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1. Introduction
Let G be finite group nd let p be fixed prime number. The first min

theorem on blocks establishes one-to-one correspondence between the p-
blocks B of G with the defect groups D nd the p-blocks b of the normlizer
N(D) of D with the defect group D, cf. [2], [3]. It is the purpose of this note
to show that this theorem cn be derived esily from the results of [4]. We shll
need only the results (2A), (2B), (3A), (3B) nd (4A) of [4]. In prticulr,
we shll not need any results deling with fields of characteristic 0. A proof
of the min theorem on blocks operating completely within fixed field 2 of
characteristic p hs lredy been given by A. Rosenberg [5].
We use the sme notation s in [4]. In prticulr, 2 will denote n lge-

bmiclly closed field of characteristic p, 2[G] will denote the group lgebm of
G over 2, nd Z Z (G) will be the class lgebm of G over (i.e., Z (G) is the
center of 2[G]). As remarked in [4], the results (3A), (3B), nd (4A) of [4]
remain valid, if instead of the decomposition of Z (G) into block ideals we
consider more generally ny decomposition

(1) Z A1 @A2 @ @ Ar
as a direct sum of ideals A. Each A is a direct sum of block ideals of Z.
Let 2 denote the dual space consisting of all linear functions defined on Z with
values in 2.
An ideal A (0) occurs as a summand in a decomposition (1), if and only

if A has the form yA Z where A is an idempotent of Z. We may consider the
dual space fl of A as a subspace of Z by extending each f e fl linearly so that it
vanishes on the complement (1 v)A. (In [4], the notationF was used for
this subspace of Z.) If Q is a p-subgroup of G, the multiplicity ma (Q) of Q as
a lower defect group of A is defined as follows. Consider subspaces V of fl
with the following two properties.

(i) For each f 0 in V, there exists a conjugate class K of G with the de-
feet group Q such that f($K) O. (Here SK is the class sum of K.)

(ii) For f e V, we have f($K) 0 for all conjugate classes K of G whose
defect group has lower order than Q.

Then m (Q) is the maximal dimension of such 12-spaces V.
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If (e (P (G) is a system of representatives for the classes of conjugate p-
subgroups of G, the system :D (A) of lower defect groups of A consists of the
members Q of (p, each Q taken with the multiplicity mA (Q) -> 0. As already
indicated, the results (3A), (3B), (4A) of [4] remain valid for arbitrary de-
compositions (1). This implies that the number of elements of O (A) is equal
to dim, A. Another consequence is the following proposition.

(1A) Let A be an ideal of Z which is a direct summand of Z.
sum of two ideals A1 A2 then

IfA is a direct

) (A ) (AI u ) (A2 ).

Here, the union is meant as the union of systems of elements" The multi-
plicity of Q as member of (A) u )(A.) is the sum of the multiplicities of Q
in )(A) and (A2).

2. Proof of the first main theorem on blocks
Consider a block ideal B of Z. Then/ contains a unique algebra homo-

morphism of Z onto .
DEFINITION. A p-subgroup D of G is an (ordinary) defect group of the block

B, if there exist conjugate classes K0 of G with the defect group D for which
($K0) # 0 while (SK) 0 for all conjugate classes K whose defect group

has smaller order than D.

It is clear that every defect group D of B is a lower defect group of
B; D e D (B).

If Q D (B), it follows from [4], (3A) and (4A) that there exist blocks b of
Na (Q) such that B ba. Then for each conjugate class K of G, we have

(2) ($K) cob ($L)

where L ranges over all conjugacy classes L of Na (Q) with L

_
K n Ca (Q).

In particular, this holds when Q D is a defect group of B. If o (gK) # 0,
then (2) shows that Kn Ca (D) # 0. This implies that there exist defect groups
of K which contain D. Thus, we have (el. [3, (SA)]).

(2A) IfD is a defect group of the block B of G and if o,, ($K) # 0 for a con-
iugate class K of G, then D is contained in a defect group of K.

The following proposition is an immediate consequence.

(2B) The defect groups of a block are determined uniquely up to conjugacy.

If Q and Q are subgroups of G, as in [4] we define Q Q. to mean that Q1
contains a conjugate of Q2. In particular, this relation defines a partial order
in (.

(2C) There exists a unique maximal element D in ) (B and D i a defect
group of B.
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Proof. We have already seen that (B) contains a defect group D of B.
If Q (B), (2) applies for a block b of Na (Q) with b B. Take for K the
class K0 in the definition ofD. ThenB ($K0) 0 and, by (2), Kon C (Q) 0.
This implies that Q is contained in a conjugate of the defect group D of K0.
Hence D Q as we had to show.

(2D) (First main theorem). Let Q be a p-subgroup of G and set N Na (Q ).
The mapping

b---b B

sets up a one-to-one correspondence between the blocks b of N with the defect group
Q and the blocks B of G with the defect group Q.

Proof. We may assume that Q e (p (G). We have Q e (p (N). A simple
group theoretical argument [3, (10A)] shows that if L is a conjugate class of N
with the defect group Q, the conjugate class K L of G containing L has also
the defect group Q. Conversely, if K is a conjugate class of G with the defect
group Q, then K n Ca (Q) L is a conjugate class of N with the defect group
Q and K La.

If b is a block of N with the defect group Q, there exist conjugate classes
Lo ofN with the defect group Q such that ($L0) 0. If B b and K L,
then (2) reads

(3) B ($g) ($L0) 0.

On account of (2A), the defect group Q of K contains a conjugate of the defect
group D of B. Thus Q D.
On the other hand, choose K0 as in the definition of the defect group of a

block. Then (2) with K K0 shows that there exist conjugate classes
L K Ca (Q) of N with ($L) 0. On account of (2A) applied to N and
b, a defect group of L in N contains the defect group Q of b. Then a defect
group of K0 L in G contains Q. Hence D Q. Thus, D is conjugate to Q,
and B has the defect group Q.
Suppose now that b and b are two distinct blocks of Na (Q) with the defect

group Q. Then A bl @ b is a direct summand of the class algebra Z (N).
By (1A) and (2C) we see that (A) has the unique maximal element Q.
On the other hand, f is an element of fl

___
2 (N). Let L be a

conjugate class of N of minimal defect for which f($L) 0. Then a defect
group Q of L in N belongs to (A). By (2C), Q is contained in a conjugate
of Q in N and hence Q Q. Since f($L) 0 implies that ($L) 0 or

($L) 0, the defect group Q of L in N contains a conjugate of the defect
group Q of b and b, cf. (2A). Thus Q Q; i.e., L has the defect group Q
in N.

Suppose now that b b B. For K L, as in (3) we have

($K) 0, (gL)
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for i 1 and 2. However, this is impossible as

03b ($L) Wb($L) f($L) O.
Thus, b b.
Our proof will be complete if we can show that if B is a block of G with the

defect group Q, there exist blocks b of N with the defect group Q for which
b B. Since Q e (B), there certainly exist blocks b of N with b B.
If K0 is chosen as in the definition of the defect group of B, then K0 has the de-
fect group Q and (3) applies with L0 K0 n Ca (Q). Hence ($L0) 0.
Now (2A) implies that the defect group Q of Lo in N contains a conjugate of
the defect group D* of b. On the other hand, we have the Lemma [3, (9F)].

LEMMA 1. Suppose that a finite group H has a normal p-subgroup Q. Then
the defect group of each block of H contains Q.

If this lemma is applied to H N, we find D*
_

Q. Hence D* Q and
the proof of (2D) is complete.
As to the proof of Lemma 1, we can follow Rosenberg [5]. Rosenberg has

given a very simple proof of the following lemma.

LEMMA 2. Let H be as in Lemma 1. IfL is a conjugate class ofH which does
not meet C (Q ), then SL is a nilpotent element of the class algebra Z (H) of H.

This implies Lemma 1 since if b is a block of H, (z) 0 for every nil-
potent element z of Z (H). Hence if L is a conjugate class of H and if

($L) 0, by Lemma 2, L n C. (Q) 0, i.e., the defect group of L contains
Q. In particular, the defect group of b contains Q.
An an immediate corollary of (2D), we mention

(2E) The theorem (2D) remains valid if we replace N by a subgroup H of G
with

G

_
U

_
Na(Q).

Indeed, if the notation is as in (2D), we have to associate the block B* b
of H with the block (B*) (b")a ba of G.

3. Ground fields which are not algebraically closed
Rosenberg in [5] also considers the case of ground fields K of characteristic p

which are not algebraically closed. We shall show that this case can be re-
duced to that of an algebraically closed field 2.
Let Z(G) denote the class algebra of G with regard to an arbitrary field K

of characteristic p. Suppose that A is a block ideal of Z (G). As is well
known, Wedderburn’s theorem on finite division algebras implies that the field
A of G I-th roots of unity over K is a splitting field of the group algebra K[G],
cf. [1]. It follows that h is a splitting field of Z(G).

If we now work in the class algebra Z (G) Z(G), the ideal AZ (G) is a
direct summand of Z (G) and hence AZ (G) is a direct sum of block ideals B,
(i= 1,2, ...,r).
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Let r be an element of the Galois group G (A/K) of the separable field ex-
tension field h of K. Iffe/, (1

_
i

_
r), letf denote the linear function on

ZA (G) whose value for a class sum SK is equal tof($K). It is easy to see that
there exists a block ideal B. with 1 < j r such thatf e/. We set B. B..
Moreover, we see that G (A/K) acts transitively on the set {B1, B2, Br}.
Let now denote an algebraic closure of A. Then

AZa (G) =BZ(G).

Since i is a splitting field of ZA (G), each B Za(G) remains indecomposable,
i.e., it is a block ideal of the class algebra Za (G) of G. It is clear that the r
block ideals BZa (G) have the same system of lower defect groups. Hence, by
(iA),

(4) 2) (AZ (G) r. ) (B Za (G) ).

We may now define the system of lower defect groups )(A of the block ideal
A of Z(G) as the system (4) and the (ordinary) defect group of A as the ordi-
nary defect group of the B Za (G). It is immediate that (2B), (2C), (2D),
(2E) remain valid, if the underlying field is not algebraically closed.
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