NUMERICAL INVARIANTS OF KNOTS

BY
Richard E. Goodrick

In the following, we will define two numerical invariants of knots and show that they are equivalent. The first, the bridge number of a knot, describes the minimum number of overcrossing arcs of any representation of a given knot, and was first described by Schubert [1]. The second, the local maximum number of a knot, is the minimum number of local maxima of any representation of a given knot.

In the following, a knot is a piecewise linear embedding of S^{1} into E^{3}. Let C denote the cube

$$
\{(x, y, z) \mid 0 \leqq x \leqq 1,0 \leqq y \leqq 1,0 \leqq z \leqq 1\}
$$

and $D_{t}, 0 \leqq t \leqq 1$, the disk

$$
\{(x, y, z) \mid 0 \leqq x \leqq 1,0 \leqq y \leqq 1, z=t\}
$$

If a knot K is represented as $n \operatorname{arcs} A_{1}, A_{2}, \cdots, A_{n}$ where

$$
A_{i}=\left\{(x, y, z) \mid x=i /(n+1), y=\frac{1}{2}, 0 \leqq z \leqq 1\right\}
$$

through C and n connecting arcs on the boundary of C, then K is said to be in a standard n bridge position. The bridge number of a knot K, denoted by $B(K)$ is the minimum number of A_{i} among all standard n bridge positions representing K. A knot K is said to be in standard position with n local maxima if K is represented as being contained in C so that
(1) $K \cap D_{1}$ is n points,
(2) $K \cap D_{t}, 0 \leqq t \leqq 1$ is a finite number of points,
(3) if $p \in(K \cap$ (interior $C)$) and N is a neighborhood of p, then there exists a point $p^{\prime} \in N$ such that the z coordinate of p^{\prime} is greater than the z coordinate of p.

The local maximum number of a knot K, denoted $M(K)$, is the least number of local maxima among all standard positions with n local maxima representing K.

It is easy to show that a knot can be put in a standard n bridge position or in a standard position with n local maxima. Hence, given $K, M(K)$ and $B(K)$ are well defined.

Theorem 1. If K is a knot, then $M(K)=B(K)$.
We first prove that $B(K) \geqq M(K)$ by showing that if K is a knot in standard n bridge position, then K can be moved by a space homeomorphism to a position with n local maxima.

[^0]

Figure 1
Assume that K is in a standard n bridge position and that D is an open disk on the boundary of C such that (closure of D) $\cap K=\Phi$. Thus K lies in the interior of a closed disk (boundary of C) $-D$, except for n linear segments. Let
$A_{i}^{\prime}=\{(x, y, z) \mid x=z / 2$ or $x=1-z / 2, y=i /(n+1), 1 / 2 \leqq z \leqq 1\}$
(Fig. 1). Define h_{1} to be a space homeomorphism taking (boundary of $C)-D$ onto $D_{1 / 2}$ and A_{i} onto A_{i}^{\prime}. Hence $h_{1}\left(K-\bigcup_{i=1}^{n} A_{i}\right)$ is n arcs, B_{1}, \cdots, B_{n}, lying in the interior of $D_{1 / 2}$. Let a_{i}, b_{i} denote the endpoints of B_{i} and x_{i} the midpoint of B_{i}. Construct the arc B_{i}^{\prime} by moving $\alpha=(x, y, 1 / 2) \in B_{i}$ to

$$
\left(x, y, \frac{d\left(\alpha, x_{i}\right)}{2 d\left(a_{i}, x_{i}\right)}\right)
$$

where $d\left(\alpha, x_{i}\right)$ denotes the arc length along B_{i} of the point α to x_{i}. Let h_{2} be a space homeomorphism that moves B_{i} to $B_{i}^{\prime}, i=1,2, \cdots, n$, and leaves $\bigcup_{i=1}^{n} A_{i}^{\prime}$ fixed. Hence $h_{2} h_{1}(K)$ is in a standard position with n local maxima.

Next, we assume that a knot K^{\prime} is in a standard position with n local maxima. Let $p_{1}, p_{2}, \cdots, p_{n}$ be the n points of $K^{\prime} \cap D_{1}$ and $x_{1}, x_{2}, \cdots, x_{n}$ vertices of K^{\prime} such that $p_{i} x_{i}$ is a linear segment of K^{\prime}. Define y_{1}, \cdots, y_{n} such that $y_{i} \in D_{1}$ and the triangles $y_{i} x_{i} p_{i}$ and $y_{j} x_{j} p_{j}, i \neq j$, have at most x_{i} in common (Fig. 2). A space homeomorphism taking $x_{i} p_{i}$ to $x_{i} y_{i} p_{i}$ leaving $K^{\prime}-\bigcup_{i=1}^{n} x_{i} p_{i}$ fixed will be denoted by h_{3}. Let h_{4} be a space homeomorphism that moves $h_{3}\left(K^{\prime}\right)$, without introducing local maxima, such that
(1) no three points of $D_{t} \cap h_{3}\left(K^{\prime}\right), 0 \leqq t \leqq 1$, have the same x coordinate,
(2) only a finite number of $D_{t} \cap h_{3}\left(K^{\prime}\right)$ have two points with the same x coordinate
(3) if $D_{t} \cap h_{3}\left(K^{\prime}\right)$ has two points with the same x coordinate then $D_{t} \cap h_{3}\left(K^{\prime}\right)$ contains no vertices of K^{\prime}.

Figure 2
To construct h_{4}, first order the vertices $h_{3}\left(K^{\prime}\right)$ and put a small spherical neighborhood about each vertex. Then, using the ordering, move the $i^{\text {th }}$ vertex to another point in its neighborhood so that the 1 -simplexes joining this new point are in general position with respect to the y axis and satisfy condition (3) with respect to the previously moved l-simplexes.

Without loss of generality, we can assume that $h_{4} h_{3}\left(K^{\prime}\right)-\bigcup_{i=1}^{n} y_{i} p_{i}$ is contained in the interior of C. Hence

$$
\left.h_{4} h_{3}\left(K^{\prime}\right)-\bigcup_{i=1}^{n} \text { (interior of } y_{i} p_{i}\right)
$$

consists of $n \operatorname{arcs} B_{1}^{\prime}, B_{2}^{\prime}, \cdots, B_{n}^{\prime}$ having n vertices $b_{1}^{\prime}, \cdots, b_{n}^{\prime}$ which are local minima. Let $L_{1}=\{(x, y, z) \mid(x, y, z) \in C$ and $y=1\}$, $L_{2}=\left\{(x, y, z) \mid(x, y, z) \in C\right.$ and there exists a point $p \in \bigcup_{i=1}^{n} B_{i}^{\prime}$, $p=\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ such that $x^{\prime}=x, z^{\prime}=z$, and $\left.y \geqq y^{\prime}\right\}$, and $L_{3}=$ $\left\{(x, y, z) \mid(x, y, z) \in C\right.$ and for some $b_{i}^{\prime}=\left(x^{\prime}, y^{\prime}, z^{\prime}\right), x=x^{\prime}, z=z^{\prime}$ and $\left.y \geqq y^{\prime}\right\}$. We now show that

$$
L_{1} \cup L_{2} \cup L_{3} \cup\left(\cup_{i=1}^{n} B_{i}^{\prime}\right)
$$

simplicially collapses to

$$
\begin{equation*}
L_{1} \cup L_{3} \cup\left(\bigcup_{i=1}^{n} B_{i}^{\prime}\right) \tag{2}
\end{equation*}
$$

By property (2) of h_{4} we can define $D_{t_{1}}, D_{t_{2}}, \cdots, D_{t_{K}}$, such that $1=t_{1}>t_{2}>$ $\cdots>t_{K}>0$, all crossings of $h_{4} h_{8}\left(K^{\prime}\right)$ in the y direction lie between $D_{t_{2}}$ and $D_{t_{K}}$, and no more than one crossing lies between $D_{t_{i}}$ and $D_{t_{i+1}}, i=2,3$, $\cdots, K-1$. Let $C_{i}=\left\{(x, y, z) \mid(x, y, z) \in C\right.$ and $\left.t_{i} \geqq z \geqq t_{i+1}\right\}$. As $L_{2} \cap C_{1}$ consists of a disjoint collection of 2-cells, we can collapse $L_{2} \cap C_{1}$ to

$$
L_{2} \cap C_{1} \cap\left(L_{1} \cup L_{3} \cup\left(\bigcup_{i=1}^{n} B_{i}^{\prime}\right) \cup D_{t_{2}}\right)
$$

Assume that $L_{2} \cap\left(\mathrm{U}_{i=1}^{j} C_{i}\right)$ has been collapsed to

$$
L_{2} \cap\left(\cup_{i=1}^{j} C_{i}\right) \cap\left(L_{1} \cup L_{3} \cup\left(\cup_{i=1}^{j} B_{i}^{\prime}\right) \cup D_{t_{j+1}}\right)
$$

There is at most one $B_{i}^{\prime} \cap C_{j+1}$ a connected component of which is an overcrossing arc. Collapse the part of $L_{2} \cap C_{j+1}$ lying below this arc, then collapse the remaining part of $L_{2} \cap C_{j+1}$. Hence we have $L_{2} \cap\left(\cup_{i=1}^{j+1} C_{i}\right)$ collapsed to

$$
L_{2} \cap\left(\cup_{i=1}^{j+1} C_{i}\right) \cap\left(L_{1} \cup L_{3} \cup\left(\cup_{i=1}^{n} B_{i}^{\prime}\right) \cup D_{t_{j+2}}\right)
$$

It follows that

$$
L_{1} \cup L_{2} \cup L_{3} \cup\left(\bigcup_{i=1}^{n} B_{i}^{\prime}\right)
$$

collapses to

$$
L_{1} \cup L_{3} \cup\left(\bigcup_{i=1}^{n} B_{i}\right)
$$

Let $N\left(L_{1} \cup L_{2} \cup L_{3} \cup\left(\cup_{i=1}^{n} B_{i}^{\prime}\right)\right)$ denote the second derived neighborhood of $L_{1} \cup L_{2} \cup L_{3} \cup\left(\bigcup_{i=1}^{n} B_{i}^{\prime}\right)$ in C. Define h_{5} to be a space homeomorphism taking C onto $N\left(L_{1} \cup L_{2} \cup L_{3} \cup\left(\bigcup_{i=1}^{n} B_{i}^{\prime}\right)\right)$ leaving $\bigcup_{i=1}^{n} B_{i}^{\prime}$ fixed.

As $\left(L_{1} \cup L_{2} \cup L_{3} \cup\left(\bigcup_{i=1}^{n} B_{i}^{\prime}\right)\right)$ collapses to $\left(L_{1} \cup L_{3} \cup\left(\bigcup_{i=1}^{n} B_{i}^{\prime}\right)\right)$, there is a space homeomorphism h_{6} taking

$$
N\left(L_{1} \cup L_{2} \cup L_{3} \cup\left(\cup_{i=1}^{n} B_{i}^{\prime}\right)\right) \text { onto } N\left(L_{1} \cup L_{3} \cup\left(\cup_{i=1}^{n} B_{i}^{\prime}\right)\right)
$$

leaving $\mathrm{U}_{i=1}^{n} B_{i}^{\prime}$ fixed [2]. Let

$$
L_{3}^{\prime}=\{(x, y, z) \mid z=1 / 2,1 \geqq y \geqq 1 / 2, \text { and } x=i /(n+1)\}
$$

There exists a space homeomorphism h_{7}^{\prime} taking L_{1} onto L_{1}, B_{i}^{\prime} onto A_{i}, and L_{3} onto L_{3}^{\prime}. Let h_{7} be a space homeomorphism of

$$
N\left(L_{1} \cup L_{3} \cup\left(\cup_{i=1}^{n} B_{i}^{\prime}\right)\right) \quad \text { onto } N\left(L_{1} \cup L_{3} \cup\left(\cup_{i=1}^{n} A_{i}\right)\right)
$$

such that

$$
h_{7}\left(L_{1} \cup L_{3} \cup\left(\cup_{i=1}^{n} B_{i}^{\prime}\right)\right)=h_{7}^{\prime}\left(L_{1} \cup L_{3} \cup\left(\cup_{i=1}^{n} B_{i}^{\prime}\right)\right)
$$

Finally, let h_{8} be a homeomorphism taking $N\left(L_{1} \cup L_{3}^{\prime} \cup\left(\cup_{i=1}^{n} A_{i}\right)\right)$ onto C leaving $\bigcup_{i=1}^{n} A_{i}$ fixed (Fig. 3). Hence $h_{8} h_{7} h_{6} h_{5} h_{4} h_{8}\left(K^{\prime}\right)$ is a standard n bridge position.

A link is a piecewise linear embedding of $\bigcup_{i=1}^{n} S_{i}^{\prime}$ onto E^{3}. If K is a link,

then we can derive $B(K)$ and $M(K)$ in a similar manner as in knots. Hence, using the same proof as in Theorem 1 we obtain the following.

Theorem 2. If K is a link, then $B(K)=M(K)$.
References

1. H. Schubert, Über eine numerisohe knoteninvariante. Math. Zeitschrift., vol. 61 (1954), pp. 245-288.
2. E. C. Zeeman, Seminar on combinatorial topology, mimeographed notes, l'I.H.E.S., Paris, 1963.

University of Warwick
Warmick, England
University of Utah
Salt Lake City, Utah

[^0]: Received May 7, 1968.

