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1. Introduction
The purpose of this note is to point out a general lemma on invariant means

(Lemma 1) which is suggested by the work of Day [3] and which, together
with a useful property of compact convex sets (Lemma 2), is applied to
strengthen and to generalize several fixed-point theorems. Some of the
techniques used here have also been used by Argabright [1] to prove Day’s
main result. In particular, Lemma 1 is implicit in the proofs in both [1] and
[3], and the locally convex case of Lemma 2 is proven by Argabright in [1].
In this section our notation and terminology are introduced; Section 2 is

devoted to the two fundamental lemmas; and in Section 3 several applica-
tions are given. Day’s existence result [3] is strengthened and a correspond-
ing uniqueness result is proven (Theorem 1, parts (1) and (2)). Theorem 2
contains a result of Cohen and Collins [2] as a special case, and yields a new
proof of the Kakutani fixed-point theorem [4, p. 457] in a strengthened form.

If S is a nonempty set then re(S) denotes the Banach space of all bounded
functions from S to the reals, R, with the uniform norm; 1 will be used to
denote the identically one function. A semigroup of maps from S o S is a
collection 2: of functions from S into S such that 2; is closed under compositions.
If X is a subspace of re(S) then an X-semigroup is a semigroup of maps from
S to S such that f o X for all f in X and all in 2;. If X is a subspace of
re(S) containing 1, then an X-mean is an element in X* such that

(i) (f)

_
0 wheneverf e Z andf

_
0 on S,

(ii) (1) 1.

Conditions (i) and (ii) are jointly equivalent to

(iii) IIll 1 (1).

If X is a subspace of re(S) containing 1 and if 2; is an X-semigroup, then a
Z-invariant X-mean is an X-mean such that (f o a) (f) for every f in
X and every a in 2.

Suppose now that 2: is an abstract semigroup. Let 2; denote 2 acting
on itself by left multiplication; i.e., a" r --* ar for a, r 2:. Then 2: is
said to have a left invariant mean # provided # is a 2;-invariant m(2)-mean.
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If X is a compact Hausdorff space, C(X) denotes the space of continuous
functions from X to R with the uniform norm.

2. The fundamental lemmas
Let S and T be sets and let X be a subspace of m(S) and Y a subspace

of m(T) such that 1 e X and 1 e Y. Suppose that S --, T is a function
such that f o b is in X for every f in Y. Let Y -- X be given by (f)
f o b for f in Y; then is a continuous linear mapping of norm 1. Thus the
adjoint map * X* -- Y*, given by*() o , is well defined, linear, and
norm continuous of norm one. Furthermore, * is weak* continuous and
maps X-means into Y-means.

LEMMA 1. Suppose
(1) S is a set and X is a subspace of m( S) with 1 X;
(2) T is a set and Y is a subpace of m( T) with 1 Y;
(3) 1 is an X-semigroup
(4) 2 is a Y-semigroup;
(5) is an abstract semigroup for which there are semigroup homomorphisms

hl of into and h. of onto 2;2
(6) there is a function S T such that f o b X for all f in Y and

such that

b o h(a) h2(a) o b all 2;.

Let b* X* --> Y* be the natural second adjoint of b (as in the discussion above).
If is a -invariant X-mean, then *() is a 2;.-invariant Y-mean.

Conditions (3), (4), and (5) together can be interpreted as saying that
acts both as an X-semigroup and as Y-semigroup; condition (6) gives the con-
nection between the two actions. For the proof, let be a Z-invariant
X-mean, let f be in Y, and let h(a) be in 2 where e 2:. Then

[*(/.)](fo h2(o’)) #(foh2((r)o) (fo&oh(q)) (fo ) [*()](f).
As an example of application of the lemma, suppose 2; is a group of con-

tinuous maps of a compact Hausdorff space Z into itself, and suppose 2; has a
compact Hausdorff group topology such that for some y0 in Z the map

a --* a(y0) of 2; to Z is continuous. Then there is a 2;-invariant regular
Borel probability measure on Z. For the proof, take S
T Z, Y C(Z), 2h 2;2, 2;. 2; (with natural homomorphisms), and
take b as given. Left Haar measure for 2 is a 2;-invariant X-mean, and
so by the theorem *() is a 2;-invariant C(Z)-mean; by the Riesz representa-
tion theorem there is a 2-invariant regular Borel probability measure on Z
representing *().
Suppose E is a real linear space, K is a convex subset of E and T is some

compact topology for K. Let A (K) denote the set of all T-continuous affine
maps of K to R. Then A(K) is a closed subspace of C(K). Let
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Q K --* A (K)* be the natural map given by Q(x)(f) f(x) for x in K and
f in A (K). Since the members of A (K) are T-continuous, Q is weak* con-
tinuous; since the members of A (K) are affine, Q is affine; and it is dear that
Q maps K into the A (K)-means. In fact, Q(K) is precisely the set of all
A(K)-means: Let be an A(K)-mean and suppose is not in Q(K).
Since Q(K) is a weak* compact convex set, by the separation theorem [3,
p. 417], there is an f in A (K) such that

z(f) < inf {f(k) k e K}.

If we let a inf {f(/) k e K}, then .1

_
f so that a z(a.1)

_
#(f),

a contradiction. Thus Q is a weak* continuous affine map of K onto the set
of all A (K)-means; if A (K) separates points of K, then Q is an affine homeo-
morphism.
For the remainder of this paper we will assume that E is a fixed real linear

space, that K is a convex subset of E, and that T is a compact topology for K such
that the Banach space A (K) of all T-continuous atne maps of K into R sepa-
rates points of K. Topological properties of K will always be with respect to
the topology T. Note that the preceding remarks imply that K is affinely
homeomorphic to a compact convex subset of a locally convex linear topological
Hausdorff space; conversely, any compact convex set in a locally convex linear
topological Hausdorff space satisfies the above assumptions on K. The next
lemma is an immediate consequence of the proceding remarks.

LEMMA 2. Let 2; be a semigroup of continuous ajne maps of K into K.
Then there is a 2;-invariant A (K)-mean if and only if there is a -fixed point
in K.

3. Applications
Let 2; be a semigroup of continuous affine maps of K into K and suppose

2; has a left invariant mean. In Lemma 1, take S 2;, X m(2;), T K,
Y A (K), 2;1 2;, 2;3 2;, and given by b(a) a(y0) for some fixed y0

in K. Lemma 1 then asserts the existence of a 2-invariant A (K)-mean;
by Lemma 2, there is a 2;-fixed point in K. Day [3] obtained this result which
we shall strengthen in Theorem 1 below. Day [3] gives an example to show
that it is not sufficient to assume that 2; has a right invariant mean; i.e.,
"left amenability" implies existence of fixed-points in K, "right amenability"
does not. This is because of the nature in which functions compose, and no
further considerations of the implications of the existence of right invariant
means were made in [3] or in [1]. In Theorem 1 we shall prove that the
existence of a right invariant mean for the semigroup is connected with
uniqueness of the fixed point.
Note that if 2; is a collection of affine maps on K to K then 2; c KK c EK

(product sets) and K is a convex subset of the real linear space E with
pointwise operations. We can give K the product topology and it is then
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compact by the Tychonoff theorem. Thus it makes sense to speak of the
closed convex hull of 2; in KK. Note that KK has sufficiently many real
continuous affine functions to separate points of K.
The 2;-orbit of a point x in K is the closed convex hull of the set {(x) e 2;}.

THEOREM 1. Let 2; be a semigroup of continuous arlene maps on K to K.
Let 4 denote the closed convex hull of 2: in K:.

(1) If 2; has a left invariant mean, then there is some in 4 such that

((x) (x) all,e4, x K;

thus for every x in K, $(x) is a 4-fixed point in the 2;-orbit of x.
(2) If 2; has a right invariant mean and if 2; is equicontinuous, then there

is some in 4 such that

$((x)) $(x) all 4, x K;

thus for every x in K, $(x) is the only possible 2;-fixed pointin the 2:-orbit of x
inK.

Proof. (1) 4 is a compact convex subset of K. Let 2; act on 4 by left
composition; i.e.,

a "b--aob ain2;, in4.

Then each a
t acts as a continuous affine map of 4 into 4. Since 2;, as an

abstract semigroup, has a left invariant mean, by the preceding remarks
there is some ; in 4 such that o ; ; for all in 2;. From the definition
of , it follows that o ; ; for all in .

(2) Next, let 2; act on 4 by right composition; i.e.,
R

Then each g acts as a continuous affine map on 4 to 4. Since 2;, as an
abstract semigroup has a right invariant mean, {g 2;} has a left invariant
mean. Thus there is some ; in 4 such that ; o $ for all in 2:. Since
2: is equicontinuous, ; is continuous [6, p. 232]. It follows that ; o ;
for all in . If y is a 2-fixed point in the 2-orbit of x, then y is a C-fixed
point and y 0(x) for some 0 in ; thus

y (y) ;(0(x))

It is well known that every commutative semigroup has a (two-sided) in-
variant mean (see [3]) so that Theorem 1 gives the following strengthening
of the Markov-Kakutani fixed-point theorem [4, p. 456].

COROLLARY. Let 2; be a commutative semigroup of continuous ane maps
on K to K and let 4 denote the closed convex hull of 2: in K. There is a function
$ in 4 such that for every x in K, $(x) is a fixed point in the 2;-orbit of x; if 2;

is equicontinuous, $(x) is the only fixed point in the 2;-orbit of x.
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As Day [3] has pointed out, the full assumption of a 2;-invariant m(2:)-
mean is not necessary for his fixed-point theorem; often a 2:-invariant sub-
space of m(2;) is all that need be considered. If 2 has a topology r let C(2;; r)
denote the subspace of re(Z) consisting of the r-continuous members of m(2).
If r and r. are two topologies, if C(2;; r) and C(2;; r) are both Z-invariant
(i.e., fo a is in C(2;; r) whenever f is in C(2; r) and is in 2; , i 1, 2),
and if r r, then there is a 2;-invariant C(2; r)-mean whenever there is a
2; -invariant C(2;; r)-mean. This follows easily from Lemma 1.
Now suppose 2; is a semigroup of continuous affine maps on K to K and

let y0 be a point in K. If r(y0) denotes the topology on 2 of pointwise con-
vergence at the point y0, then C(2;; r(y0)) is 2;-invariant. If there exists a
Z-invariant C(2; r(y0))-mean, then there is a Z-fixed point in the Z-orbit
of y0 The proof is just as in the first paragraph of this section where we take
X C(2; r(y0)) instead of m(2;).
With these considerations, we can improve Theorem 1.

THEOREM 1. Let be a semigroup of continuous ane maps on K to K and
give the topology r of pointwise convergence on K (i.e., consider as a sub-
space of K with the product topology). Let denote the closed convex hull of

in K. C(; r) is -invariant and -invariant.
(1) If there exists a Z-invariant C(Z; r)-mean, then there is some in
such that

(5(x) 5(x) all in, x in K;
thus for every x in K, 5(x) is a -fixed point in the E-orbit of x.

(2) If there exists a zr-invariant C(Z; r)-mean, and if Z is equicontinuous,
then there is some $ in such that

$((x) $(x) all in , x in g;
thus for every x in K, (x) is the only possible E-fixed point in the E-orbit of x.

The proof is simply a matter of carrying over the proof of Theorem 1 and
applying the remarks preceding the Theorem; we omit the details.
As a particular case of the remarks preceding Theorem 1r, if Z is a compact

Hausdorff group with respect to some topology stronger than the topology
of pointwise convergence at some point y0 of K, then the existence of the Haar
integral for 2: implies the existence of a Z-fixed point in the 2:-orbit of y0 in K.
This generalizes (4.4) of Klee [7]. We apply this observation to obtain a
result which generalizes the second theorem of Cohen and Collins [2], and
whose corollary is a strengthening of the Kakutani fixed-point theorem [4,
p. 457].
THEOREM 2. Suppose that, in addition to the properties assumed in Section

2, K is also a semigroup under a binary operation (.) which is continuous and
ane in each variable separately. Let G be a closed subgroup of K, and let T
be the closed convex hull of G in K. Then there is a unique element in T such
that

t. .t all e T;
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.e., T has a zero element.

Proof. Since G is a group with a compact Hausdorff topology such that
multiplication (.) is continuous in each variable separately, by Ellis’ theorem
(the main result of [5]), G must in fact be a compact Hausdorff topological
group under this topology.
Now let G act on T by left multiplication; i.e., g -, g.t for in T, g

in G. From above, there is some in T such that g. for all g in G; by
the definition of T, this implies t. [ for all in T.

Similarly, there is some in T such that . for all in T; thus .
and the theorem holds.

COROLLARY. Let 2; be an equicontinuous group of continuous ane maps
on K to K, and let denote the closed convex hull of 2; in K:. Then consists
of continuous ajne functions and there is a unique element 5 in such that

in particular, for every x in K, 5(x) is a -fixed point and is the only 2;-fixed
point in the Z-orbit of x.

Proof. It is clear that the convex hull of 2; in K is equicontinuous on K.
Then is equicontinuous and the map (, x) --, (x) on X K to K is jointly
continuous by [6, p. 232]. is closed under composition and satisfies the
hypotheses on K in the Theorem. Let G denote the closure of 2; in ; then
the closed convex hull of G in is all of . By the theorem, it is sufficient to
prove that G is a group. It is clear that G is closed under composition; it
remains only to prove-that if g is in G then g is invertible and g- is in G.
Suppose {a.} is a net in 2; with a, --* g e G pointwise. Since G is compact,

--1we may assume that there is some h in G with . --, h pointwise. If x is in K,
then (a., a-(x)) (g, h(x)) in X g and so x a,(a:(x)) -- g(h(x));
i.e., x g(h(x)). Similarly x h(g(x)) so that h g-.
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