NUMERICAL INVARIANTS OF KNOTS

BY

RICHARD E. GOODRICK

In the following, we will define two numerical invariants of knots and show that they are equivalent. The first, the bridge number of a knot, describes the minimum number of overcrossing arcs of any representation of a given knot, and was first described by Schubert [1]. The second, the local maximum number of a knot, is the minimum number of local maxima of any representation of a given knot.

In the following, a *knot* is a piecewise linear embedding of S^1 into E^3 . Let C denote the cube

$$\{(x, y, z) \mid 0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1\}$$

and D_t , $0 \leq t \leq 1$, the disk

$$\{ (x, y, z) \mid 0 \le x \le 1, 0 \le y \le 1, z = t \}.$$

If a knot K is represented as $n \operatorname{arcs} A_1, A_2, \cdots, A_n$ where

$$A_i = \{ (x, y, z) \mid x = i/(n+1), y = \frac{1}{2}, 0 \le z \le 1 \},\$$

through C and n connecting arcs on the boundary of C, then K is said to be in a standard n bridge position. The bridge number of a knot K, denoted by B(K) is the minimum number of A_i among all standard n bridge positions representing K. A knot K is said to be in standard position with n local maxima if K is represented as being contained in C so that

(1) $K \cap D_1$ is *n* points,

(2) $K \cap D_t$, $0 \leq t \leq 1$ is a finite number of points,

(3) if $p \in (K \cap (\text{interior } C))$ and N is a neighborhood of p, then there exists a point $p' \in N$ such that the z coordinate of p' is greater than the z coordinate of p.

The local maximum number of a knot K, denoted M(K), is the least number of local maxima among all standard positions with n local maxima representing K.

It is easy to show that a knot can be put in a standard n bridge position or in a standard position with n local maxima. Hence, given K, M(K) and B(K) are well defined.

THEOREM 1. If K is a knot, then M(K) = B(K).

We first prove that $B(K) \ge M(K)$ by showing that if K is a knot in standard *n* bridge position, then K can be moved by a space homeomorphism to a position with *n* local maxima.

Received May 7, 1968.

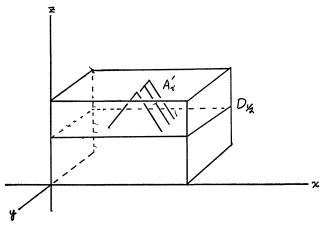


FIGURE 1

Assume that K is in a standard n bridge position and that D is an open disk on the boundary of C such that (closure of D) $\cap K = \Phi$. Thus K lies in the interior of a closed disk (boundary of C) - D, except for n linear segments. Let

$$A'_i = \{ (x, y, z) | x = z/2 \text{ or } x = 1 - z/2, y = i/(n + 1), 1/2 \le z \le 1 \}$$

(Fig. 1). Define h_1 to be a space homeomorphism taking (boundary of C)—D onto $D_{1/2}$ and A_i onto A'_i . Hence $h_1(K - \bigcup_{i=1}^n A_i)$ is n arcs, B_1, \dots, B_n , lying in the interior of $D_{1/2}$. Let a_i , b_i denote the endpoints of B_i and x_i the midpoint of B_i . Construct the arc B'_i by moving $\alpha = (x, y, 1/2) \epsilon B_i$ to

$$\left(x, y, \frac{d(\alpha, x_i)}{2d(a_i, x_i)}\right)$$

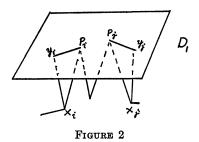
where $d(\alpha, x_i)$ denotes the arc length along B_i of the point α to x_i . Let h_2 be a space homeomorphism that moves B_i to B'_i , $i = 1, 2, \dots, n$, and leaves $\bigcup_{i=1}^n A'_i$ fixed. Hence $h_2 h_1(K)$ is in a standard position with n local maxima.

Next, we assume that a knot K' is in a standard position with n local maxima. Let p_1, p_2, \dots, p_n be the n points of $K' \cap D_1$ and x_1, x_2, \dots, x_n vertices of K' such that $p_i x_i$ is a linear segment of K'. Define y_1, \dots, y_n such that $y_i \in D_1$ and the triangles $y_i x_i p_i$ and $y_j x_j p_j$, $i \neq j$, have at most x_i in common (Fig. 2). A space homeomorphism taking $x_i p_i$ to $x_i y_i p_i$ leaving $K' - \bigcup_{i=1}^n x_i p_i$ fixed will be denoted by h_3 . Let h_4 be a space homeomorphism that moves $h_3(K')$, without introducing local maxima, such that

(1) no three points of $D_t \cap h_3(K')$, $0 \le t \le 1$, have the same x coordinate,

(2) only a finite number of $D_t \cap h_3(K')$ have two points with the same x coordinate

(3) if $D_t \cap h_3(K')$ has two points with the same x coordinate then $D_t \cap h_3(K')$ contains no vertices of K'.



To construct h_4 , first order the vertices $h_3(K')$ and put a small spherical neighborhood about each vertex. Then, using the ordering, move the i^{th} vertex to another point in its neighborhood so that the 1-simplexes joining this new point are in general position with respect to the y axis and satisfy condition (3) with respect to the previously moved l-simplexes.

Without loss of generality, we can assume that $h_i h_i(K') - \bigcup_{i=1}^n y_i p_i$ is contained in the interior of C. Hence

$$h_4 h_3(K') - \bigcup_{i=1}^n (\text{interior of } y_i p_i)$$

consists of n arcs B'_1 , B'_2 , \cdots , B'_n having n vertices b'_1 , \cdots , b'_n which are local minima. Let $L_1 = \{(x, y, z) \mid (x, y, z) \in C \text{ and } y = 1\},$ $L_2 = \{(x, y, z) \mid (x, y, z) \in C \text{ and there exists a point } p \in \bigcup_{i=1}^n B_i,$ p = (x', y', z') such that x' = x, z' = z, and $y \ge y'$, and $L_3 =$ $\{(x, y, z) \mid (x, y, z) \in C \text{ and for some } b'_i = (x', y', z'), x = x', z = z' \text{ and } y \ge y'\}.$

We now show that

$$L_1$$
 υ L_2 υ L_3 υ $(\bigcup_{i=1}^n B'_i)$

simplicially collapses to

$$L_1 \cup L_3 \cup (\bigcup_{i=1}^n B'_i)$$
 [2].

By property (2) of h_4 we can define $D_{t_1}, D_{t_2}, \dots, D_{t_K}$, such that $1 = t_1 > t_2 > t_2$ $\cdots > t_{\kappa} > 0$, all crossings of $h_4 h_8(K')$ in the y direction lie between D_{i_2} and $D_{t_{\kappa}}$, and no more than one crossing lies between D_{t_i} and $D_{t_{i+1}}$, i = 2, 3, ..., K - 1. Let $C_i = \{ (x, y, z) \mid (x, y, z) \in C \text{ and } t_i \ge z \ge t_{i+1} \}$. As $L_2 \cap C_1$ consists of a disjoint collection of 2-cells, we can collapse $L_2 \cap C_1$ to

$$L_2 \cap C_1 \cap (L_1 \cup L_3 \cup (\bigcup_{i=1}^n B'_i) \cup D_{t_2}).$$

Assume that $L_2 \cap (\bigcup_{i=1}^{j} C_i)$ has been collapsed to

$$L_2 \cap (\bigcup_{i=1}^{j} C_i) \cap (L_1 \cup L_3 \cup (\bigcup_{i=1}^{j} B'_i) \cup D_{t_{j+1}}).$$

There is at most one $B'_i \cap C_{j+1}$ a connected component of which is an overcrossing arc. Collapse the part of $L_2 \cap C_{j+1}$ lying below this arc, then collapse the remaining part of $L_2 \cap C_{j+1}$. Hence we have $L_2 \cap (\bigcup_{i=1}^{j+1} C_i)$ collapsed to

$$L_2 \cap (\bigcup_{i=1}^{j+1} C_i) \cap (L_1 \cup L_3 \cup (\bigcup_{i=1}^n B'_i) \cup D_{i_{j+2}}).$$

It follows that

$$L_1 \cup L_2 \cup L_3 \cup (\bigcup_{i=1}^n B'_i)$$

collapses to

 $L_1 \cup L_3 \cup (\bigcup_{i=1}^n B_i).$

Let $N(L_1 \cup L_2 \cup L_3 \cup (\bigcup_{i=1}^n B'_i))$ denote the second derived neighborhood of $L_1 \cup L_2 \cup L_3 \cup (\bigcup_{i=1}^n B'_i)$ in C. Define h_5 to be a space homeomorphism taking C onto $N(L_1 \cup L_2 \cup L_3 \cup (\bigcup_{i=1}^n B'_i))$ leaving $\bigcup_{i=1}^n B'_i$ fixed.

As $(L_1 \cup L_2 \cup L_3 \cup (\bigcup_{i=1}^n B'_i))$ collapses to $(L_1 \cup L_3 \cup (\bigcup_{i=1}^n B'_i))$, there is a space homeomorphism h_6 taking

 $N(L_1 \cup L_2 \cup L_3 \cup (\bigcup_{i=1}^n B'_i))$ onto $N(L_1 \cup L_3 \cup (\bigcup_{i=1}^n B'_i))$

leaving $\bigcup_{i=1}^{n} B'_{i}$ fixed [2]. Let

 $L'_{3} = \{ (x, y, z) | z = 1/2, 1 \ge y \ge 1/2, \text{ and } x = i/(n + 1) \}.$

There exists a space homeomorphism h'_7 taking L_1 onto L_1 , B'_i onto A_i , and L_3 onto L'_3 . Let h_7 be a space homeomorphism of

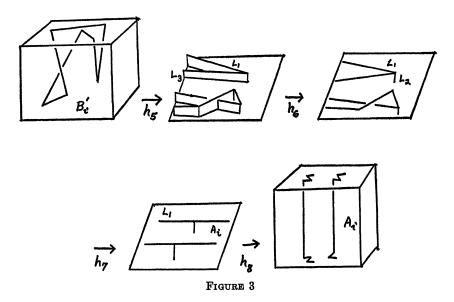
 $N(L_1 \cup L_3 \cup (\bigcup_{i=1}^n B'_i))$ onto $N(L_1 \cup L_3 \cup (\bigcup_{i=1}^n A_i))$

such that

 $h_7(L_1 \cup L_3 \cup (\bigcup_{i=1}^n B'_i)) = h'_7(L_1 \cup L_3 \cup (\bigcup_{i=1}^n B'_i)).$

Finally, let h_8 be a homeomorphism taking $N(L_1 \cup L'_8 \cup (\bigcup_{i=1}^n A_i))$ onto C leaving $\bigcup_{i=1}^n A_i$ fixed (Fig. 3). Hence $h_8 h_7 h_6 h_5 h_4 h_8(K')$ is a standard n bridge position.

A link is a piecewise linear embedding of $\bigcup_{i=1}^{n} S'_{i}$ onto E^{3} . If K is a link,



then we can derive B(K) and M(K) in a similar manner as in knots. Hence, using the same proof as in Theorem 1 we obtain the following.

THEOREM 2. If K is a link, then B(K) = M(K).

References

- 1. H. SCHUBERT, Über eine numerische knoteninvariante. Math. Zeitschrift., vol. 61 (1954), pp. 245–288.
- 2. E. C. ZEEMAN, Seminar on combinatorial topology, mimeographed notes, l'I.H.E.S., Paris, 1963.

UNIVERSITY OF WARWICK WARWICK, ENGLAND UNIVERSITY OF UTAH SALT LAKE CITY, UTAH