proved that such continua are chainable and consequently [5] are continuous
images of the pseudo-arc. These remarks and Theorem 12 prove

THEOREM 13. UCC is universal for all circularly chainable continua and
U (1)CC is universalfor all planar circularly chainable continua.

Letf map the continuum X onto the continuum Y. The mapf is said to be
confluent if for each subcontinuum Q of Y and each component K of f-1 (Q),
f maps K onto Q.

LEMMA 15. Let f map the continuum X onto the hereditarily indecomposable
continuum Y. Then f is confluent.

Proof. Let Q be a subcontinuum of Y and let K be a component off- (Q).
Let K, Ks, be a descending sequence of continua such that each Ks con-
tains K and K 1 Ks. Then for each i, f(K) contains a point of Q and a
point in the complement of Q. In order that Q f(Ks) not be a decomposable
continuum, it is necessary that Q c f(Ks). Consequently Q c f(Ks). But
lf(g) f(g) Q. Hence f(g) Q.
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TIEOltEM 14. No pseudo-circle is a continuous image of the pseudo-arc M.

Proof. Suppose that f were a map of M onto the pseudo-circle H. Since
H is hereditarily indecomposable, the above lemma implies that f is confluent.
Lelek [8] has observed that such a confluent mapping induces a monomorphism,

f* H (U) -, H (i)

of (ech cohomology groups with integer coefficients. Since Hi(M) is trivial
and H (H) is non-trivial, such a monomorphism cannot exist. This contra-
diction proves the theorem.

Characterization of continuous images of pseudo-circles
Fearnley [5] has characterized the continuous images of the pseudo-arc in

terms of p-chains. In this section the author characterizes the continuous
images of pseudo-circles in terms of q-chains and proves that p-chainable con-
tinua are q-chainable.

DEFINITION. A q-chain Q (q0, "’", qn) is a finite sequence of sets such
that q n q t whenever i J -< I (mod n -t- 1). Each q is called a link
of Q.

DEFINITION. If P (P0, P.) and Q (q0, q) are q-chains and
each link p of P is a subset of a link q of Q, then the sequence of ordered pairs
(0, x0), (1, xl), (n, x) is said to be a pattern of P in Q if x xl

_
1

(modm- 1)wheneverli-j[ _-< 1 (modn- 1),0_-< i,j-< n.

DEFINITION. When P and Q are q-chains, P is said to refine Q if there is a
pattern of P in Q.

In considering the relationships between q-chains, it is obvious that there
might be several patterns of P in Q. When a pattern of P in Q is mentioned
in an argument, it is assumed that a chosen pattern is fixed throughout the
proof.

DEFINITION. Let P refine Q. The degree of P in Q is the number of times
in the pattern of P in Q that x m and xj+l 0, j 0, 1, ..., m 1,
diminished by the number of times that xj 0 and x.+l m, j
0,1, ...,m- 1.

DEFINITION. The continuum M is q-chainable if there exists a sequence of
q-chains Q Q, Qs, such that for each natural number i,

(1) Q covers M,
(2) Q+ refines Q,
(3) each link of Q has diameter less than 1/i, and
(4) the closure of each link of Q+ is a subset of the link of Q to which it

corresponds under the pattern of Q+ in Q.

The sequence {Q} is said to be associated with M.
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DEFINITION. Let N be a set of natural numbers. The continuum M is q-
chainable of degree N if there is a sequence of q-chains Q1, Q, associated
with M such that for each natural numberj > 1 the degree of Q. in Q’-I is zero
or a product of nonnegative powers of elements of N. In case the only element
of N is the positive integer n, M is said to be q-chainable of degree n.

THEOREM 15. The continuum M is a continuous image of UCC if and only
if M is q-chainable.

Proof. Suppose that M is the image of UCC under the map f. Let
D1, D, be a sequence of circular chains in UCC, considered as space, such
that for each natural number i, (1) D+I refines D, (2) the diameter of each
link ofD is less than 1/i, (3) the closure of each link of D+I is a subset of some
link of D, and (4) D covers M.

Consider the sequence of q-chains f(D1), f(D2), .... Since f is uniformly
continuous, one may assume that the diameter of each link off(D) is less than
1/i. Eachf(D) coversM because eachD covers UCC andfis onto. Choose
a pattern of D in D-I which assigns to each link of D a link of D_I which
contains its closure. Such a pattern may be chosen because each D is a circu-
lar chain. It is obvious that each f(D+l) refines f(D) and that the closure of
each link of f(D+) is a subset of the link of f(D) to which it corresponds.
Hence f(D1), I(D.), is a sequence of q-chains associated with M, and M is
q-chainable.
Now supposeM is a q-chainable continuum, and let Q1, Q, be a sequence

of q-chains associated with M. Since each circularly chainable continuum is a
continuous image of UCC, it suffices to define a circularly chainable continuum
K of which M is a continuous image.
In order to construct K, define a new sequence P, P, of q-chains as-

sociated with M and a sequence of circular chains D1, D, ..., such that for
each natural number n, (1) D, is a circular chain of open balls in E
has the same pattern in Dn as Pn+l has in P, (3) the diameter of each link of
D. is less than l/n, and (4) the closure of each link of D.+I is contained in the
link of D. to which it corresponds under the pattern of D.+I in D.. Define K
to be the common part of the D’s.
The sequences {PI and {D} may be constructed by an induction argument.

Namely, let P1 Q1 and let D1 satisfy (1) and (3) and have the same number
of links as Q1. Let do, dl, ..., d denote the links of

Let (0, xo), (1, xl), (n, x,) be the pattern of Q. in Q1. Let A0 be an
open ball of diameter less than 1In such that the closure of A0 is a subset of
d Call A0 the first link of D. Let C be a chain of open balls of diameter
less than 1In such that C is a closed refinement of {d0, d1} and the last link
At of C is the first link of C whose closure is contained in dl. Let A0, A1,
At be the first - 1 links of D2. Define a new q-chain Q by q’l qo for
0

_
i < l, q+ q, for i

_
and a pattern of Q in Q1 by (i, x0) for 0

and (i - l, x) for i _-> I.
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It is obvious how to continue the construction of the links of D so that
D satisfies (1)-(4). At the end of the construction, denote the q-chain re-
placing Q. by Q,. It is now necessary to modify each Q, n > 2, so that the
modification, Q,, will be a refinement of Q-I,. It is clear how to construct
the remaining circular chains D, D4, so that each D satisfies (1)-(4)
for the sequences of q-chains {Pn} /Q,n}, the diagonal sequence of the
matrix.

Using the circular chains D1, D, define a mapf of K onto M as follows.
For any x in K, let Jn (x) denote the union of the links ofP such that x belongs
to the links ofD having the same indices. For each n, J (x) is the union of at
most two links of P, and hence each J (x) has diameter less than 2In. Be-
cause of the restrictions on the circular chains, J+l (x) c J (x). The sequence
of closed sets ]1 (x), ]3 (x), therefore forms a decreasing sequence of sets
with diameters tending to zero. Define f(x) to be the unique common point
of the closure of the J (x)’s.

It remains to prove that f is continuous and onto. Let g be an open set in
M and let/ be a natural number such that g contains three consecutive links
11, l, 13 of R. Let dl, d, d denote the corresponding links of D. Since
f(d) c J (x), for any x in d, the open set d n K is mapped into the open set
g. Consequently f is continuous and f is onto since f(K) is dense in the com-
pact space M.

Consideration of the degree of q-chainability of the continuum M and the
proof of Theorem 15 yield the more precise

THEOREM 16. Let N be a set ofnatural numbers. In order that the continuum
M be a continuous image of U (N)CC it is necessary and sucient that M be q-
chainable of degree N.

COROLLARY. The continuum M is a continuous image of a planar circularly
chainable continuum if and only ifM is q-chainable of degree one.

COROLLARY. In order that the continuumM be a continuous image ofa pseudo-
circle, it is necessary and sucient that M be q-chainable.

One usually thinks of different kinds of chains having links which are open
sets. The following theorem, the proof of which is omitted, shows that one
gains no generality in admitting arbitrary sets as links of q-chains.

THEOREM 17. The continuum M is a continuous image of a pseudo-circle if
and only if M is q-chainable with q-chains whose links are open sets.

Finally we show

THEOREM 18.
chainable.

All p-chainable continua, and hence the pseudo-arc, are q-

Proof. See [5] for the definitions of undefined terms. Let {P} be a se-
quence of p-chains associated with the continuum M. Let Q. be the p-chain
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Pn plus its conjugate.
obvious.

That Qn} is a sequence of q-chains associated with M is

COROLLARY.
circle.

All p-chainable continua are continuous images of a pseudo-

BIBLIOGRAPHY

1. P. ALEXANDROFF, Untersuchungen uber Gestalt und Lage abgeschlossener Mengen
beliebigen Dimension, Ann. of Math., vol. 30 (1329), pp. 101-187.

2. R. H. BING, Concerning hereditarily indecomposable continua, Pacific J. Math., vol.
1 (1951), pp. 43-51.

3., Embedding circle-like continua in the plane, Canad. J. Math., vol. 14 (1962),
pp. 113-128.

4. J. DUGUNDJI, Topology, Allyn and Bacon., Boston, 1966.
5. L. FEARNLEY, Characterization of the continuous images of the pseudo-arc, Trans.

Amer. Math. Soc., vol. 111 (1964), pp. 380-399.
6. W. T. INGRAM, Concerning non-planar circle-like continua, Canad. J. Math., vol. 19

(1967), pp. 242-250.
7. B. KNASTER, Un continu dont tout sous-continu est indecomposable, Fund. Math., vol.

3 (1922), pp. 247-286.
8. A. LELEK, On confluent mappings, Colloq. Math., vol. 15 (1966), pp. 223-233.
9. S. MARDESIC AND J. SEGAL, e-Mappings onto polyhedra, Trans. Amer. Math. Soc.,

vol. 109 (1963), pp. 146-163.
10. J. MIODUSZEWSKI, A functional conception of snake-like continua, Fund. Math., vol.

51 (1962), pp. 179-189.
11.,Mappings of inverse limits, Colloq. Math., vol. 10 (1963), pp. 39-44.
12., On a quasi-ordering in the class of continuous mappings of the closed interval

onto itself, Colloq. Math., vol. 9 (1962), pp. 233-240.
13. E. E. MoIsE, An indecomposable plane continuum which is homeomorphic to each of

its nondegenerate continua, Trans. Amer. Math. Soc., vol. 63 (1948), pp. 581-
594.

14. R. L. MOORE, Foundations of point set theory, Amer. Math. Soc., Providence, Rhode
Island, 1962.

15. L. FEARNLEY, Characterization of the continuous images of all pseudo-circles, Pacific
J. Math., vol. 23 (1967), pp. 491-513.

TULANE UNIVERSITY
NEW ORLEANS LOUISIANA

THE UNIVERSITY OF CALIFORNIA
RIVERSIDE, CALIFORNIA


