ESPACES DE HILBERT POUR LESQUELS L'APPROXIMATION SPECTRALE EST IMPOSSIBLE EN GENERAL

PAR

E. J. AKUTOWICZ

1. Introduction

Chaque suite fixée $\Lambda = \{\lambda_k\}_{k=0,1,...}$ de nombres non négatifs définit un espace de Hilbert \mathfrak{IC}_{Λ} consistant en les suites numériques complexes $a = \{a_n\}_{n=0,\pm 1,...}$ avec le produit scalaire,

$$(a,b)_{\Lambda} = \sum_{n=-\infty}^{\infty} \lambda_n \, a_n \, \bar{b}_n \qquad (\lambda_{-n} = \lambda_n).$$

On considère chaque suite a de $3C_{\Lambda}$ comme la suite des coefficients de Fourier d'un objet dual α , voire une distribution, sur le tore **T** à une dimension, et l'on transpose la structure d'espace de Hilbert à ces distributions:

$$(\alpha, \beta)_{\Lambda} = (a, b)_{\Lambda}$$
 $(\alpha = \mathfrak{F}\alpha, b = \mathfrak{F}\beta),$
 $\|\alpha\|_{\Lambda} = \sqrt{(a, a)_{\Lambda}}.$

On désignera ce dernier espace de Hilbert de distributions α par \mathcal{G}_{Λ} .

La question de l'approximation spectrale (ou de synthèse spectrale) est alors de savoir si, pour tout ensemble fermé E de T, toute distribution α de l'espace \mathcal{G}_{Λ} portée par E soit adhérente dans la norme de \mathcal{G}_{Λ} à l'ensemble des mesures de \mathcal{G}_{Λ} portées par E.

La résponse est affirmative si la suite $\{\lambda_n\}$ strictement positive est un quotient de la forme $\lambda_n = \alpha_n/\beta_n$ où $\{\alpha_n\}$ et $\{\beta_n\}$ sont deux suites définies négatives paires telles que

$$\lim \inf_{n\to\infty} \alpha_n > 0$$
 et $\lim \inf_{n\to\infty} \beta_n > 0$.

Une démonstration complète de ce résultat se trouve dans [5]. Elle dépend de la théorie du potentiel.

En particulier, si

$$\lambda_n = (1 + n^2)^{\alpha}, \qquad -1 \le \alpha \le 1,$$

la synthèse spectrale est valable dans l'espace \mathcal{G}_{Λ} .

Nous verrons dans les lignes qui suivent que les faits sont entièrement différents si l'on abandonne l'hypothèse selon laquelle λ_n est strictement positive. Nous nous restreindrons au cas où

$$\sum_{k} \lambda_{k} < \infty.$$

Nous ferons usage d'une méthode statistique, inventée et exploitée par Kahane et Salem [4], [7]. L'idée est de rendre aléatoire la distribution de Malliavin, qui a été étudiée pour la première fois dans [9], [10].

2. Des processus Gaussiens

Une suite $\{B_k\}_{k=0,1,...}$ de nombres réels, non négatifs servira à déterminer un processus Gaussien X, réel et stationnaire, sur le cercle \mathbf{T} , tel que

$$EX(t) = 0$$
 $t \in \mathbf{T}$
 $E(X(t_1)X(t_2)) = B(t_1 - t_2), t_1 \text{ et } t_2 \in \mathbf{T}$

οù

$$B(t) = \sum_{k=0}^{\infty} B_k \cos kt.$$

Nous allons imposer deux conditions sur le processus X, c'est-à-dire sur la suite $\{B_k\}$:

(1)
$$\operatorname{Prob}\left\{\sum_{n}\lambda_{n}|X_{n}|^{2}<\infty\right\}=1,$$

où X_n désigne le $n^{i\text{ème}}$ coefficient de Fourier de X. Autrement dit, la suite $\{X_n\}$ appartient à l'espace \mathcal{X}_{Λ} avec probabilité 1.

(2)
$$\operatorname{Prob}\left\{\sum_{n}\lambda_{n}|X_{n}|<\infty\right\}=1.$$

Si $\Lambda(t) = \sum_{n} \lambda_{n} \cos nt$, ceci signifie que la convolution $\Lambda *X$ appartient avec probabilité 1 à la classe A des séries de Fourier absolument convergentes.

Si $\lambda_n \sqrt{B_n} = o(1), n \to \infty$, alors la condition (1) est équivalente à

$$\sum_{n} \lambda_{n} B_{n} < \infty$$

et la condition (2) est équivalente à

Car si (4) est vérifiée, on a

$$E(\sum_{n} \lambda_{n} | X_{n} |) = \sum_{n} \lambda_{n} E| X_{n} | \leq \sum_{n} \lambda_{n} \sqrt{E}| X_{n} |^{2} = \sum_{n} \lambda_{n} \sqrt{B_{n}} < \infty;$$

donc (2) est vérifiée, Réciproquement, si la série

$$\sum_n \lambda_n \mid X_n \mid$$

converge avec probabilité 1, le théorème des trois séries de Kolmogoroff [8, dernière phrase] s'applique puisque les variables aléatoires $\lambda_1 |X_1|$, $\lambda_2 |X_2|$, \cdots sont mutuellement indépendantes. Il existe donc, en particulier, une constante c>0 telle que la série tronquée

$$\sum_{n} E(\lambda_{n} | X_{n} |)^{c} \qquad (X^{c} = X \operatorname{si} | X | \leq c, X^{c} = 0 \operatorname{si} | X | > c)$$

converge. Mais

$$E(\lambda_n | X_n |)^c = \frac{1}{\sqrt{2\pi B_n}} \int_{-\infty}^{\infty} (\lambda_n | x |)^c e^{-x^2/2B_n} dx$$

$$= \frac{\lambda_n}{\sqrt{2\pi B_n}} \int_{-c/\lambda_n}^{c/\lambda_n} |x| e^{-x^2/2B_n} dx$$

$$= \frac{2\lambda_n \sqrt{B_n}}{\sqrt{2\pi}} \int_{0}^{c/\lambda_n \sqrt{B_n}} x e^{-x^2/2} dx,$$

d'où la convergence (4) puisque $\lambda_n \sqrt{B_n}$ tend vers 0. L'équivalence de (2) et (3) se vérifie de la même manière.

3. L'impossibilite de l'approximation spectrale

Nous nous proposons de démontrer le théorème suivant.

Théorème. Soient $\{B_k\}_{k=0,1,...}$ et $\{\lambda_k\}_{k=0,1,...}$ deux suites non négatives telles que les séries (3) et (4) convergent. Si la fonction

$$C(t) = \sum_{k} \lambda_k^2 B_k \cos kt,$$

admet la minoration,

$$(5) C(0) - C(t) \ge M |t|^{\delta},$$

avec deux constantes M>0 et $0<\delta<\frac{1}{2}$, alors l'approximation spectrale est en général impossible dans G_{Λ} .

Démonstration. La condition (3) implique que la fonction aléatoire réelle

(6)
$$f(t) \equiv \Lambda * X(t) = \sum_{n} \lambda_{n} X_{n} e^{int}$$

appartient, avec probabilité 1, à la classe A des séries de Fourier absolument convergentes.

On va maintenant étudier l'intégrale de Malliavin

(7)
$$\int_{-\infty}^{\infty} iu \exp (iuf(t)) du$$

et montrer que cette intégrale définit presque sûrement une distribution de la classe G_{Λ} , qu'on notera $\delta'(f(t))$.

Dans ce but, considérons le développement de Fourier

$$\exp(iuf(t)) \sim \sum_{-\infty}^{\infty} p_n(u) \exp(int),$$

où

$$p_n(u) = \frac{1}{2\pi} \int_{-\pi}^{\pi} \exp i(uf(t) - nt) dt.$$

Puisque la loi de répartition de la variable aléatoire f(t), et donc de $f(t_1) - f(t_2)$, est Gaussienne, on obtient en faisant usage du théorème de Fubini,

$$E \sum_{n} \lambda_{n} |p_{n}(u)|^{2}$$

$$= \frac{1}{(2\pi)^{2}} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} dt_{1} dt_{2} \sum_{n} \lambda_{n} \exp in(t_{1} - t_{2}) E \exp iu(f(t_{1}) - f(t_{2}))$$

$$= \frac{1}{(2\pi)^{2}} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} dt_{1} dt_{2} \Lambda(t_{1} - t_{2}) \exp \left(-\frac{1}{2} u^{2} E[f(t_{1}) - f(t_{2})]^{2}\right).$$

Vu la définition (6) de f(t), on a

$$E(f(t_1) - f(t_2))^2 = E(\sum_n \lambda_n X_n (e^{int_1} - e^{int_2}))^2$$

$$= \sum_n \lambda_n^2 |e^{int_1} - e^{int_2}|^2 E X_n^2$$

$$= 4 \sum_n \lambda_n^2 B_n \sin^2 \frac{1}{2} n(t_1 - t_2) = 2(C(0) - C(t_1 - t_2)).$$

On a donc, d'après la condition (5),

$$E(f(t_1) - f(t_2))^2 \ge M|t_1 - t_2|^{\delta}, M > 0, 0 < \delta < \frac{1}{2}.$$

Ceci implique les majorations suivantes:

$$\begin{split} E \sum_{n} \lambda_{n} | p_{n}(u) |^{2} &\leq \frac{1}{2\pi} \int \int dt_{1} dt_{2} \Lambda(t_{1} - t_{2}) \exp\left(-\frac{1}{2} M u^{2} | t_{2} - t_{1} |^{\delta}\right) \\ &\leq \frac{1}{2\pi} \sup_{t_{1}t_{2}} \Lambda(t_{1} - t_{2}) \int_{-\pi}^{\pi} \exp\left(-\frac{1}{2} M u^{2} | t |^{\delta}\right) dt \\ &\leq \begin{cases} C^{te} & \text{si } |u| \leq 1, \\ C^{te} \cdot |u|^{-2/\delta} & \text{si } |u| \geq 1. \end{cases} \end{split}$$

On a donc

$$E \sqrt{\sum_{n} \lambda_{n} \left| \int u p_{n}(u) \ du \right|^{2}} \leq E \int_{-\infty}^{\infty} |u| \sqrt{\sum_{n} \lambda_{n} |p_{n}(u)|^{2}} \ du$$

$$= \int_{-\infty}^{\infty} |u| E \sqrt{\sum_{n} \lambda_{n} |p_{n}(u)|^{2}} \ du$$

$$\leq \int_{-\infty}^{\infty} |u| \sqrt{E \sum_{n} \lambda_{n} |p_{n}(u)|^{2}} \ du$$

$$\leq C^{te} + C^{te} \int_{1}^{\infty} |u|^{1-1/\delta} \ du$$

$$< +\infty.$$

Ceci montre que $\delta'(f)$ $\epsilon \, \mathcal{G}_{\Lambda}$ avec probabilité 1.

4. Conclusion de la demonstration

Comme élément de g_{Λ} , $\delta'(f)$ est une distribution de la classe \mathfrak{D}' de Schwartz (Cf. [12, Chap. I, pp. 31–32; Chap. VII, §1]). Une telle distribution est déterminée par ses valeurs sur les fonctions indéfiniment dérivables sur le cercle \mathbf{T} .

En particulier, le support de $\delta'(f)$ est déterminé par les valeurs de $\delta'(f)$ prises sur $\mathfrak D$.

Lemme 2. Le support de $\delta'(f)$ est situé dans l'ensemble des zéros de $f = \Lambda * X$.

DÉMONSTRATION (Kahane [4], [7]). Soit $g \in \mathfrak{D}$ et ayant son support disjoint de l'ensemble des zéros de f. Alors la fonction

$$g/(\Lambda * X)^2$$

est localement dans A, donc dans A (voir [11, p. 133-134]). On a donc

$$g = h \cdot (\Lambda * X)^2$$
 avec $h \in A$.

Il en résulte, moyennant deux intégrations par parties,

(8)
$$\langle \delta'(f), g \rangle = \langle \delta'(f), h \cdot f^2 \rangle$$

$$= \int_{-\infty}^{\infty} iu \left\{ \frac{1}{2\pi} \int_{-\pi}^{\pi} h(t) f(t)^2 \exp(iuf(t)) dt \right\} du = 0.$$

La fonction g étant arbitraire, la conclusion du Lemme 2 en résulte.

LEMMA 3. On a

$$(X, \delta'(\Lambda * X))_{\Lambda} = \langle \Lambda * X, \delta'(\Lambda * X) \rangle \neq 0$$

avec probabilité positive.

Démonstration. En posant $h \equiv 1$ et $g = \Lambda * X$ dans (8), il vient

$$\langle \Lambda * X, \delta'(\Lambda * X) \rangle = - \int_{-\infty}^{\infty} p_0(u) \ du.$$

L'espérance mathématique de ceci est

$$E \int_{-\infty}^{\infty} p_0(u) \ du = \int_{-\infty}^{\infty} E\left(\frac{1}{2\pi} \int_{-\pi}^{\pi} \exp\left(iu\Lambda * X(t)\right) dt\right) du$$
$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} du \int_{-\pi}^{\pi} \exp\left(-\frac{1}{2} u^2 E[\Lambda * X(t)]^2\right) dt$$
$$> 0,$$

ce qui entraine la conclusion du Lemma 3.

Maintenant, soit δ_t la mesure de Dirac en $t \in E$ = ensemble des zéros de $\Lambda * X$. Alors, d'après le Lemme 2, l'ensemble E est non vide dès que $\delta'(\Lambda * X)$ est non nulle, ce qui est vérifié pour un ensemble V de trajectories X de probabilité positive, d'après le Lemme 3. C'est-à-dire, on a d'une part,

(9)
$$(X, \delta_t)_{\Lambda} = \langle \Lambda * X, \delta_t \rangle = \Lambda * X(t) = 0, \qquad X \in V, t \in E,$$

et d'autre part,

$$(10) (X, \delta'(f))_{\Lambda} \neq 0, X \in V.$$

Les relations (9) impliquent, pour chaque $X \in V$, que

$$(X, \mu)_{\Lambda} = \int_{B} \Lambda * X(t) d\mu(t) = 0$$

pour chaque mesure $\mu \in \mathcal{G}_{\Lambda}$ portée par l'ensemble E. La relation (10) montre que le sous-espace des mesures de \mathcal{G}_{Λ} portées par E n'est pas dense dans l'espace des distributions de \mathcal{G}_{Λ} portées par E. Autrement dit, l'approximation spectrale est impossible en général dans l'espace hilbertien \mathcal{G}_{Λ} . La démonstration du théorème est ainsi achevée.

5. Un cas particulier

Considérons un poids $\Lambda = \{\lambda_k\}_{k=0,1,\cdots}$ lacunaire, c'est-à-dire $\lambda_k = 0$ sauf pour les indices ayant la forme $k = p^n$ $(n = 0, 1, 2, \cdots), p$ entier ≥ 2 . Fixons β , $0 < \beta < \frac{1}{2}$, et posons

$$B_k = \lambda_k^{-2} k^{-\beta} \quad \text{si } k = p^n, \ n = 0, 1, \cdots,$$

$$B_k = 0 \qquad \text{ailleurs.}$$

Rappelons que la fonction classique de Weierstrass,

$$w(t) = \sum_{n=0}^{\infty} p^{-n\beta} \cos p^n t,$$

appartient à la classe Lip β , mais $w \notin \text{Lip } \delta$ pour $\delta > \beta$ (Cf. Zygmund [13, pp. 46–47]). Ceci implique pour tout $t \in T$,

$$w(0) - w(t) \ge M|t|^{\delta} \qquad (\beta < \delta < \frac{1}{2}),$$

pour une constante M > 0, car w(t) est "le moins continu" pour t = 0. D'autre part, les séries (3) et (4) convergeront si

$$\lambda_{p^n} = (1 + p^{2n})^{\alpha}, \qquad 0 > \alpha > -\frac{1}{4}.$$

Donc l'approximation spectrale est en général impossible dans ces cas. Cf. l'Introduction.

BIBLIOGRAPHIE

- A. Beurling, Sur les spectres des fonctions, Colloque International sur l'analyse harmonique, Nancy, 1947, Publ. C.N.R.S., Paris 1949, p. 9-29.
- A. BEURLING AND J. DENY, Dirichlet spaces, Proc. Nat. Acad. Sci., vol. 45 (1959), p. 208-215.
- I. M. GELFAND AND N. J. WILENKIN, Verallgemeinerte Funktionen (Distributionen), IV, Einige Anwendungen der harmonischen Analyse, Gelfandsche Raumtripel, Hochschulbücher für Mathematik, Band 50, VEB Deutscher Verlag der Wissenschaften, Berlin 1964.
- J.-P. KAHANE, Sur la synthèse harmonique dans 2[∞] Anais da Académia Brasiliera Ciências, vol. 32 (1960), p. 179-189.
- Quotients des fonctions définies négatives (d'après Beurling & Deny), Séminaire N. Bourbaki, Nov. 1966.
- J.-P. KAHANE AND P. MALLIAVIN, Appendice au livre de Guelfand, Raikov et Šilov, Les anneaux normés commutatifs, Gauthier-Villars, Paris, 1964, pp. 235–256.
- J.-P. KAHANE AND R. SALEM, Ensembles parfaits et séries trigonométriques, Chapitre IX, Actualités Sci. Ind., 1301, Paris, 1963.
- 8. A. Kolmogoroff, Grundbegriffe der Wahrscheinlichkeitsrechnung, Erg. Mat., Springer, Berlin, 1933.

- P. Malliavin, Sur l'impossibilité de la synthèse spectrale sur la droite, C. R. Acad. Sci. Paris, T. 248 (1959), pp. 2155-2157.
- 10. , Impossibilité de la synthèse spectrale sur les groupes abéliens non compacts, Publ. Math. I.H.E.S., No 2 (1959), pp. 61-68.
- 11. W. Rudin, Fourier analysis on groups, Interscience, New York, 1962.
- 12. L. Schwartz, Théorie des Distributions, Hermann, Paris, 1966.
- A. ZYGMUND, Trigonometric series, vol. I, Cambridge University Press, Cambridge, 1959.

Université de Montpellier Montpellier, France