ON THE ZEROS OF A CLASS OF DIRICHLET SERIES i

BY
Bruce C. BERNDT

1. Introduction

In [2] we considered the distribution of zeros for a large class of Dirichlet
series. One of our theorems concerned the number of zeros on the critical
line, but the remainder were concerned with the distribution in a vertical
strip. In this paper our theorems pertain to the number of zeros on the
critical line.

For Theorem 1 we consider the same class of series studied in [2]. Theorems
2 and 3 are concerned with a slightly different class, but in Theorem 4 we shall
relate the two classes. We shall conclude the paper with several examples.
For many of these examples, the proof of an infinite number of zeros on the
critical line has not been heretofore given.

Class 1. Let {)\,} and {u.} be two sequences of positive numbers tending to
o, and {a(n)} and {b(n)} two sequences of complex numbers not identically
zero. Let

A(s) = JIt=i T (o s + B),

where N is a positive integer, ax > 0, and 8 is an arbitrary complex number.
Consider the functions ¢ and ¢ representable as Dirichlet series

0(s) = 2w a@N’, ¥(s) = 2nabm)ua’, s=o+ 1t

with finite abscissae of absolute convergence o, and oy, respectively. If r is
real, we say that ¢ and ¢ satisfy the functional equation

A@S)p(s) = A(r — s (r — s),
if there exists in the s-plane a domain D which is the exterior of a compact set
S, and a function R (s), such that in D
(i) R(s) is holomorphic,
(i) R(s) = A(s)e(s), o> dq
= Ar—sWW@r —38), o <r— o,
(iii) there exists a constant K > 0 such that
R(s) = O(exp|s|®),
as | 8| tends to <.
Class 2. Let {\.}, {a(®)}, A(s) and ¢ (s) be given as above. Suppose that
¢ (s) has an analytic continuation to ¢ > h, where 0 < h < o, , the singular-

ities of R(s) = A(s)e(s) in ¢ > h are confined to a compact set S, and
¢ (h 4+ 1t) is of finite order.
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2. Notation and results

In the sequel let A = D 2y ax, B = Bix + 9Bk with Bix and B real, and
B=>Y8u. K K, K,--- always denote positive constants, k, k, and
%, real constants, and &’ a complex constant, none of which are necessarily the
same with each occurrence. The summation sign ), appearing with no
indices will always mean ) a-i. For c, real, the integral sign [Xi% shall be
denoted by f @) *

ForRez > 0and ¢ > 0, let

Ex(z) = j;c) A(s)z™" ds.

Note that if A(s) = I'(s), B1(z) = ¢ *. Let

®() = 2 am)By(\2),
where Re z > 0.
In each of the three main theorems we make the following assumptions:

(2.1) R(s) is holomorphic on ¢ = &,
(2.2) R(s)isrealon ¢ = h,
23) cos 3rd — ) >0 for &> 0 small enough.

(2.2) could be replaced by the seemingly more general condition: there
exists complex constants ¢ and b such that ae R (s)isrealon o = h. How-
ever, upon letting b = ¢ 4 7d, where ¢ and d are real, we find that when o = &,

e ¥ ae™R(s) = e BR(s),

where @, = ae " and B = ¢™°. Thus, we may replace a(n) by a;a(n) and
A by B\, to obtain another series of either Class 1 or 2.

TaroreM 1. Let o be of Class 1.  Suppose that 0o = ou, b = }r,

24) Ao, + B< 3N + 1, (24)
and

(2.5) ath +8n—3%20, k=1,---,N. (2.5)
Assume that as € tends to 0, ¢ > 0,

(2.6) & () = o(1/e).

Then ¢ (s) has an infinite number of zeros on ¢ = h.

The assumption o, = os is not necessary but simplifies the proof. Note that
conditions (2.4) and (2.5) imply that A (¢, — k) < 1, and thus the theorem
is applicable to only series with a fairly narrow critical strip.

CoroLrarY 1. Supposethat A(s) = T'(s). ForRez > 0, let

P(z) = %LR(S)Z—E ds,
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where C denotes a curve, or curves, encircling the singularities of R (s). Instead

of (2.6) assume that arg {a (n)} is constant for all n and that as x tends to 0, x > 0,
|P@)| = cle)/z+ 0@™),

where ¢ (p) 18 a non-negative constant and 0 < p < 1. Suppose there exists a
N € {\} such that

2.7) @m)ele) <X la) .
Then, there exists an infinite number of zeros for ¢ (s) on the line ¢ = h.

TureoreEM 2. Let ¢ be of Class 2. Suppose there exists a constant p > 0
such that as € tends to 0, £ > 0,

(2.8) () = 0(e).
If
2.9) p < Ah + B — 4N + 1,

then ¢ (s) has an infinite number of zeros on o = h.

TaEOREM 3. Let ¢ be of Class 2 and let R (s) be holomorphic for ¢ > h.
Suppose that for Re z > 0,

(2.10) 2(z) = O{(Re2)™},

uniformly with respect to | arg z| < ¥ — &, where & > 0 is fized. Let ¢ be
chosen so that a(¢c) = 0,but a(n) = 0,n < ¢. Define o*(s) = Neo(s) — a(c)
and

t+H
@.11) v@) = [ eyt + i) du,
t
where H s a positive constant to be chosen later. Assume also that

(2.12) f” |le@) Pt = O(T),

T

as Ttends to «. If A = 1 (mod 4), assume that

(2.13) N —-1<2n — 1)+ 2B;

if A # 1 (mod 4), assume that

(2.14) N — 1< 2rA 4+ 2B.

Then, if No(T) denotes the number of zeros of ¢ (s) for 0 < t < T,
No(T) > KT.

One can state a like result for No(—T), T > 0. Condition (2.12) is a very
restrictive one, and it took considerable work for Lekkerkerker [10] to es-
tablish such a condition for a subclass of series when A(s) = I'(s). We



ON THE ZEROS OF A CLASS OF DIRICHLET SERIES II 681

remark that the proof and statement of Lemma 7 in his thesis [10] are incor-
rect, but that the remaining results are still valid with only a few minor modifi-
cations in the proofs. Our proof of Theorem 3 uses Lekkerkerker’s variation
of the Fourier transform method of Hardy and Littlewood [14, p. 222] used by
them to obtain the analogous result for ¢ (s).

TaroREM 4. Let ¢ be of Class 2 and suppose that 8y s real, k = 1, ---, N.

Then R(s)is real on o = h if and only if there exists a function
Y(s) = 2 b(n)us’ such that

(2.15) R(s) = A(2h — s)¥(2h — s)

and

(2.16) am) = bm); M = p,.

3. Preliminary results
We shall need a form of Stirling’s formula:
(8.1) T (o + t) = g g trimitthine=b 9,08 (1 4+ 1/12(0 + it) + O (1/8)),
as t tends to o, uniformly for —© < 0y < 0 < 02 < ®. A similar fcl_nﬂﬂa
may be given for ¢ < 0 as ¢ tends to — « by using the fact that I'(3) = T'(s).

Lemma 1. We have
Ex(z) = O(|z[e™'"),

uniformly for | argz | < 3 m — 8, where & > 0 15 fized.

The constants k and K could be determined exactly, but we have no need
to do so. Bochner [4] has incorrectly estimated Ex(z); equations (145)-
(147) in his paper are incorrect. For the special case A(s) = I (s), the
estimate for Ex(2) has been given in [1].

Proof of Lemma 1. We induct on N. For N = 1 we have
Eiz) = @™"'*/a) exp (—2"*).

Hence,
E;(2)

0(l 2" exp {— |2 |"* cos (arg z/a1)})
0(lz[ exp (=K |2['™)).
From the theory of multiple Mellin transforms [13, pp. 53, 60] we find that

® uvallaN 1/

-] [+
Ex(z) = f exp (—uy-1") duy—1

0 ay

®©  BN-1/eN-1 ©  Ba/az
U, 1ayn— U
.f ﬂ____exp(_uN/_sz 1) duy_g * - f

0 OoN—1 (5 2% ]

2 fule —1/ag lay
L exp {—wm - (Z/ul Cee Uy-1) } du
Uy *° Un—1

* ugrALllaN 1/a
fo exp (—ux-1")Ex_1(2/un—_1) duy_1.
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Letting Ay_y = D = ox, we find by the induction hypothesis that

Ex(z) =0 <|z|’°l £ u? exp {—ul'® — K(|2|/u)"4¥-1} du)

=0(lz" /l+fw * exp {—|2["*(u + Ku™'4¥1)} d
= A LU exp 2|7 (u u } du

= 0(|z|"{I, + L}),

say. Letf(u) = u* exp {—|z [V4Ku™¥4¥-1} Ifk, > 0, f(u) is increasing
on (0, ©);if ks < 0, f(u) has a relative maximum at

u = (—szN_l/aNK)_AN—I/aNI 2 IAN-I/“NA.

In both cases

1
I, = 0(|z Ike"K""”AVL‘ exp (—|z|"*u) du)
= 0(|z [F®M4y,
For k, > 0,
I, = O(| P |"“/; " exp (—|2|"*u) du)

= 0(z [,

upon successive integrations by parts. For k; < 0,
0(I#l exp (=K 21274 [~ owp (=12 10 )

0(| z |14y,

Combining our estimates for I; and I , we are finished.

We now see that Ex (2) behaves exponentially for | z | large in any sector in
the right-half plane bounded away from the imaginary axis. In particular,
we note that if 4 % 1 (mod 4), (2.6) and (2.8) are trivially satisfied.

LeEMMA 2. Let ¢ be of Class 1 with A(s) = TI'(s) and let P (2) be defined as in
Corollary 1. Then, for Re z > 0,

®@) = 27 2 bn)e™”* 4+ P(e).
A proof of Lemma 2 has been given by Bochner [4].

I

4. Proof of Theorem 1
Choose ¢ > 0 so that (2.3) holds, & > 0, and T such that

SUPses Itl < To .
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From the functional equation, (3.1), and the Phragmén-Lindeldf principle we

easily deduce that forr — ¢, — 6 < ¢ < 0, + §,
(4.1) o(s) = O(t|*),
as | t| tends to «.

Let A € {\,} be chosen so thata (A\) 2 0. By Cauchy’s theorem, for 7' > T,

T
i f NG (B + it) dt

To
hHiT i (s—h)
=f e Ne(s) ds
h+iTg

(4.2)

Ga+O+iT oo HaHIT htiT o
= f + f + f e T No(8) ds
htiTo Tatd+iTo PR INY )

=L+ I, + I,
say. Clearly, I; = O(1). Using (4.1), we find that
I3 =0 ( 6—eTTA(a¢+6—h))‘

Now, f(T) = ¢ *"T**" ™ hag a maximum at T = A (¢, + 6 — h)/e.

for all T > T, we conclude that

Iy = O™,
Lastly,

. oqt+d-+iT . .
1-2 = e—-uh[] {GB"G(X) + eeu Z a(n)()\/)\n)‘} ds

a+dHiTy A
(ia(\)/e) (1 + 0(&)) + O(1).
Thus, by (4.2) we have shown that upon letting 7' tend to o,

[N+ iy d = a/e + O(EAHD),

Ty

since 4 (6, — h) < 1. It follows that

f e olh 4 i) | dt = N[ 6 N (h + it) | de
Ty Ty

(23) .

f NG (B + 4t) di

To
= X" a() |/e 4 0(™4 ™),
For Rez > 0 and ¢ > ¢, we have

&(z) = (1/2x1) f(c) R(s)z° ds

= (1/2m%) {/;1 + Lg} R(s)Z° ds,

(44)

Hence,
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where
Ci= (=740, h—iTo)u (h+iTo,h + 1)
and
Co= (h—iTo,c—1To)u (¢c — 2To, c + 2To) u (¢c + iTo, h + 2To).
Letting 2 = exp {z (374 — &)}, we have shown that

() = (1/2mi) [ Rie)e ¥ ds + 0(1).
C1
Now, from (3.1) as ¢ tends to =,

@5) |AG)| = De ™ | at + BE TP h.(1 + 01/8)),

where D = 27)¥ exp (—3r 2. -1Bi2). A similar formula holds as ¢ tends
to — . In particular, as ¢ tends to — «,

R(h 4+ it) = O(| t[*e 411,
and so as ¢ tends to O,

—7
f "R+ i)™ @t = 0(1).

We have thus shown that
(48) MV 0) o (12m) [ R(h+ i)™+ 0 (1),
To

Suppose now that there is not an infinite number of zeros on the line ¢ = A.
Then, there exists a T™ > T, such that R(h + ) is of constant sign for ¢ > T
From (4.5) we see that

f |R(h + it) | ™4~ gy
T

(47) ) .
=D j;" ‘¢(h + 1t) | e—et {kI-Il Iakt + 6m|akh+ﬂk1-‘}}_{1 + 0(1/t2)} dt.

By (4.1) the contribution of the O-term is
0 ( fr IR 2 dt) =0(1),
by (2.4). Also, by (2.5) for T* large enough,
0 N L]
[et+ i e I lont + pul™* 7 a2 [ loth + i) .
T* k= T*
Combining the above with (4.6) and (4.7), we conclude that

@8) [ let+ )|t < 2x | 2@ ) |/D + 0Q).
T.
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For & small enough, (4.3) and (4.8) now yield
)\——h I aO\) I/f + 0(8—4(¢¢+8——h)) < 2r | q,(eo'(iu—e)) VD + 0(1).
Now, from (2.6) we easily have a contradiction, and the theorem is proved.
Proof of Corollary 1. By Lemma 2,
|8 ) | £ X la@)|e™"°
| (sin &)™ D> b(n)e™*™° + P(sin ¢) |

|P(sine) | +0(1)
c(p)/sin e + 0 (7).

it

(4.9) now yields
N a() |/e + 0@ ™™) < (@r)e(e)/sin e + O (™).
In view of (2.7) we arrive at another contradiction, and the corollary is proved.

5. Proof of Theorem 2

Let C denote a curve, or curves, enclosing the singularities of R (s) in the
half plane ¢ > h. By (4.4), (3.1), (2.1) and the residue theorem, we have
for Rez > 0,

8(z) = (1/2r5) f(h) R(s)z™ ds + (1/2i) fc R(s)&™ ds.

Again, let z = exp {{(37mA — &)} where ¢ > 0 is small enough so that (2.3)
holds. Thus, as ¢ tends to 0,

(5.1) B9 = (1/2r )¢ WramOR f R(h + it)e' ™ dt + 0(1).

Now, suppose there exists only a finite number of zeros for ¢ (s) on ¢ = h.
The integral on the right-hand side of (5.1) then converges absolutely, and so
by (2.8)

[ 1RG4+ ) |94 d = 0(e)

as ¢ tends to 0. Choose
To > sup(sup { | t|:te S}, suprean { | —Bre x| })
and use (3.1) to obtain

® N
f P I?’(h + it) ‘ kI—Il l art + Bre lakh-i-ﬁkl-% dt = O(e-,,).
T

0

If ¢ = 1/T, then the above implies that as 7T tends to «,

T
BT O (h + i) | dt = O(T*),

To
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which in turn implies that

h44T AbtB—
Lo 16 a8 ] = 02
Now, choose N ¢ {\,} so that a(\) = 0. Thus,

h+4T
(5.2) fWO | s4M 5\, () | | ds | = O(T?).

In the quarter plane Re 2 = h, Im z > T, the function

1@) = f}M SAMHBTIY e () e
+To
is holomorphic. If ¢ > oy,
I(c + ty)

c+iy
= > a(n) f i s (N/N)" ds + 0(1)
(5'3) c+iy ' ciy
= a()\) e gAMEW ge x%x a(n) i sAME (N L) ds + O(1)
c41Ty e+1Ty

= IC,(C + iy)Ah+B—}N+1 + O(yAh+B—}N) + 0(1)’

upon an integration by parts for the integrals in the infinite series.
Consider now the function u (x) for I (z + ) i.e. for fixed z,

w(z) =inf{£:1@) = 0(|y[)}.
By (5.3) we have shown that
p() = Ah+ B — 3N + 1.
From the fact that u(x) is convex downward, we must also have
u() =2 Ah+ B — 3N + 1.

However, from (5.2) and (2.9) this is a contradiction. Hence, R (h + it),
and therefore ¢ (h -+ 4t), has an infinite number of zeros.

6. Proof of Theorem 3

We consider again (4.4). Since R (s) is holomorphie for ¢ > h, we have by
Cauchy’s theorem,

©6.1) ®() = (1/2m0) f( R(s)™ ds

For £ real and ¢ > O small enough so that (2.3) holds, we put
z=-exp{t+iGrAd —¢)}. If welet

F(s) = (21r)§e$h+€h(}1r.4—e)q>(eE+v'(irA—e)) and G(t) = R(h + z-t)e(}ni—-e)t’
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we see that (6.1) can be written as

FG) = @07 [ a6 a,
ie. F(¢) and G(t) are Fourier transforms. Since ¢ (b + 4t) is of finite order,
we have from (3.1),

G(t) = 0(|t|"exp { (374 — &)t — 4md | ¢]}),
as | t| tends to «. It follows that
t+H
I(t) = G (u) du,
t
aswell as | I(¢) | and | I (¢) |*, are integrable on (— 0, o). A direct calcula-

tion shows that the Fourier transform of I (¢) is (e*” — 1)F (¢)/st. Thus, by
Parseval’s formula,

[ Pa =4[ ¢ et Jem P P
Now, if A = 1 (mod 4), from (2.10), F(¢) = O(¢™) as ¢ tends to 0. Hence,
6.2) 4 f £2sin’ L ¢H |F(¢) P de < K™ [ £ sin’ 3 £H di < K16 ™H.

IfA£1(mod4),F(¢) = 0(1) as ¢ tends to 0. Hence,

6.3) 4f £ gin?§ tH | F () [Pdt < Ko H.
From (3.1) it follows that for | ¢| > T, say,

(6.4) | Ak + dt) | > K | ¢ |[#P2Wgimal,

Now let

6.5) T > T, =sup (1, 6H, T,).

Ife = 1/Tand T < u < 2T + H, then from (6.5) eu < 3 and u****# >
3TWp4rtEiY - Hence, by (6.4)

t+H t+H
J(t) = f |G(w) | du > KT43 f | o(h + ) | du.

Using the definition of ¢* (s), we have
oG + )| = la@) | N"[1+ ae) ¢" (b + ) |

> lale) N" Re {1 + a(c) 7" (b + u)}.
Thus,

(6.6) J() > K T**"* W {(H 4+ Re ¥ ()},
where ¥ (¢) is given by (2.11).
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Let S be the subset of (T, 2T) where | I(¢)| = J(¢). Note that
[I@)| =J@)
if and only if R ( 4 4t) does not have a zero of odd multiplicity on (¢, ¢ + H).
Letting ¢ = 1/T, we have by (6.2) and (6.3),

/;J(t)dt=L|I(t)|dts‘[:T|I(t)|dt

27 2T 3
(6.7) s{fT dt/; |I(t)|2dt}

< K{HYT™ A =1 (mod 4)
< KIH'TY, A # 1 (mod 4).
Denoting the measure of S by m (S), we have from (6.6) and (2.12),

AR-BHN LJ(t) dt > Ks{Hm(S) + /;Re\I/(t) dt}

©8) > K;Hm(S) — Ks{f:T dt f:T [w(t) [ dt}*

> KsHm(S) — K, T.

Combining (6.7) and (6.8) and employing (2.13) and (2.14), we have in
both cases that

K: Hm(S) < K. T + Ks H'T.
Now, choose H large enough so that (Ki/H + Ks/H*)/Ks < 1/12. Then
(6.9) m(S) < T/12.

Now, subdivide (7, 27) into [T/2H] pairs of abutting subintervals j; , j2,
each of length H except for possibly the last jo. Suppose that v ji-intervals
contain only points of S. Then, vH < m(S). Of the remaining [T/2H] —
v pairs of intervals, either j; or j» contains a zero of R(h + ). By (6.5)
and (6.9),

[T/2H] — v > T/3H — T/12H = T/4H.

Hence, R (h + 4t), and therefore ¢ (h + it), has at least T/4H zeros of odd
multiplicity in (7', 2T), and the proof is complete.

7. Proof of Theorem 4
Suppose (2.15) and (2.16) hold. Then, for ¢ > g, ,

Db = 2 a)\s' = 2 am)N.
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By analytic continuation, for all s, ¥ (s) = ¢(3). Thus,
RG) = A(s)¢(s) = R(2h — s).

Upon letting ¢ = h, we find that R (h + t) is real.
Conversely, if R (s) is real on o = A, it follows from the reflection principle
that R (s) assumes conjugate values at the points s and 2 — §. Thus,

R(s) = AGh —De@h =3 = AQh — 8)p@h = 3.
Hence, (2.15) and (2.16) hold if we take ¢ (s) = ¢(3).

8. Examples

The conditions of Theorem 1 are satisfied by a class of Epstein zeta-func-
tions associated with quadratic forms of two variables [9]. A still larger
class of Epstein zeta-functions satisfy the conditions of Corollary 1 [9]. More
precise results for certain Epstein zeta-functions have been given by Potter
and Titchmarsh [11]. Siegel [12] has obtained very sharp results for Epstein
zeta-functions associated with quadratic forms of a higher number of variables,
as well as precise results for Dirichlet L-functions.

If K is an imaginary quadratic field, the hypotheses of Corollary 1 are
satisfied by some Dedekind zeta-functions,

tx(s) = 22 F (™,

where F (n) denotes the number of non-zero integral ideals of norm » in K.
The condition (2.7) here is

@r)"Rh/ w|d|*) < |a() |/A,

where R denotes the regulator, & the class number, w the number of roots of
unity, and d the discriminant of K. However, it has recently been shown
([5], [3]) that the Dedekind zeta-function for any quadratic field possesses an
infinite number of zeros on ¢ = 1.
For examples illustrating Theorem 2 when A(s) = T'(s), we refer the reader
to Hecke’s beautiful paper [8] where a large variety of illustrations are given.
The following examples for a more complicated A (s) appear to be new.

Example 1. Let K denote an algebraic number field of degree
n =1+ 2re,

where 7, denotes the number of real conjugates in K and 2r, the number of
imaginary conjugates. Then,

A(s) = T (3s)"T (s)™.
If < 3, condition (2.9) is satisfied. If also A = 3 + 7 = 33,
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4,4% (mod4),i.e.n = 7,8,9 (mod 8), then the Dedekind zeta-function of an
ideal class € in K,
¢(s,6) = 2 anm™, o> 1,

where @, denotes the number of non-zero integral ideals of norm m in G,
has an infinite number of zeros on the line ¢ = %.

Example 2. Let f denote an ideal in the algebraic number field K and let
x denote a nonprincipal character mod f. Then the Dirichlet L-funetion for
K and the character x is defined by [6]

L(s,x) = 2ex@®N@™, o> 1,

where the sum is over all non-zero integral ideals t of K, and N (r) denotes
the norm of r. L (s, x) is an entire function. If we put

D = (N (fyr ™27}

then for each real character mod f > (1) and for each character mod (1),
where (1) denotes the unit ideal, the function

£(s,x) = D'T(3s)"T (s)"L (s, x)
satisfies the functional equation
£ x) = WH)EQM — s, %),
where W (x)W (%) = 1 and | W(x) | = 1. Putting W (x) = e**, we have
G+t x) = @ CEG—dt, ) = ¢t} + ity x).

Hence, ¢ Mg (s, x) is real on ¢ = §. We conclude that under the same
conditions on K as in Example 1, L (s, x) has infinitely many zeros on ¢ = §.

Example 3. Lastly, we mention that certain zeta-functions with “Gréssen-
charakteren” [7] have an infinite number of zeros on o = %.

Functions which satisfy the conditions of Theorem 3 include the Dirichlet
series of signature (\, k,v), 0 < A < 2, which are entire and have real coeffi-
cients [8]. In particular, if 7 (n) denotes Ramanujan’s arithmetical function,
the conclusion of Theorem 3 is valid for Y r(n)/n’ with b = 6. See [10]
for details and other examples.
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