ON IMPRIMITIVE SOLVABLE RANK 3 PERMUTATION GROUPS

BY
Larry Dornhoff ${ }^{1}$

We remind the reader that a permutation group G transitive on a set Ω is said to be of rank m, if the subgroup G_{α} fixing $\alpha \epsilon \Omega$ has m orbits on Ω. Thus, rank 2 groups are doubly transitive groups. D. A. Foulser and the present author have independently classified primitive solvable rank 3 groups (Foulser's paper has appeared in the Transactions of the American Mathematical Society). Among finite solvable rank 3 groups, many imprimitive groups occur. This paper is a classification of those imprimitive solvable rank 3 permutation groups G with a regular normal subgroup N.

If G is such a permutation group on a set Ω and $\alpha \epsilon \Omega$, then we have $G_{\alpha} N=G$, $G_{\alpha} \cap N=1$. By Theorem 11.2 of [6], G_{α} is then an automorphism group of N acting with only two orbits on $N^{*}=N-\{1\}$. Conversely, if N is any group with a solvable automorphism group A having only two orbits on N^{*}, then the semidirect product $G=A N$ is a solvable rank 3 permutation group with regular normal subgroup $N ; G$ will be imprimitive if and only if A fixes some proper subgroup of N. Thus our problem is to classify those groups N with a solvable automorphism group having only two orbits on N^{*} (such an N is clearly solvable). Our main theorem is the following.

Theorem. Let N be a finite group, A a solvable automorphism group of N acting with only two orbits on $N^{*}=N-\{1\}$. Then we have one of the following:
(i) N is an elementary abelian p-group for some prime p.
(ii) For some prime p, N is a direct product of cyclic groups of order p^{2}.
(iii) For primes p and q, the polynomial $\left(X^{q}-1\right) /(X-1)$ is irreducible over $G F(p)$, and N is a Frobenius group of order $q p^{m(q-1)}$ (m an integer). Here N has an elementary abelian Frobenius kernel of order $p^{m(q-1)}$.
(iv) For some integer $n>2$ which is not a power of 2, and some automorphism $\theta \neq 1$ of $G F\left(2^{n}\right)$ of odd order,

```
\(N=A(n, \theta)\)
    \(=\left\{(\alpha, \zeta) \epsilon G F\left(2^{n}\right) \times G F\left(2^{n}\right) \mid(\alpha, \zeta)(\beta, \eta)=\left(\alpha+\beta, \zeta+\eta+\alpha \beta^{\theta}\right)\right\}\).
```

Thus $|N|=2^{2 n}$.
(v) For some integer $n \geqq 1$,

$$
\begin{aligned}
N & =B(n) \\
& =\left\{(\alpha, \zeta) \epsilon G F\left(2^{2 n}\right) \times G F\left(2^{n}\right) \mid(\alpha, \zeta)(\beta, \eta)\right. \\
& \left.=\left(\alpha+\beta, \zeta+\eta+\alpha \beta^{2 n} \mu+\alpha^{2 n} \beta \mu^{-1}\right)\right\},
\end{aligned}
$$

[^0]where $\mu \in G F\left(2^{2 n}\right)$ has order $2^{n}+1$. Here $|N|=2^{3 n}$, and N does not depend on μ.
(vi) For some odd prime p and integer $n \geqq 1$, choose $\varepsilon \in G F\left(p^{2 n}\right)$ such that $\varepsilon+\varepsilon^{p^{n}}=0$. Then
\[

$$
\begin{aligned}
& N=C(p, n) \\
& =\left\{\pi(\alpha, \zeta) \epsilon G F\left(p^{2 n}\right) \times G F\left(p^{n}\right) \mid(\alpha, \zeta)(\beta, \eta)\right. \\
& \\
& \left.=\left(\alpha+\beta, \zeta+\eta+\frac{1}{2}\left(\alpha \beta^{p^{n}}-\alpha^{p^{n}} \beta\right) \varepsilon\right)\right\}
\end{aligned}
$$
\]

Here $|N|=p^{3 n}$, and N does not depend on ε.
(vii) N is an extra special 3-group of order 3^{5} and exponent 3.
(viii) $N=P(\varepsilon)$, where $|P(\varepsilon)|=2^{9}, \varepsilon$ is a multiplicative generator in $G F\left(2^{6}\right)$, and

$$
\begin{aligned}
P(\varepsilon)=\left\{(\alpha, \zeta) \in G F\left(2^{6}\right) \times G F\left(2^{3}\right) \mid\right. & (\alpha, \zeta)(\beta, \eta) \\
& \left.=\left(\alpha+\beta, \zeta+\eta+\alpha \beta^{2} \varepsilon+\alpha^{8} \beta^{16} \varepsilon^{8}\right)\right\}
\end{aligned}
$$

Furthermore, all these groups except $|N|=2$ have such solvable automorphism groups A; in case (i), one orbit of A can be H^{*}, any proper subgroup H of N.

We have thus determined the subdegrees (lengths of orbits of G_{α}) in each solvable imprimitive rank 3 permutation group G with regular normal subgroup N. If N is elementary abelian, $|N|=p^{n}$, then all possibilities $p^{t}-1$ $p^{n}-p^{t}$ for $0<t<n$ occur as subdegrees. If N is not elementary abelian, then N has an obvious unique characteristic proper subgroup K, and the subdegrees are $|K|-1,|N|-|K|$.

We remark that the groups (iv) and (v) will be identified as among the Suzuki 2-groups of G. Higman [2]. The proof of our Theorem uses the methods of [2] quite heavily, and will begin after three number-theoretic Lemmas.

Lemma 1. Let p be a prime, $n>1$ an integer. Then one of the following holds.
(i) There exists a prime $q, q \mid\left(p^{n}-1\right), q \nmid\left(p^{t}-1\right)$ for any $t<n$.
(ii) $n=2$ and $p=2^{a}-1$ is a Mersenne prime.
(iii) $p=2, n=6$.

Proof. See [1].
Lemma 2. Let p be a prime, $n \geqq 4$ an integer. Suppose that integers e_{2}, $e_{3}, e_{4}, a_{1}, a_{2}, a_{3}$ exist, satisfying $e_{i}= \pm 1$ and $n>a_{1}>a_{2}>a_{3}>0$, such that

$$
\left(p^{n}-1\right) \mid n\left(p^{a_{1}}+e_{2} p^{a_{2}}+e_{3} p^{a_{3}}+e_{4}\right)
$$

Then we have one of the following:
(i) $\left(5^{4}-1\right) \mid 4\left(5^{3}+5^{2}+5+1\right)$.
(ii) $\left(3^{8}-1\right) \mid 8\left(3^{6}+3^{4}+3^{2}+1\right)$.
(iiia) $\left(3^{4}-1\right) \mid 4\left(3^{3}+3^{2}+3+1\right)$.
(iiib) $\left(3^{4}-1\right) \mid 4\left(3^{3}-3^{2}+3-1\right)$.
(iva) $\left(2^{6}-1\right) \mid 6\left(2^{5}-2^{4}+2^{2}+1\right)$.
(ivb) $\left(2^{6}-1\right) \mid 6\left(2^{5}-2^{3}-2-1\right)$.
(ivc) $\left(2^{6}-1\right) \mid 6\left(2^{5}-2^{8}-2^{2}+1\right)$.
(ivd) $\left(2^{6}-1\right) \mid 6\left(2^{4}+2^{3}-2-1\right)$.
(ive) $\left(2^{6}-1\right) \mid 6\left(2^{4}+2^{3}-2^{2}+1\right)$.
(ivf) $\left(2^{6}-1\right) \mid 6\left(2^{4}+2^{2}+2-1\right)$.
Proof. Denote $k=\left(n, p^{n}-1\right)$. Then we have an equation

$$
t\left(p^{n}-1\right)=k\left(p^{a_{1}}+e_{2} p^{a_{2}}+e_{3} p^{a_{3}}+e_{4}\right)
$$

for some integer $0<t<k$. Therefore $t+e_{4} k \equiv 0\left(\bmod p^{a_{3}}\right)$, which implies $p^{a_{3}}<2 k$. Now set $t+e_{4} k=p^{a_{3}} t_{1}$, where we see $0<\left|t_{1}\right|<k$; substituting into the equation, we get

$$
-p^{a_{3}} t_{1} \equiv k\left(p^{a_{1}}+e_{2} p^{a_{2}}+e_{3} p^{a_{3}}\right) \quad\left(\bmod p^{n}\right)
$$

This implies $t_{1}+e_{3} k \equiv 0\left(\bmod p^{a_{2}-a_{3}}\right)$, and therefore $p^{a_{2}-a_{3}}<2 k$. We now set $t_{1}+e_{3} k=p^{a_{2}-a_{8}} t_{2}$, and see that $0<\left|t_{2}\right|<k$; continuing this substitution process also gives us $p^{a_{1}-a_{2}}<2 k$ and $p^{n-a_{1}}<2 k$. We have now proved that $p^{n}<16\left(n, p^{n}-1\right)^{4}$. The only solutions of this inequality are $p^{n}=2^{6}, 3^{4}, 3^{8}, 5^{4}, 5^{6}$ or 7^{4}. It is now easy to verify that (i)-(ivf) are the only cases actually occurring. (Repeat the argument of the proof, with specific values of p and n.)

Lemma 3. Let p be a prime, $n>2$ an integer. If integers $i, j, k, l \geqq 0$ satisfy the congruence

$$
p^{i}+p^{j} \equiv p^{k}+p^{l} \quad\left(\bmod \left(p^{n}-1\right) /\left(n, p^{n}-1\right)\right)
$$

then we have $i-j \equiv \pm(k-l)(\bmod n)$.
Proof. This congruence is equivalent to the relation

$$
\left(p^{n}-1\right) \mid n\left(p^{i}+p^{j}-p^{k}-p^{l}\right)
$$

If some exponent t is $\geqq n$, then since $n p^{t}=n p^{t-n}\left(p^{n}-1\right)+p^{t-n} \equiv$ $n p^{t-n}\left(\bmod p^{n}-1\right)$, we can replace p^{t} by p^{t-n}. Therefore we may assume $0 \leqq i, j, k, l<n$.

If i, j, k, l are all different, then inspection of Lemma 2 shows that the present lemma holds. If one of the relations $i=k, j=k, i=l, j=l$ holds, then two terms drop out and we are left with a relation $\left(p^{n}-1\right) \mid \mathrm{n}\left(p^{u}-1\right)$, some $u<n . \quad u=0$ means the conclusion of the Lemma holds, so we may take $0<u<n$. This now contradicts Lemma 1, unless $p^{n}=2^{6}$. The rela-
tion $\left(2^{6}-1\right) \mid 6\left(2^{u}-1\right)$ is impossible for $0<u<6$. We conclude that we may assume $i \neq k, j \neq k, i \neq l, j \neq l$ in any counterexample to Lemma 3.

Therefore either $i=j$ or $k=l$; by symmetry we may assume that $i=j$, $k \neq l$, in any counterexample to Lemma 3 . We thus have

$$
2 p^{i} \equiv p^{k}+p^{l} \quad\left(\bmod \left(p^{n}-1\right) /\left(n, p^{n}-1\right)\right)
$$

If $k<i$ or $l<i$, we replace p^{k} by p^{k+n} or p^{l} by p^{l+n}, not destroying the congruence, and then divide by p^{i}. Hence if Lemma 3 has a counterexample, we have a relation

$$
\begin{equation*}
\left(p^{n}-1\right) \mid n\left(p^{k}+p^{l}-2\right), \quad 0<k<l<n \tag{*}
\end{equation*}
$$

Let $s=\left(n, p^{n}-1\right)$; we have an equation $t\left(p^{n}-1\right)=s\left(p^{k}+p^{l}-2\right)$, $0<t<s, 2 s-t \equiv 0\left(\bmod p^{k}\right)$. Therefore $p^{k}<2 s$. We set $2 s-t=p^{k} u$, where $0<u<s$; substituting for t in the equation, we get

$$
p^{k} u \equiv s p^{k}+s p^{l}\left(\bmod p^{n}\right)
$$

Therefore $u \equiv s\left(\bmod p^{l-k}\right)$, which implies $p^{l-k}<s$. Setting $s-u=p^{l-k} v$ we see $0<v<s$; substituting for u in the last congruence $\bmod p^{n}$, we get $s+v \equiv 0\left(\bmod p^{n-l}\right)$, implying $p^{n-l}<2 s$. We have proved that $p^{n}<4\left(n, p^{n}-1\right)^{3}$. The only solutions of this inequality are $p^{n}=3^{4}$ or 2^{6}, and we easily see that they provide no example of (*), Q.E.D. for Lemma 3.

Proof of the theorem. Clearly, if a group N has an automorphism group with only two orbits on N^{*}, then N has at most one proper characteristic subgroup and has nonidentity elements of at most two different orders. If N is abelian, this means that N is a p-group, either elementary or a direct product of cyclic groups of order p^{2}. If N is nonabelian, N may be either a p-group with $\Phi(N)$ $=Z(N)=N^{\prime}$, or N may be a p, q-group for primes p and q. These four possibilities will be studied separately.

First, let N be elementary abelian of order p^{n}. If $|N|=2$, then $|\operatorname{Aut}(N)|=1$, so Aut (N) has only one orbit on N^{*}. If $|N|=p$ and $p>2$, then Aut (N) has a subgroup A of order $\frac{1}{2}(p-1)$ having only two orbits on N^{*}. If $|N|=p^{n}$ and $n>1$, choose a proper subgroup H of $N,|H|=p^{t}$. Automorphisms of N fixing H may be represented by block matrices

$$
\left(\begin{array}{ll}
A & 0 \\
B & C
\end{array}\right)
$$

where A is $t \times t, B$ is $(n-t) \times t, 0$ is a $t \times(n-t)$ zero matrix, and C is $(n-t) \times(n-t)$. Such matrices multiply by the rule

$$
\left(\begin{array}{ll}
A & 0 \\
B & C
\end{array}\right)\left(\begin{array}{ll}
D & 0 \\
E & F
\end{array}\right)=\left(\begin{array}{cl}
A D & 0 \\
B D+C E & C F
\end{array}\right)
$$

Let $N=H \times K$ for some subgroup K of H, and let G_{1}, G_{2} be solvable groups of
matrices on H and K transitive on H^{*} and K^{*}, respectively. (Such groups always exist, and are classified in [4]). Define

$$
J=\left\{\left.\left(\begin{array}{ll}
A & 0 \\
B & C
\end{array}\right) \right\rvert\, A \in G_{1}, C \in G_{2}, B \text { any }(n-t) \times t \text { matrix }\right\}
$$

Then J is certainly solvable, and transitive on H^{*} and $N-H$. This shows that the group (i) of our theorem exists.

Now suppose $N=H_{1} \times H_{2} \times \cdots \times H_{m}$, each H_{i} cyclic of order p^{2}. Let $T=\{a \in \operatorname{Aut}(N) \mid a$ is trivial on $N / \Phi(N)\}$. Then easy counting arguments show that $|T|=p^{m^{2}},|\operatorname{Aut}(N)|=p^{m^{2}}|G L(m, p)|$. This implies that Aut (N) has an element ψ of order $p^{m}-1$, by Theorem II.7.3 of [3]. T is transitive on $x \Phi(N)$ for any $x \epsilon N-\Phi(N)$, so we conclude that $T\langle\psi\rangle$ is a solvable automorphism group of N, transitive on $N-\Phi(N)$ and $\Phi(N)^{*} . \quad N$ is case (ii) of our theorem.

We next suppose that N is nonabelian, and that two primes p and q divide $|N|$. Fit (N) is the unique proper characteristic subgroup of N (obviously N is not nilpotent), so let $P=$ Fit (N), an elementary abelian normal Sylow p-subgroup. N has no element of order $p q$, so N is a Frobenius group. A Sylow q-subgroup Q must be an abelian Frobenius complement of exponent q, so $|Q|=q$ by Theorem V.8.7 (a) of [3]. Let A be a solvable automorphism group of N, transitive on $N-\mathrm{P}$ and $P^{*} . A N / P$ is transitive on P^{*} and so certainly primitive as linear group on $P^{*} . ~ Q \cong Q P / P \triangleleft A N / P$, so P is a direct sum of some number m of isomorphic irreducible Q-modules. Since A is transitive on $N-P$, it follows that $N_{A}(Q)$ is transitive on Q^{*}. It now follows from Lemma II.3.11 of [3] that the irreducible Q-submodules of P must have order p^{q-1}; this means that $|P|=p^{m(q-1)},|N|=q p^{m(q-1)}$, and the polynomial $\left(X^{q}-1\right) /(X-1)$ is irreducible over $G F(p)$.

Conversely, let p and q be primes such that $\left(X^{q}-1\right) /(X-1)$ is irreducible over $G F(p), m$ a positive integer. In the field $G F\left(p^{m(q-1)}\right)$, let μ be a multiplicative generator $\left(|\langle\mu\rangle|=p^{m(q-1)}-1\right)$, and set $\lambda \epsilon\langle\mu\rangle,|\lambda|=q . \quad G F\left(p^{m(q-1)}\right)$ may be considered an $m(q-1)$-dimensional vector space over $G F(p)$, and the automorphism $a: x \rightarrow \mu x$ is transitive on $G F\left(p^{m(q-1)}\right)^{*}$. If $b: x \rightarrow x^{p}$, then $|\langle b\rangle|=m(q-1)$; also, $\langle b, a\rangle=N_{G L(m(q-1) \cdot p)}(\langle a\rangle)$ by Lemma II.3.11 of [3], with $\langle b\rangle \cap\langle a\rangle=1$. Let c be the power of a given by $c: x \rightarrow \lambda x$; $|\langle c\rangle|=q$ and $\langle b\rangle \subseteq N(\langle c\rangle)$. If $b^{i} c=c b^{i}$, then we see $x b^{i} c=\lambda x^{p^{i}}$ must equal $x c b^{i}=\lambda^{p^{i}} x^{p^{i}}$, so $\lambda=\lambda^{p^{i}}$. By hypothesis $G F(p)[\lambda]=G F\left(p^{q-1}\right)$, so $\lambda=\lambda^{p^{i}}$ only if $(q-1) \mid i$. We conclude that $\left|\langle b\rangle: C_{\langle b\rangle}(c)\right|=q-1$. If we denote $P=G F\left(p^{m(q-1)}\right)$, then $\langle b, a\rangle$ has the normal subgroup $\langle c\rangle=Q ;\langle b, a\rangle$ is transitive on P^{*} and on $(Q P / P)^{*}$. The group I of inner automorphisms of $N=Q P$ is transitive on $x P$, any $x \in N-P$, so we conclude that $\langle b, a\rangle I$ is transitive on $N-P$ and P^{*}. Therefore the group N satisfies the hypotheses of our theorem.

There remains the case when $N=P$ is a nonabelian p-group. Of course, since P has a solvable automorphism group A with only two orbits on P^{*}, we
must have $Z(P)=\Phi(\mathrm{P})=P^{\prime}$, and P is special. P is nonabelian. so if $p=2$ then all elements of $P-P^{\prime}$ must have order 4. If p is odd, on the other hand, then the main result of [5] implies that P has exponent p. Denote $\left|P / P^{\prime}\right|=p^{m},\left|P^{\prime}\right|=p^{n}$. By Theorem VI.2.3 of [3], we can find a Hall p^{\prime}-subgroup H of A and a Sylow p-subgroup Q of A such that $A=H Q=Q H$.

Let V be either P / P^{\prime} or $P^{\prime} . p \nmid\left|V^{*}\right|$, so there is a $v \in V^{*}$ such that $Q \subseteq A_{v}$. Then $A=H A_{v}$ must contain exactly $|H| \cdot\left|A_{v}\right| /\left|H \cap A_{v}\right|=$ $\left|H: H_{v}\right| \cdot\left|A_{v}\right|$ elements, and we see $\left|A: A_{v}\right|=\left|H: H_{v}\right|$. Since A is transitive on V^{*}, then, so is H. We have proved that H is transitive on $\left(P / P^{\prime}\right)^{*}$ and $P^{\prime *}$; of course, by Theorem III.3.18 of [3] we know that H is faithful on P / P^{\prime}.

We first consider the case $m=2$, so that $\left|P / P^{\prime}\right|=p^{2}$; clearly $m=2$ implies that $n=1$, so P is extra special. If P is the quaternion group of order 8 , of course Aut (P) is solvable and has only two orbits on P^{*}; this is the case (v), $n=1$, of our main theorem. If P is odd and

$$
P=\left\langle x, y, z \mid x^{p}=y^{p}=z^{p}=1,[x, y]=z, x z=z x, y z=z y\right\rangle
$$

choose a matrix

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \epsilon G L(2, p)
$$

of order $p^{2}-1$; such a matrix exists by Theorem II.7.3 of [3]. Then we find that $x^{\alpha}=x^{a} y^{b}, y^{\alpha}=x^{c} y^{d}, z^{\alpha}=z^{a d-b c}$ defines an automorphism α of P which is transitive on $\left(P / P^{\prime}\right)^{*}$ and $P^{\prime *}$. If I is the inner automorphism group of P, then $\langle\alpha\rangle I$ is transitive on $P-P^{\prime}$ and $P^{\prime *}$, so P is one of the groups of our theorem. $\quad P$ is the case (vi) of our main theorem, $n=1$.

We may now assume $m>2$. Since H is transitive on $\left(P / P^{\prime}\right)^{*}$, we know by [4] that either H is a subgroup of the group of semilinear transformations of P / P^{\prime}, or else $\left|P / P^{\prime}\right|=3^{4}$ and H is one of the three specific exceptional groups described in [4]. In particular, we know $|H| \mid 2^{7} \cdot 5 . \quad H$ is also transitive on $P^{\prime *}$ and $\left|P^{\prime}\right|=3^{n}$, so certainly $n=1,2$, or 4 . We shall discuss these three possibilities, and afterward study the general case when H is a subgroup of the group of semilinear transformations on P / P^{\prime}.

If $\left|P / P^{\prime}\right|=3^{4}, H$ is an exceptional group of [4], and $n=2$ or $n=4$, denote $N=\left\{h \in H \mid h\right.$ is trivial on $\left.P^{\prime *}\right\}$. We see $N \triangleleft H$, and H / N is transitive on $P^{\prime *}$. By $[4],|Z(H)|=2$; let $Z(H)=\langle w\rangle$. If $x, y \in P-P^{\prime}$ satisfy $[x, y] \neq 1$, then $\left(x P^{\prime}\right)^{w}=x^{2} P^{\prime},\left(y P^{\prime}\right)^{w}=y^{2} P^{\prime}$, so $[x, y]^{w}=\left[x^{w}, y^{w}\right]=\left[x^{2}, y^{2}\right]=[x, y]^{4}=$ $[x, y]$; this proves that $Z(H)$ is trivial on $P^{\prime}, Z(H) \subseteq N$. We then see that in the case $n=4, H / N$ cannot be transitive on P^{\prime} by [4], so this case does not occur. In the case $n=2$, all 5 -elements of H are in N, and we see by [4] that $|H / N| \leqq 4$. Thus H / N cannot be transitive on $P^{* *}$, and this case $n=2$ does not occur either.

If $\left|P / P^{\prime}\right|=3^{4}, n=1, H$ an exceptional group of [4], then P is extra special. This case does occur, and is case (vii) of the main Theorem. To see this, we
can use the matrices given by Huppert on page 127 of [4]. Let P be extra special of order 3^{5} and exponent 3, with generators x, y, u, v, z and relations $\langle z\rangle=Z(P), x y=y x, x v=v x, y u=u y, u v=v u,[x, u]=[y, v]=z$. Then we can define automorphisms A, B, C, D, F, G of P as follows: $x^{4}=y, y^{A}=x^{2}$, $u^{A}=v, v^{A}=u^{2}, z^{A}=z ; x^{B}=x, y^{B}=y^{2}, u^{B}=u, v^{B}=v^{2}, z^{B}=z ; x^{C}=x u$, $y^{C}=y v, u^{C}=x u^{2}, v^{C}=y v^{2}, z^{C}=z ; x^{D}=u^{2}, y^{D}=v^{2}, u^{D}=x, v^{D}=y, z^{D}=z ;$ $x^{F}=x^{2} y u v, y^{F}=x^{2} y^{2} u v^{2}, u^{F}=y u, v^{F}=y^{2} u, z^{F}=z ; x^{G}=x u, y^{G}=v^{2}, u^{G}=x^{2} u$, $v^{G}=y^{2}, z^{G}=z^{2}$. Denote $H=\langle A, B, C, D, F, G\rangle, I=$ group of inner automorphisms of P. Then we see from [4] that H is solvable, transitive on $\left(P / P^{\prime}\right)^{*}$ and $P^{\prime *}$. I is certainly transitive on $w P^{\prime}$ for any $w \in P-P^{\prime}$, so we conclude that $H I$ is transitive on $P-P^{\prime}$ and $P^{\prime *}$.

Now returning to the general case, we have $p^{m}=\left|P / P^{\prime}\right|>p^{2}$, where H is a subgroup of the group of semilinear transformations on P / P^{\prime}. This means that $|H|$ divides $m\left(p^{m}-1\right)$, and H has a cyclic normal subgroup $\langle\xi\rangle$ such that $|H:\langle\xi\rangle| \mid m$. Since H is transitive on $\left(P / P^{\prime}\right)^{*}$, we see that $|\langle\xi\rangle|$ is divisible by $\left(p^{m}-1\right) /\left(m, p^{m}-1\right) . \quad H$ is certainly a primitive linear group on $\left(P / P^{\prime}\right)$. Therefore, by Clifford's Theorem, P / P^{\prime} is a direct sum of faithful isomorphic irreducible $\langle\xi\rangle$-modules. If P / P^{\prime} is not irreducible as a $\langle\xi\rangle$-module, then we see that $|\langle\xi\rangle|$ divides $p^{k}-1$, some $k<m$. Therefore $|H|$ divides $m\left(p^{k}-1\right)$, and since H is transitive on $\left(P / P^{\prime}\right)^{*}$ we have $\left(p^{m}-1\right) \mid m\left(p^{k}-1\right)$. By Lemma 1, this is a contradiction, except possibly when $p^{m}=2^{6}$. If $p^{m}=2^{6}$, we find that 63 divides $6\left(2^{k}-1\right), k<6$; this is also impossible. We have proved that P / P^{\prime} is in all cases an irreducible $\langle\xi\rangle$-module.

Let λ be an eigenvalue of ξ on P / P^{\prime}. Then ξ has the m distinct eigenvalues $\lambda, \lambda^{p}, \cdots, \lambda^{p^{m-1}}$; and $|\langle\lambda\rangle|=|\langle\xi\rangle|$. Here we see $G F(p)[\lambda]=G F\left(p^{m}\right)$. Following [2], we now choose a conjugate basis $u_{0}, u_{1}, \cdots, u_{m-1}$ for P / P^{\prime} adapted to ξ. This means that $u_{0}, u_{1}, \cdots, u_{m-1}$ are a basis for $P / P^{\prime} \otimes G F\left(p^{m}\right)$ over $G F\left(p^{m}\right)$, satisfying $u_{i} \xi=\lambda^{p^{i}} u_{i}$; and that if $\langle\sigma\rangle, \sigma: x \rightarrow x^{p}$, is the Galois group of $G F\left(p^{m}\right)$, then $u_{0}^{\sigma}=u_{1}, \cdots, u_{m-2}^{\sigma}=u_{m-1}, u_{m-1}^{\sigma}=u_{0}$.

This implies that the elements of P / P^{\prime} in $P / P^{\prime} \otimes G F\left(p^{m}\right)$ are precisely the elements $\sum_{i=0}^{m-1} \alpha^{p^{i}} u_{i}, \alpha \in G F\left(p^{m}\right)$. Denote $\bar{\alpha}=\sum_{i=0 \mid}^{m-1} \alpha^{p^{i}} u_{i}$. We see that

$$
\bar{\alpha} \xi=\left(\sum_{i=0}^{m-1} \alpha^{p^{i}} u_{i}\right) \xi=\sum_{i=0}^{m-1} \alpha^{p^{i}} \lambda^{p^{i}} u_{i}=\sum_{i=0}^{m-1}(\alpha \lambda)^{p^{i}} u_{i}=\overline{\lambda \alpha},
$$

so ξ acts on P / P^{\prime} as a multiplication by λ.
Let L be the Lie ring of $P, L \otimes G F\left(p^{m}\right)$ its extension to $G F\left(p^{m}\right)$, so that $L \otimes G F\left(p^{m}\right)=\left(P / P^{\prime} \otimes G F\left(p^{m}\right)\right) \oplus\left(P^{\prime} \otimes G F\left(p^{m}\right)\right)$. The map

$$
[\quad, \quad]:\left(P / P^{\prime} \otimes G F\left(p^{m}\right)\right) \times\left(P / P^{\prime} \otimes G F\left(p^{m}\right)\right) \rightarrow P^{\prime} \otimes G F\left(p^{m}\right)
$$

obtained by extending the commutator map is bilinear. We have

$$
\left[u_{i}, u_{j}\right] \xi=\left[u_{i} \xi, u_{j} \xi\right]=\left[\lambda^{p^{i}} u_{i}, \lambda^{p^{j}} u_{j}\right]=\lambda^{p^{i}+p^{i}}\left[u_{i}, u_{j}\right]
$$

so either $\left[u_{i}, u_{j}\right]=0$ or $\lambda^{p^{i}+p^{i}}$ is an eigenvalue of ξ on P^{\prime}. Of course, for any i, j we have $\left[u_{j}, u_{i}\right]=-\left[u_{i}, u_{j}\right]$ (which equals $\left[u_{i}, u_{j}\right]$ if $p=2$).
H is transitive on $P^{\prime *}$, so H is certainly a primitive (not necessarily faithful) linear group on P^{\prime}. Hence P^{\prime} is a direct sum of isomorphic, irreducible (not necessarily faithful) $\langle\xi\rangle$-modules.
$\left[u_{0}, u_{r}\right] \xi=\lambda^{1+p^{r}}\left[u_{0}, u_{r}\right]$; applying σ^{i}, this equation implies that $\left[u_{i}, u_{i+r}\right] \xi=$ $\lambda^{p^{i}\left(1+p^{r}\right)}\left[u_{i}, u_{i+r}\right]$; here the subscripts are taken modulo m. P is not abelian, so some $\left[u_{2}, u_{j}\right]$ is not 0 , and some $\left[u_{0}, u_{r}\right] \neq 0$; we choose $r>0$ minimal such that $\left[u_{0}, u_{r}\right] \neq 0$. Thus $\lambda^{1+p^{r}}$ is an eigenvalue of ξ on P^{\prime}, and all eigenvalues of ξ on P^{\prime} have form $\lambda^{p^{\varepsilon}\left(1+p^{r}\right)}, 0 \leq s<n$. Since $\left[u_{r}, u_{0}\right] \neq 0$, we can apply σ^{m-r} and see that $\left[u_{0}, u_{m-r}\right] \neq 0$; this proves that $m-r \geq r$, so $0<r \leq \frac{1}{2} m$.

In any case, $\left(\lambda^{1+p^{r}}\right)^{\left(p^{n-1)}\right.}=1$, which implies that $\left(p^{m}-1\right) /\left(m, p^{m}-1\right)$ divides $\left(1+p^{r}\right)\left(p^{n}-1\right)$. If $p^{m}=2^{6}$, then this asserts that 21 divides $\left(1+2^{r}\right)\left(2^{n}-1\right)$, where $r=1,2$ or 3 . Any of these imply $7 \mid\left(2^{n}-1\right)$, so $n=3$ or $n=6$; for $n=3$, we have $r=1$ or 3 . If $p^{m} \neq 2^{6}$, let q be the prime of Lemma $1 ; q>m$, so $q \nmid\left(m, p^{m}-1\right)$, and we see that $q \mid\left(p^{n}-1\right)$ or $q \mid\left(1+p^{r}\right)$. If $q \mid\left(p^{n}-1\right)$, then $m \mid n$; since $|H|$ divides $m\left(p^{m}-1\right)$ and H is transitive on $P^{\prime *}$, we see that $n=m$.

Now suppose that $p^{m} \neq 2^{6}$ and $q \mid\left(1+p^{r}\right)$. Then $q \mid\left(p^{2 r}-1\right)$, so we must have $m \mid 2 r$; but $r \leq \frac{1}{2} m$, so we see $2 r=m$. Corresponding to the three cases of Lemma 1, we consider the three possibilities for p^{r}. If $p^{r}=2^{6}$, then $m=12$, and we see that 1365 divides $65\left(2^{n}-1\right)$. In particular, $21 \mid\left(2^{n}-1\right)$, so $n=6$ or $n=12$. If $p^{r}=p^{2}$ for a Mersenne prime p, then we see that $\left(p^{4}-1\right) / 4$ divides $\left(p^{2}+1\right)\left(p^{n}-1\right) .|H|$ divides $4\left(p^{4}-1\right)$ and H is transitive on $P^{\prime *}$, so $\left(p^{n}-1\right) \mid 4\left(p^{4}-1\right)$. These two relations imply that $n=2$ or $n=4$, or $n=1$ with $p=3$. The group with $p=3, m=4, n=1$ is unique and has been shown to be case (vii) of the theorem, so we can assume $n=2=r$ or $n=4=m$. Finally, suppose that a prime q_{0} divides $p^{r}-1, q_{0} \nmid\left(p^{t}-1\right)$ for $t<r$. In particular, $q_{0} \nmid 2 r, 2 r=m$, and $q_{0} \npreceq\left(p^{r}+1\right)$, so we must have $q_{0} \mid\left(p^{n}-1\right)$. Therefore $r \mid n$, so $r=n$ or $n=m$.

We have shown that three cases must be studied: (1) $n=r=\frac{1}{2} m$; (2) $m=n$; (3) $p=2, m=6, n=3, r=1$.

Case 1. Here, the only $\left[u_{i}, u_{j}\right] \neq 0$ must be $\left[u_{0}, u_{n}\right],\left[u_{1}, u_{n+1}\right], \cdots$, [$u_{n-1}, u_{2 n-1}$] and their negatives $\left[u_{n}, u_{0}\right]$, $\left[u_{n+1}, u_{1}\right], \cdots,\left[u_{2 n-1}, u_{n-1}\right]$. If ξ were reducible on P^{\prime}, then for some $t<n, t \mid n$, we have $\lambda^{\left(1+p^{r}\right)\left(p^{t-1)}\right.}=0$. $\left(p^{2 n}-1\right) /\left(2 n, p^{2 n}-1\right)$ divides $\left(1+p^{n}\right)\left(p^{t}-1\right)$, or in other words

$$
\left(p^{n}-1\right) \mid\left(2 n, p^{2 n}-1\right)\left(p^{t}-1\right)
$$

This relation is impossible if $p^{n}=2^{6}$, and so must contradict Lemma 1 unless $n=2$. When $n=2$ we have $t=1$, and the relation implies $p=3$. Thus, except for the possibility $p=3, n=2, t=1$, we have ξ irreducible on P^{\prime}.

We shall show that this possibility is not really an exception. If it occurs, then $\left|P / P^{\prime}\right|=3^{4},\left|P^{\prime}\right|=3^{2}$, and ξ fixes two 1-dimensional subspaces of P^{\prime}. Here, $|H:\langle\xi\rangle|$ divides 4. If λ is an eigenvalue of ξ on P / P^{\prime}, then $|\langle\lambda\rangle|=$ $|\langle\xi\rangle| ; \lambda^{1+3^{2}}=\lambda^{10}$ is an eigenvalue of ξ on P^{\prime}, so $\lambda^{10}= \pm 1$, and we see $|\langle\xi\rangle| \mid 20$.

We must therefore have $|H|=80,|\langle\xi\rangle|=20,|H:\langle\xi\rangle|=4$, and ξ^{2} trivial on P^{\prime}. This forces $H /\left\langle\xi^{2}\right\rangle$ to be regular on P^{*}, so $H /\left\langle\xi^{2}\right\rangle$ is cyclic or quaternion. $\xi\left\langle\xi^{2}\right\rangle=-1 \epsilon Z\left(H /\left\langle\xi^{2}\right\rangle\right)$, so $\left(H /\left\langle\xi^{2}\right\rangle\right) /\left(\langle\xi\rangle /\left\langle\xi^{2}\right\rangle\right)$ is cyclic of order 4. We conclude that $H /\left\langle\xi^{2}\right\rangle$ is cyclic; this forces H to be cyclic, say $H=\left\langle\xi_{0}\right\rangle$. Replacing ξ by ξ_{0}, we see that since P^{\prime} is an irreducible $\left\langle\xi_{0}\right\rangle$-module, P satisfies Case 1 where P^{\prime} is an irreducible $\langle\xi\rangle$-module.

Returning to the general Case 1, we have seen that $\lambda^{1+p^{n}}$ is an eigenvalue of ξ on P^{\prime}. Let $v_{0}, v_{1}, \cdots, v_{n-1}$ be a conjugate basis for P^{\prime} adapted to ξ, so that $v_{i} \xi=\lambda^{\left(1+p^{n}\right) p^{i}} v_{i} . \quad\left[u_{0}, u_{n}\right]$ and v_{0} are both in the one-dimensional subspace

$$
\left\{v \in P^{\prime} \otimes G F\left(p^{m}\right) \mid v \xi=\lambda^{1+p^{n}} v\right\}
$$

so we may choose $\varepsilon \epsilon G F\left(p^{2 n}\right)$ such that $\left[u_{0}, u_{n}\right]=\varepsilon v_{0}$. Applying σ to this equation repeatedly, we get equations

$$
\left[u_{1}, u_{n+1}\right]=\varepsilon^{p} v_{1}, \cdots,\left[u_{n-1}, u_{2 n-1}\right]=\varepsilon^{p^{n-1}} v_{n-1},
$$

$\left[u_{n}, u_{0}\right]=\varepsilon^{p^{n}} v_{0}, \quad\left[u_{n+1}, u_{1}\right]=\varepsilon^{p^{n+1}} v_{1}, \cdots,\left[u_{2 n-1}, u_{n-1}\right]=\varepsilon^{p^{2 n-1}} v_{v_{n-1}}$. Since $\left[u_{0}, u_{n}\right]=-\left[u_{n}, u_{0}\right]$, we see that $0=\left(\varepsilon^{p^{n}}+\varepsilon\right) v_{0}$. Therefore $\varepsilon^{p^{n}}+\varepsilon=0$, and ε must be an element of $G F\left(p^{2 n}\right)$ with trace 0 over $G F\left(p^{n}\right)$. If $p=2$, such elements are found in $G F\left(p^{n}\right)$; if $p \neq 2$, such elements are always available outside $G F\left(p^{n}\right)$.

If $\alpha \in G F\left(p^{n}\right)$, denote $\{\alpha\}=\sum_{i=0}^{n-1} \alpha^{p^{i}} v_{i} \in P^{\prime}$. We can now compute the commutator $[\bar{\alpha}, \bar{\beta}]$ of any two elements $\bar{\alpha}=\sum_{i=0}^{2 n-1} \alpha^{p^{i}} u_{i}, \bar{\beta}=\sum_{i=0}^{2 n-1} \beta^{p^{i}} u_{i}$ of P / P^{\prime}.

$$
\begin{aligned}
{[\bar{\alpha}, \bar{\beta}] } & =\sum_{i=0}^{2 n-1} \sum_{j=0}^{2 n-1} \alpha^{p^{i}} \beta^{p^{i}}\left[u_{i}, u_{j}\right] \\
& =\sum_{i=0}^{n-1} \alpha^{p^{i}} \beta^{p^{p^{n+i}}}\left[u_{i}, u_{n+i}\right]+\sum_{i=0}^{n-1} \alpha^{p^{j+n}} \beta^{p^{j}}\left[u_{j+n}, u_{j}\right] \\
& =\sum_{i=0}^{n-1}\left(\alpha^{p^{i}} \beta^{p^{n+i}}-\alpha^{p^{n+i}} \beta^{p^{i}}\right)\left[u_{i}, u_{n+i}\right] \\
& =\sum_{i=0}^{n-1}\left(\alpha \beta^{p^{n}}-\alpha^{p^{n}} \beta\right)^{p^{i}} \varepsilon^{p^{i}} v_{i}=\left\{\left(\alpha \beta^{p^{n}}-\alpha^{p^{n}} \beta\right) \varepsilon\right\} \in P^{\prime} .
\end{aligned}
$$

Let $\theta: x \rightarrow x^{p^{n}}$ be the Galois automorphism of $G F\left(p^{2 n}\right)$ over $G F\left(p^{n}\right)$. We have shown that $[\bar{\alpha}, \bar{\beta}]=\left\{\left(\alpha \beta^{\theta}-\alpha^{\theta} \beta\right) \varepsilon\right\}$.

Assume now, here in Case 1, that p is odd, so that P has exponent p. Let $x_{1}, x_{2}, \cdots, x_{2 n}$ generate P, z_{1}, \cdots, z_{n} generate P^{\prime}. We can then choose $\alpha_{i} \in G F\left(p^{2 n}\right), \beta_{i} \in G F\left(p^{n}\right)$ such that $x_{i}=\sum_{j=0}^{2 n-1} \alpha_{i}^{p i} u_{j}, z_{i}=\sum_{j=0}^{n-1} \beta_{i}^{p^{j}} v_{j}$. We see that $\left\{\alpha_{i}\right\}$ is a basis of $G F\left(p^{2 n}\right),\left\{\beta_{i}\right\}$ a basis of $G F\left(p^{n}\right)$ as additive vector spaces over $G F(p)$. Every element of P has a unique expression $x_{1}^{i_{1}} x_{2}^{i_{2}} \ldots$ $x_{2 n}^{i_{2 n}} z_{1}^{j_{1}} \cdots z_{n}^{j_{n}}$, where all $0 \leq i_{k}, j_{l} \leq p-1$. We can multiply two such expressions if we can identify $x_{k} x_{l}, l<k$. But $x_{k} x_{l}=x_{l} x_{k}\left[x_{k}, x_{l}\right]$, and $\left[x_{k}, x_{l}\right]$ $=\left[\bar{\alpha}_{k}, \bar{\alpha}_{l}\right]=\left\{\left(\alpha_{k} \alpha_{l}^{\theta}-\alpha_{l} \alpha_{k}^{\theta}\right)\right\}$ is well defined in P^{\prime}, using the basis $\left\{\beta_{i}\right\}$. This shows that the isomorphism class of P is given by our knowledge of commutators, and for given ε, p, n there is at most one P.

For any odd p, ε, and $n \geq 1$, we now claim that P does exist and have such
an automorphism group. Choose $\varepsilon \epsilon G F\left(p^{2 n}\right)$ with $\varepsilon+\varepsilon^{p^{n}}=0$, let $\theta: x \rightarrow x^{p^{n}}$, and define P by

$$
\begin{aligned}
P=\left\{(\alpha, \zeta) \in G F\left(p^{2 n}\right) \times G F\left(p^{n}\right) \mid(\alpha, \zeta)\right. & (\beta, \eta) \\
& \left.=\left(\alpha+\beta, \zeta+\eta+\frac{1}{2}\left(\alpha \beta^{\theta}-\alpha^{\theta} \beta\right) \varepsilon\right)\right\}
\end{aligned}
$$

One easily verifies that P is a group of exponent p, and satisfies

$$
[(\alpha, \zeta),(\beta, \eta)]=\left(0,\left(\alpha \beta^{\theta}-\alpha^{\theta} \beta\right) \varepsilon\right)
$$

Choose $\lambda \epsilon G F\left(p^{2 n}\right)$ such that $|\langle\lambda\rangle|=p^{2 n}-1$. Then $\lambda^{1+\theta}=\lambda^{1+p^{n}} \epsilon G F\left(p^{n}\right)$ has order $p^{n}-1$. We define $\psi: P \rightarrow P$ by $(\alpha, \zeta) \psi=\left(\lambda \alpha, \lambda^{1+\theta} \zeta\right) . \psi$ is an automorphism of P, because

$$
\begin{aligned}
\{(\alpha, \zeta)(\beta, \eta)\} \psi & =\left(\alpha+\beta, \zeta+\eta+\frac{1}{2}\left(\alpha \beta^{\theta}-\alpha^{\theta} \beta\right) \varepsilon\right) \psi \\
& =\left(\lambda \alpha+\lambda \beta, \lambda^{1+\theta} \zeta+\lambda^{1+\theta} \eta+\frac{1}{2} \lambda^{1+\theta}\left(\alpha \beta^{\theta}-\alpha^{\theta} \beta\right) \varepsilon\right) \\
& =\left(\lambda \alpha, \lambda^{1+\theta} \zeta\right)\left(\lambda \beta, \lambda^{1+\theta} \eta\right)=\{(\alpha, \zeta) \psi\}\{(\beta, \eta) \psi\}
\end{aligned}
$$

It is clear that ψ is transitive on $\left(P / P^{\prime}\right)^{*}$ and $P^{\prime *}$.
We see that

$$
C_{P}((\alpha, \zeta))=\left\{(\beta, \eta) \mid \alpha \beta^{\theta}-\alpha^{\theta} \beta=0\right\}=\left\{(\beta, \eta) \mid \alpha \beta^{\theta} \in G F\left(p^{n}\right)\right\}
$$

which implies that $\left|C_{P}((\alpha, \zeta))\right|=p^{2 n}$ for any $(\alpha, \zeta) \in P-P^{\prime}$. Therefore the group I of inner automorphisms of P is transitive on each coset $(\alpha, \zeta) P^{\prime} \neq P^{\prime}$. We conclude that $I\langle\psi\rangle$ is a solvable group of automorphisms of P, transitive on $P-P^{\prime}$ and $P^{\prime *}$.

We finally remark that P does not depend on the choice of ε. For if $\varepsilon_{1}, \varepsilon_{2}$ are two nonzero solutions of the equation $X^{p^{n}}+X=0$ in $G F\left(p^{2 n}\right)$, then we must have $\varepsilon_{2}=\gamma \varepsilon_{1}$, where $\gamma \in G F\left(p^{n}\right)$ and $\gamma^{\theta}=\gamma$. Let
$P_{1}=\left\{(\alpha, \zeta) \left\lvert\,(\alpha, \zeta)(\beta, \eta)=\left(\alpha+\beta, \zeta+\eta+\frac{1}{2}\left(\alpha \beta^{\theta}-\alpha^{\theta} \beta\right) \varepsilon_{1}\right)\right.\right\}$,
$P_{2}=\left\{(\alpha, \zeta) \left\lvert\,(\alpha, \zeta)(\beta, \eta)=\left(\alpha+\beta, \zeta+\eta+\frac{1}{2}\left(\alpha \beta^{\theta}-\alpha^{\theta} \beta\right) \gamma \varepsilon_{1}\right)\right.\right\}$.
We may choose $\tau \in G F\left(p^{2 n}\right)$ such that $\tau^{1+\theta}=\gamma$. If we define $\psi: P_{2} \rightarrow P_{1}$ by $(\alpha, \zeta) \psi=(\tau \alpha, \zeta)$, it is easy to verify that ψ is an isomorphism. The group P is the group $C(p, n)$, case (vi) of our theorem.

We still must study $p=2$ in Case 1. Here we know that ξ is irreducible on P^{\prime}, and all elements of $P-P^{\prime}$ have order 4. If $u_{0}, u_{1}, \cdots, u_{2 n-1}$ is our conjugate basis for P / P^{\prime} adapted to ξ, we see that $\left[u_{0}, u_{n}\right]^{]^{n}}=\left[u_{n}, u_{0}\right]=\left[u_{0}, u_{n}\right]$. Therefore $v_{0}=\left[u_{0}, u_{n}\right], v_{1}=\left[u_{1}, u_{n+1}\right], \cdots, v_{n-1}=\left[u_{n-1}, u_{2 n-1}\right]$ is a conjugate basis for P^{\prime} adapted to ξ. These bases satisfy $u_{i} \xi=\lambda^{2^{i}} u_{i}, v_{i} \xi=\lambda^{\left(1+2^{n}\right) 2^{i}} v_{i}$.

We again denote $\bar{\alpha}=\sum_{i=0}^{2 n-1} \alpha^{2^{i}} u_{i} \in P / P^{\prime},\{\gamma\}=\sum_{i=0}^{n-1} \gamma^{2^{i}} v_{i} \in P^{\prime}$. Our calculation of $[\bar{\alpha}, \bar{\beta}]$ shows that $[\bar{\alpha}, \bar{\beta}]=\left\{\alpha \beta^{\theta}+\alpha^{\theta} \beta\right\}$. This relation is not sufficient to provide defining relations for P, since we need to know x^{2} for any
$x \in P-P^{\prime}$. In P, we have the relations $(x \xi)^{2}=\left(x^{2}\right) \xi$ and $(x y)^{2}=x^{2} y^{2}[x, y]$. Let $\varphi: P / P^{\prime} \rightarrow P^{\prime}$ be the $\operatorname{map} \varphi: x P^{\prime} \rightarrow x^{2}$. φ satisfies the relations $(\bar{\alpha} \varphi) \xi=(\bar{\alpha} \xi) \varphi$ and $(\bar{\alpha}+\bar{\beta}) \varphi=\bar{\alpha} \varphi+\bar{\beta} \varphi+[\bar{\alpha}, \bar{\beta}]$. Following [2], we shall show these relations completely determine φ. For if $\psi: P / P^{\prime} \rightarrow P^{\prime} \otimes G F\left(2^{2 n}\right)$ also satisfies these relations, we see by subtraction that $\varphi-\psi$ is a ξ-homomorphism. By irreducibility of P / P^{\prime}, this implies that either $(\varphi-\psi)\left(P / P^{\prime}\right)$ is ξ-isomorphic to P / P^{\prime}, or else $\varphi=\psi$. ξ-isomorphism is impossible since the eigenvalues $\lambda^{2^{i}(1+2 n)}$ of ξ on $P^{\prime} \otimes G F\left(2^{2 n}\right)$ are different from the eigenvalues $\lambda^{2 i}$ of ξ on P / P^{\prime}. Therefore φ is unique.

We now claim that φ is the map $\bar{\alpha} \varphi=\left\{\alpha^{1+\theta}\right\}$. Consider any $\gamma \in G F\left(2^{n}\right)$, and choose $\alpha, \beta \in G F\left(2^{2 n}\right)$ with $\alpha \beta^{\theta}+\alpha^{\theta} \beta=\gamma$ (this must be possible, since every element in P^{\prime} is a commutator). Then

$$
\begin{aligned}
\{\gamma\} \xi & =[\bar{\alpha}, \bar{\beta}] \xi=[\bar{\alpha} \xi, \bar{\beta} \xi]=[\overline{\lambda \alpha}, \overline{\lambda \beta}] \\
& =\left\{(\lambda \alpha)(\lambda \beta)^{\theta}+(\lambda \alpha)^{\theta}(\lambda \beta)\right\}=\left\{\lambda^{1+\theta} \gamma\right\} .
\end{aligned}
$$

For any $\alpha, \beta \in G F\left(2^{2 n}\right)$, we now see

$$
(\bar{\alpha} \varphi) \xi=\left\{\alpha^{1+\theta}\right\} \xi=\left\{\lambda^{1+\theta} \alpha^{1+\theta}\right\}=\left\{(\lambda \alpha)^{1+\theta}\right\}=(\overline{\lambda \alpha}) \varphi=(\bar{\alpha} \xi) \varphi
$$

Also

$$
\begin{aligned}
(\bar{\alpha}+\bar{\beta}) \varphi & =(\alpha+\beta)^{-} \varphi=\left\{(\alpha+\beta)^{1+\theta}\right\}=\left\{\alpha \alpha^{\theta}+\alpha \beta^{\theta}+\alpha^{\theta} \beta+\beta \beta^{\theta}\right\} \\
& =\left\{\alpha^{1+\theta}\right\}+\left\{\beta^{1+\theta}\right\}+\left\{\alpha \beta^{\theta}+\alpha^{\theta} \beta\right\}=\bar{\alpha} \varphi+\bar{\beta} \varphi+[\bar{\alpha}, \bar{\beta}] .
\end{aligned}
$$

We have shown that for any $x P^{\prime}=\bar{\alpha} \in P / P^{\prime}$, we have $x^{2}=\left\{\alpha^{1+\theta}\right\} \in P^{\prime}$. Therefore P is completely determined, and for any $n, p=2$, Case 1 provides at most one group P.

We do obtain such a group P. For any $n \geq 1$, choose $\mu \in G F\left(2^{2 n}\right)$ of order $2^{n}+1$, and define

$$
\begin{aligned}
P=\left\{(\alpha, \zeta) \in G F\left(2^{2 n}\right) \times G F\left(2^{n}\right) \mid\right. & (\alpha, \zeta)(\beta, \eta) \\
& \left.=\left(\alpha+\beta, \zeta+\eta+\alpha \beta^{2 n} \mu+\alpha^{2 n} \beta \mu^{-1}\right)\right\}
\end{aligned}
$$

Let $\theta: x \rightarrow x^{2^{n}}$, so $\mu+\mu^{-1}=\mu+\mu^{\theta}=\varepsilon \epsilon G F\left(2^{n}\right)$. It is easy to verify that P is a group and satisfies the relations

$$
(\alpha, \zeta)^{2}=\left(0, \alpha \alpha^{\theta} \varepsilon\right), \quad[(\alpha, \zeta),(\beta, \eta)]=\left(0,\left(\alpha \beta^{\theta}+\alpha^{\theta} \beta\right) \varepsilon\right)
$$

Choose $\lambda \in G F\left(2^{2 n}\right)$ such that $|\langle\lambda\rangle|=2^{2 n}-1$; then $\lambda^{1+\theta}$ satisfies $\left|\left\langle\lambda^{1+\theta}\right\rangle\right|=$ $2^{n}-1$. If we define $\psi: P \rightarrow P$ by $(\alpha, \zeta) \psi=\left(\lambda \alpha, \lambda^{1+\theta} \zeta\right)$, it is easy to verify that ψ is an automorphism of P, transitive on $\left(P / P^{\prime}\right)^{*}$ and $P^{* *}$. Just as in the case p odd, the group I of inner automorphisms of P is transitive on each $\operatorname{coset}(\alpha, \zeta) P^{\prime} \neq P^{\prime}$. Therefore $\langle\psi\rangle I$ is a solvable group of automorphisms of P, transitive on $P-P^{\prime}$ and $P^{\prime *} ; P$ is the group of case (v) in the main theorem.

Case 2. In this case, $m=n>2$, and the integer r is unknown except for the relation $0<r \leq \frac{1}{2} n$. Again we know that $|H|$ divides $n\left(p^{n}-1\right)$,
$|H:\langle\xi\rangle|$ divides n, and $\langle\xi\rangle \triangleleft H$, where $\left(p^{n}-1\right) /\left(n, p^{n}-1\right)$ divides $|\langle\xi\rangle|_{\text {. }}$ H is transitive on $P^{\prime *}$, so is certainly a primitive linear group, and P^{\prime} is a direct sum of isomorphic irreducible $\langle\xi\rangle$-modules. Let

$$
K=\left\{h \in H \mid h \text { is trivial on } P^{\prime}\right\}
$$

$\left|P^{\prime *}\right|=p^{n}-1$, so $\left(p^{n}-1\right)\left||H / K|\right.$; if P^{\prime} were not $\langle\xi\rangle$-irreducible, we would obtain a relation $|H / K| \mid n\left(p^{t}-1\right), t<n$. This contradicts Lemma 1 if $p^{n} \neq 2^{6}$ and is also impossible when $p^{n}=2^{6}$. We conclude that throughout Case 2, P^{\prime} is an irreducible $\langle\xi\rangle$-module.
r is the smallest positive integer such that $\left[u_{0}, u_{r}\right] \neq 0$. We have relations

$$
|\langle\lambda\rangle|=|\langle\xi\rangle|, \quad u_{i} \xi=\lambda^{p^{i}} u_{i}, \quad\left[u_{0}, u_{r}\right] \xi=\lambda^{1+p^{r}}\left[u_{0}, u_{r}\right] .
$$

If we have $2 r=n$, then $\lambda^{1+p^{r}} \epsilon G F\left(2^{r}\right)$ has only r distinct algebraic conjugates. But P^{\prime} is an irreducible $\langle\xi\rangle$-module and ξ must have $2 r=n$ distinct conjugate eigenvalues on P^{\prime}, so the case $2 r=n$ cannot occur, and $0<r<\frac{1}{2} n$.

For any i, j, suppose that $\left[u_{i}, u_{j}\right] \neq 0$. Then

$$
\left[u_{i}, u_{j}\right]=\lambda^{p^{i}+p^{i}}\left[u_{i}, u_{j}\right]
$$

so $\lambda^{p^{i}+p^{j}}$ must be one of the eigenvalues $\lambda^{p^{g}\left(1+p^{r}\right)}$ of ξ on P^{\prime}. We therefore have a congruence

$$
p^{i}+p^{j} \equiv p^{s}\left(1+p^{r}\right) \quad\left(\bmod \left(p^{n}-1\right) /\left(n, p^{n}-1\right)\right)
$$

Lemma 3 now implies that without exception, $i-j \equiv \pm r(\bmod n)$. The only $\left[u_{i}, u_{j}\right.$] which are not 0 are $\left[u_{0}, u_{r}\right],\left[u_{1}, u_{r+1}\right], \cdots,\left[u_{n-r-1}, u_{n-1}\right]$, $\left[u_{n-r}, u_{0}\right]$, $\left[u_{n-r+1}, u_{1}\right], \cdots,\left[u_{n-1}, u_{r-1}\right]$ and their negatives. We denote $\left[u_{0}, u_{r}\right]=v_{0}$, $\left[u_{1}, u_{r+1}\right]=v_{1}, \cdots,\left[u_{n-1}, u_{r-1}\right]=v_{n-1} . \quad\left\{v_{0}, v_{1}, \cdots, v_{n-1}\right\}$ must be a conjugate basis for P^{\prime} adapted to ξ, satisfying $v_{i} \xi=\lambda^{p^{i}\left(1+p^{r}\right)} v_{i}$. The elements of P^{\prime} are denoted, as before, by $\{\gamma\}=\sum_{i=0}^{n-1} \gamma^{p^{i}} v_{i}$; let θ denote the automorphism $\theta: x \rightarrow x^{p^{r}}$ of $G F\left(p^{n}\right)$.

We can now compute $[\bar{\alpha}, \bar{\beta}]$, for any pair of elements

$$
\bar{\alpha}=\sum_{i=0}^{n-1} \alpha^{p^{i}} u_{i}, \quad \bar{\beta}=\sum_{i=0}^{n-1} \beta^{p^{i}} u_{i}
$$

of P / P^{\prime}.

$$
\begin{aligned}
{[\bar{\alpha}, \bar{\beta}] } & =\sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \alpha^{p^{i}} \beta^{p^{i}}\left[u_{i}, u_{j}\right] \\
& =\sum_{i=0}^{n=1} \alpha^{p^{i}} \beta^{p^{i+r}} v_{i}-\sum_{j=0}^{n-1} \alpha^{p^{i+r}} \beta^{p^{i}} v_{j} \\
& =\sum_{i=0}^{n-1}\left(\alpha \beta^{\theta}-\alpha^{\theta} \beta\right)^{p^{i}} v_{i}=\left\{\alpha \beta^{\theta}-\alpha^{\theta} \beta\right\} .
\end{aligned}
$$

Assume first that p is odd. Then P is completely determined by the given commutator relation. We know that H is acting on P / P^{\prime} as a subgroup of the group of semilinear transformations on P / P^{\prime}. For any $\bar{\alpha} \epsilon P / P^{\prime}$, we know that $\bar{\alpha} \xi=(\lambda \alpha)^{-}$, so ξ acts on P / P^{\prime} as a multiplication by $\lambda . \quad P / P^{\prime}$ is an irreducible $\langle\xi\rangle$-module. We see, as in the proof of Theorem II.3.11 of [3], that if $h \in H$, then there exist $\tau \in G F\left(p^{n}\right)$ and $\sigma \in$ Aut $\left(G F\left(p^{n}\right)\right)$ satisfying $\bar{\alpha} h=$
$\left(\tau \alpha^{\sigma}\right)^{-}$, all $\bar{\alpha} \in P / P^{\prime}$. We can now compute the action of H on P^{\prime}. For any element $\left\{\alpha \beta^{\theta}-\alpha^{\theta} \beta\right\} \in P^{\prime}$ and such $h \in H$, we have

$$
\begin{aligned}
\left\{\alpha \beta^{\theta}-\alpha^{\theta} \beta\right\} h & =[\bar{\alpha}, \bar{\beta}] h=[\bar{\alpha} h, \bar{\beta} h]=\left[\left(\tau \alpha^{\sigma}\right)^{-},\left(\tau \beta^{\sigma}\right)^{-}\right] \\
& =\left\{\left(\tau \alpha^{\sigma}\right)\left(\tau \beta^{\sigma}\right)^{\theta}-\left(\tau \beta^{\sigma}\right)\left(\tau \alpha^{\sigma}\right)^{\theta}\right\}=\left\{\tau^{1+\theta}\left(\alpha \beta^{\theta}-\alpha^{\theta} \beta\right)^{\sigma}\right\}
\end{aligned}
$$

This shows that for any $\{\gamma\} \in P^{\prime}$ and any $h \in H,\{\gamma\} h$ has form $\left\{\tau^{1+p^{r}} \gamma^{\sigma}\right\}$, some $\tau \in G F\left(p^{n}\right)$, some $\sigma \in \operatorname{Aut}\left(G F\left(p^{n}\right)\right)$. Define

$$
K=\left\{\gamma \in G F\left(p^{n}\right) \mid \gamma^{\left(p^{n-1) / 2}\right.}=1\right\}
$$

Then $\tau \in G F\left(p^{n}\right)$ implies $\tau^{1+p^{r}} \in K$; therefore, $\gamma \in K$ implies $\tau^{1+p^{r}} \gamma^{\sigma} \in K$. This means H cannot be transitive on $P^{\prime *}$; we get no group satisfying our main theorem in Case 2 when p is odd.

Finally, assume $p=2$. The above methods again show that we get no group unless $\lambda^{1+p^{r}}$ is a primitive $\left(2^{n}-1\right)$-st root of unity. This occurs if and only if λ is a primitive $\left(2^{n}-1\right)$-st root of unity, and the automorphism $\theta: x \rightarrow x^{2^{r}}$ has odd order (see [2, p. 82]). We know $[\bar{\alpha}, \bar{\beta}]=\left\{\alpha \beta^{\theta}+\alpha^{\theta} \beta\right\}$, and just as in Case 1 we obtain the square mapping. We find that if $x P^{\prime}=\bar{\alpha} \epsilon P / P^{\prime}$, then $x^{2}=\left\{\alpha^{1+\theta}\right\} \in P^{\prime}$.

We have obtained the Suzuki 2-groups $P=A(n, \theta)$ of [2]. If $|\langle\lambda\rangle|=2^{n}-1$ and ψ is the automorphism $\psi:(\alpha, \zeta) \rightarrow\left(\lambda \alpha, \lambda^{1+\theta} \zeta\right)$ of [2], then ψ is clearly transitive on $\left(P / P^{\prime}\right)^{*}$ and $P^{\prime *}$. Let

$$
T=\left\{a \in \operatorname{Aut}(P) \mid a \text { is trivial on } P^{\prime} \text { and } P / P^{\prime}\right\}
$$

Then the p-group T is transitive on every $\operatorname{coset} x P^{\prime} \neq P^{\prime}$. To see this, choose any $x \in P-P^{\prime}, z \in P^{\prime}$, and let

$$
P=\left\langle x=x_{1}, x_{2}, \cdots, x_{n}\right\rangle
$$

Then also $P=\left\langle\bar{x}_{1}=x z, \bar{x}_{2}=x_{2}, \cdots, \bar{x}_{n}=x_{n}\right\rangle$. The sets $\left\{x_{i}\right\}$ and $\left\{\bar{x}_{i}\right\}$ satisfy the same defining relations, so there exists $a \in T$ defined by $x_{i}^{a}=\bar{x}_{i}$, all i. We conclude that the solvable automorphism group $T\langle\psi\rangle$ is transitive on $P-P^{\prime}$ and $P^{\prime *}$, so $P=A(n, \theta)$ is case (iv) of our theorem.

Case 3. We still have this possibility $\left|P / P^{\prime}\right|=2^{6},\left|P^{\prime}\right|=2^{3},\left[u_{0}, u_{1}\right] \neq 0$. $|H:\langle\xi\rangle|$ divides 6 , and P^{\prime} is a sum of isomorphic faithful irreducible $\langle\xi\rangle$-modules. If they were one-dimensional, ξ would be trivial on P^{\prime}, an impossibility; therefore ξ is irreducible on P^{\prime}. Let λ be an eigenvalue of ξ on P / P^{\prime}. Then λ^{3} is an eigenvalue of ξ on P^{\prime}, so $\left(\lambda^{3}\right)^{7}=\lambda^{21}=1$, and irreducibility of ξ on P^{\prime} shows that indeed $|\langle\xi\rangle|=|\langle\lambda\rangle|=21$. The eigenvalues of ξ on P^{\prime} must be λ^{3}, $\left(\lambda^{3}\right)^{2}=\lambda^{6}$, and $\left(\lambda^{8}\right)^{4}=\lambda^{12}$. Using the fact $u_{i} \xi=\lambda^{2^{i}} u_{i}$, we see that the only $\left[u_{i}, u_{j}\right] \neq 0$ are $\left[u_{0}, u_{1}\right],\left[u_{1}, u_{2}\right],\left[u_{2}, u_{3}\right],\left[u_{3}, u_{4}\right],\left[u_{4}, u_{5}\right]$ and $\left[u_{0}, u_{5}\right]$ (here $\left[u_{i}, u_{j}\right]=\left[u_{j}, u_{i}\right]$.

Let $\left\{v_{0}, v_{1}, v_{2}\right\}$ be a conjugate basis for P^{\prime} adapted to ξ, so that $v_{i} \xi=\left(\lambda^{3}\right)^{2^{i}} v_{i}$, and choose $\varepsilon \in G F\left(2^{6}\right)$ such that $\left[u_{0}, u_{1}\right]=\varepsilon v_{0}$. Applying the automorphism $\sigma: x \rightarrow x^{2}$ of $G F\left(2^{6}\right)$ repeatedly, we find that $\left[u_{1}, u_{2}\right]=\varepsilon^{2} v_{1},\left[u_{2}, u_{3}\right]=\varepsilon^{4} v_{2}$,
$\left[u_{3}, u_{4}\right]=\varepsilon^{8} v_{0},\left[u_{4}, u_{5}\right]=\varepsilon^{16} v_{1},\left[u_{5}, u_{0}\right]=\varepsilon^{32} v_{2}$. We can now compute $[\bar{\alpha}, \bar{\beta}]$, for any $\bar{\alpha}, \bar{\beta} \in P / P^{\prime}$.

$$
\begin{aligned}
{[\bar{\alpha}, \bar{\beta}]=} & {\left[\sum_{i=0}^{\mathfrak{b}} \alpha^{2 i} u_{i}, \sum_{j=0}^{5} \beta^{2 i} u_{j}\right] } \\
= & \left(\alpha \beta^{2} \varepsilon+\alpha^{2} \beta \varepsilon+\alpha^{8} \beta^{16} \varepsilon^{8}+\alpha^{16} \beta^{8} \varepsilon^{5}\right) v_{0} \\
& +\left(\alpha^{2} \beta^{4} \varepsilon^{2}+\alpha^{4} \beta^{2} \varepsilon^{2}+\alpha^{16} \beta^{32} \varepsilon^{16}+\alpha^{32} \beta^{16} \varepsilon^{16}\right) v_{1} \\
& +\left(\alpha \beta^{32} \varepsilon^{32}+\alpha^{4} \beta^{8} \varepsilon^{4}+\alpha^{8} \beta^{4} \varepsilon^{4}+\alpha^{32} \beta \varepsilon^{32}\right) v_{2} .
\end{aligned}
$$

If we let θ denote the automorphism $\theta: x \rightarrow x^{8}$ of $G F\left(2^{6}\right)$, and $\{\gamma\}$ the element $\sum_{i=0}^{2} \gamma^{2^{i}} v_{i}$ of P^{\prime}, then this means

$$
[\bar{\alpha}, \bar{\beta}]=\left\{\left(\alpha \beta^{2}+\alpha^{2} \beta\right) \varepsilon+\left(\alpha \beta^{2}+\alpha^{2} \beta\right)^{\theta} \varepsilon^{\theta}\right\} .
$$

Just as in Case 1, we can show that the square mapping $\varphi: P / P^{\prime} \rightarrow P^{\prime}$ is the unique mapping satisfying $(\bar{\alpha} \varphi) \xi=(\bar{\alpha} \xi) \varphi$ and $(\bar{\alpha}+\bar{\beta}) \varphi=\bar{\alpha} \varphi+\bar{\beta} \varphi+[\bar{\alpha}, \bar{\beta}]$, all $\bar{\alpha}, \bar{\beta} \in P / P^{\prime}$. If we define $\bar{\alpha} \varphi=\alpha^{3} \varepsilon+\alpha^{36} \varepsilon^{\theta}$, and use the facts $\bar{\alpha} \xi=(\lambda \alpha)^{-}$, $\{\gamma\} \xi=\left\{\lambda^{3} \gamma\right\}$, and $\left(\lambda^{3}\right)^{\theta}=\lambda^{3}$, we find that $x P^{\prime}=\bar{\alpha}$ implies $x^{2}=\left\{\alpha^{3} \varepsilon+\alpha^{3 \theta} \varepsilon^{\theta}\right\}$.

The group P is now completely determined by knowledge of the square map; for each ε there is at most one group $P . \quad P$ does exist; if we define

$$
\begin{aligned}
P(\varepsilon)=\left\{(\alpha, \zeta) \in G F\left(2^{6}\right) \times G F\left(2^{3}\right) \mid\right. & (\alpha, \zeta)(\beta, \eta) \\
& \left.=\left(\alpha+\beta, \zeta+\eta+\alpha \beta^{2} \varepsilon+\alpha^{\theta} \beta^{2 \theta} \varepsilon^{\theta}\right)\right\}
\end{aligned}
$$

we see that $P(\varepsilon)$ is a group and satisfies the relations

$$
\begin{aligned}
(\alpha, \zeta)^{2} & =\left(0, \alpha^{3} \varepsilon+\alpha^{33} \varepsilon^{\theta}\right),[(\alpha, \zeta),(\beta, \eta)] \\
& =\left(0,\left(\alpha \beta^{2}+\alpha^{2} \beta\right) \varepsilon+\left(\alpha \beta^{2}+\alpha^{2} \beta\right)^{\theta} \varepsilon^{\theta}\right)
\end{aligned}
$$

If $\varepsilon^{21}=1$, then we can choose $\alpha \in G F\left(2^{6}\right)$ with $\alpha^{3}=\varepsilon^{2}$. We then have $\alpha^{3} \varepsilon+\alpha^{38} \varepsilon^{\theta}=\varepsilon^{3}+\varepsilon^{3 \theta}=0$ (since $\varepsilon^{3} \in G F\left(2^{3}\right)$). Thus some elements of $P(\varepsilon)-P(\varepsilon)^{\prime}$ have order 2, eliminating this case $\varepsilon^{21}=1$. Also, suppose $0 \neq \gamma \in G F\left(2^{3}\right)$. We can then choose $\tau \in G F\left(2^{6}\right)$ such that $\tau^{3}=\gamma$, and see that the map $\psi: P(\varepsilon \gamma) \rightarrow P(\varepsilon)$ given by $(\alpha, \zeta) \psi=(\tau \alpha, \zeta)$ is an isomorphism. Therefore the remaining $\varepsilon \in G F\left(2^{6}\right)$ such that $\varepsilon^{9}=1$ can be replaced by some $\varepsilon \gamma,|\langle\varepsilon \gamma\rangle|=63$. We may assume henceforth that $|\langle\varepsilon\rangle|=63$.
When $|\langle\varepsilon\rangle|=63$, define the mappings

$$
\psi: P(\varepsilon) \rightarrow P(\varepsilon) \text { and } \Phi: P(\varepsilon) \rightarrow P(\varepsilon)
$$

by $(\alpha, \zeta) \psi=\left(\lambda \alpha, \lambda^{3} \zeta\right),(\alpha, \zeta) \Phi=\left(\varepsilon \alpha^{4}, \zeta^{4}\right)$, where λ is any element of $G F\left(2^{6}\right)$ with $|\langle\lambda\rangle|=21$. We find that

$$
\{(\alpha, \zeta)(\beta, \eta)\} \psi=\{(\alpha, \zeta) \psi\}\{(\beta, \eta) \psi\}
$$

and

$$
\{(\alpha, \zeta)(\beta, \eta)\} \Phi=\{(\alpha, \zeta) \Phi\}\{(\beta, \eta) \Phi\}
$$

so ψ and Φ are automorphisms, obviously inducing a subgroup of the group of semilinear transformations on P / P^{\prime}. (Abbreviate $P=P(\varepsilon)$.) On P / P^{\prime}, the orbits of the map $\alpha \rightarrow \lambda \alpha$ induced by ψ are

$$
\left\{1, \varepsilon^{3}, \varepsilon^{6}, \cdots\right\}, \quad\left\{\varepsilon, \varepsilon^{4}, \varepsilon^{7}, \cdots\right\} \quad \text { and }\left\{\varepsilon^{2}, \varepsilon^{5}, \varepsilon^{8}, \cdots\right\}
$$

Since the map $\alpha \rightarrow \varepsilon \alpha^{4}$ induced by Φ sends $1 \rightarrow \varepsilon, \varepsilon \rightarrow \varepsilon^{5}$, we see that $\langle\Phi, \psi\rangle$ is transitive on $\left(P / P^{\prime}\right)^{*} .\langle\psi\rangle$ is in fact transitive on $P^{\prime *}$.
$(1,0) \in P-P^{\prime}$, and

$$
\begin{aligned}
C_{P}((1,0)) & =\left\{(\beta, \eta) \in P \mid\left(\beta+\beta^{2}\right) \varepsilon+\left(\beta+\beta^{2}\right)^{\theta} \varepsilon^{\theta}=0\right\} \\
& =\left\{(\beta, \eta) \in P \mid\left(\beta+\beta^{2}\right) \varepsilon \in G F\left(2^{3}\right)\right\}
\end{aligned}
$$

By looking at $G F\left(2^{6}\right)$, there are 2^{3} possibilities for β. Therefore $\left|C_{P}((1,0))\right|=2^{6} .\langle\Phi, \psi\rangle$ is transitive on $\left(P / P^{\prime}\right)^{*}$, so for any $\alpha \neq 0$, $\left|C_{P}((\alpha, \zeta))\right|=2^{6}$. This means that the inner automorphism group I of P is indeed transitive on any $(\alpha, \zeta) P^{\prime} \neq P^{\prime}$. We conclude that $\langle\Phi, \psi\rangle I$ is transitive on $P-P^{\prime}$ and $P^{\prime *} ; P=P(\varepsilon)$ is the group of case (viii) in our theorem.

This completes the proof of our main Theorem.
Remark. We shall finally show that the group $B(n)$ in case (v) of our main theorem is isomorphic to certain of the Suzuki 2 -groups in [2]. We refer to the groups $B(n, 1, \varepsilon)$, for certain ε, in [2]. Choose an element $\chi \in G F\left(2^{2 n}\right)$ such that $|\langle\chi\rangle|=2^{2 n}-1$, and set $\lambda=\chi^{2^{n+1}}, \mu=\chi^{2^{n-1}}$. Then $\lambda \in G F\left(2^{n}\right)$. The automorphism $\theta: x \rightarrow x^{2 n}$ of $G F\left(2^{2 n}\right)$ satisfies $\mu^{\theta}=\mu^{-1}$, so $\mu+\mu^{-1} \epsilon G F\left(2^{n}\right)$; let $\varepsilon=\mu+\mu^{-1}$. Then $\varepsilon \mu=\mu^{2}+1$, so $X^{2}+\varepsilon X+1=0$ is the irreducible polynomial for μ over $G F\left(2^{n}\right)$. If ε were equal to $\tau+\tau^{-1}$ for some $\tau \in G F\left(2^{n}\right)$, we would have $\tau \varepsilon=\tau^{2}+1$, contradicting the irreducibility of the polynomial. Therefore $\varepsilon \neq \tau+\tau^{-1}$, any τ, and $B(n, 1, \varepsilon)$ exists.

It is shown in [2] that if we find linear transformations

$$
\sigma: G F\left(2^{n}\right) \rightarrow G F\left(2^{n}\right) \text { and } \rho: G F\left(2^{n}\right) \times G F\left(2^{n}\right) \rightarrow G F\left(2^{n}\right) \times G F\left(2^{n}\right)
$$ satisfying the condition $\left(u_{\rho}\right)^{(2)}=u^{(2)} \sigma$, then $P=B(n, 1, \varepsilon)$ will have an automorphism ξ inducing ρ on P / P^{\prime} and σ on P^{\prime}. Here ${ }^{(2)}$ is the square mapping and satisfies $(\alpha, \beta)^{(2)}=\alpha^{2}+\varepsilon \alpha \beta+\beta^{2}$. We define σ by $\sigma: \zeta \rightarrow \lambda^{2} \zeta$.

To define ρ, we identify $(\alpha, \beta) \in G F\left(2^{n}\right) \times G F\left(2^{n}\right)$ with $\alpha+\beta \mu \in G F\left(2^{2 n}\right)$ and define $\rho:(\alpha, \beta) \rightarrow \lambda \mu(\alpha, \beta)$. We see that

$$
\begin{aligned}
(\alpha, \beta)_{\rho} & =\lambda \mu(\alpha+\beta \mu)=\lambda \alpha \mu+\lambda \beta \mu^{2} \\
& =\lambda \alpha \mu+\lambda \beta(1+\varepsilon \mu)=\lambda \beta+(\lambda \alpha+\varepsilon \lambda \beta) \mu
\end{aligned}
$$

Therefore $(\alpha, \beta) \rho=(\lambda \beta, \lambda \alpha+\varepsilon \lambda \beta)$. We find that

$$
\begin{aligned}
\left((\alpha, \beta)_{\rho}\right)^{(2)} & =\lambda^{2} \beta^{2}+\varepsilon \lambda \beta(\lambda \alpha+\varepsilon \lambda \beta)+\lambda^{2} \alpha^{2}+\varepsilon^{2} \lambda^{2} \beta^{2} \\
& =\lambda^{2}\left(\alpha^{2}+\varepsilon \alpha \beta+\beta^{2}\right)=\left((\alpha, \beta)^{(2)}\right) \sigma
\end{aligned}
$$

Therefore the automorphism ξ inducing ρ on P / P^{\prime} and σ on P^{\prime} exists. Since
$|\langle\lambda \mu\rangle|=2^{2 n}-1$ and $\left|\left\langle\lambda^{2}\right\rangle\right|=2^{n}-1, \xi$ is transitive on $\left(P / P^{\prime}\right)^{*}$ and $P^{\prime *}$. Suppose now that $(\alpha, \beta, \zeta) \in P-P^{\prime}$. Then $(\gamma, \delta, \eta) \in C_{P}((\alpha, \beta, \zeta))$ if and only if $\alpha \gamma+\varepsilon \alpha \delta+\beta \delta=\gamma \alpha+\varepsilon \gamma \beta+\delta \beta$, which holds if and only if $\alpha \delta=\beta \gamma$. Since $\alpha \neq 0$ or $\beta \neq 0$, this holds if and only if for some $\tau \in G F\left(2^{n}\right), \gamma=\tau \alpha$, $\delta=\tau \beta$. Therefore $\left|C_{P}((\alpha, \beta, \zeta))\right|=2^{2 n}$, which forces the inner automorphism group I of P to be transitive on $(\alpha, \beta, \zeta) P^{\prime}$.

We conclude that the solvable group $\langle\psi\rangle I$ is transitive on $P-P^{\prime}$ and $P^{\prime *}$. This forces $B(n, 1, \varepsilon)$ to be one of the groups of our main Theorem; at least for $n \neq 3$ the only possibility is the group $B(n)$ in case (v), so $B(n, 1, \varepsilon) \cong$ $B(n)$.

References

1. L. E. Dickson, On the cyclotomic function, Amer. Math. Monthly, vol. 12 (1905), pp. 86-89.
2. Graham Higman, Suzuki 2-groups. Illinois J. Math., vol. 7 (1963), pp. 79-96.
3. B. Huppert, Endliche Gruppen I, Springer, Berlin, 1967.
4. --, Zweifach transitive, aufösbare Permutations-gruppen, Math. Zeitschr., vol. 68 (1957), pp. 126-150.
5. Ernest Shult, The solution of Boen's problem, Bull. Amer. Math. Soc., vol. 74 (1968), pp. 268-270.
6. Helmut Wielandt, Finite permutation groups, Academic Press, New York, 1964.

University of Illinois

Urbana, Illinois

[^0]: Received August 19, 1968.
 ${ }^{1}$ This work was done at Yale University under a contract from the Army Research Office, Durham, N. C.

