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1. Introduction

In [2] we considered the distribution of zeros for lrge class of Dirichlet
series. One of our theorems concerned the number of zeros on the critical
line, but the remainder were concerned with the distribution in a vertical
strip. In this paper our theorems pertain to the number of zeros on the
critical line.
For Theorem 1 we consider the same class of series studied in [2]. Theorems

2 and 3 are concerned with a slightly different class, but in Theorem 4 we shall
relate the two classes. We shall conclude the paper with several examples.
For many of these examples, the proof of an infinite number of zeros on the
critical line has not been heretofore given.

Class 1. Let {),} and {} be two sequences of positive numbers tending to
oo, and {a(n)} and {b(n)} two sequences of complex numbers not identically
zero. Let

+
where N is a positive integer, a > 0, and f is an arbitrary complex number.
Consider the functions and representable as Dirichlet series

(s) :.-1 a(n)X’’, b(s) ’.. b(n)’’, s + it,
* respectively. If r iswith finite abscissae of absolute convergence aa and aa,

real, we say that and satisfy the functional equation

A(s)q(s) A(r- s)b(r- s),

if there exists in the s-plane a domain D which is the exterior of a compact set
S, and a function R (s), such that in D

(i) R (s) is holomorphic,
(ii) R(s) A(s)(s), >

5(r-- s)b(r-- s), a < r-- ,
(iii) there exists a constant K > 0 such that

R(s) O(exp slK),
as Is] tends to oo.

Class 2. Let h}, {a (n)}, A (s) and (s) be given as above. Suppose that
(s) has an analytic continuation to a >_ h, where 0

_
h < a, the singular-

ities of R (s) A (s) (s) in a >_ h are confined to a compact set S, and
(h - it) is of finite order.
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2. Notation and results
In the sequel let A =1 k, k /1 i with and real, and

B . K, K, K2, always denote positive constants, k, k and
k2 real constants, and k’ a complex constant, none of which are necessarily the
same with each occurrence. The summation sign appearing with no
indices will lwys mean =. For c, rel, the integral sign- shll be
denoted by f.
For Re z > 0 and c > 0, let

a(s)z

Noge ghag if () r (), N () e-". Leg

( 2((x,
where e > 0.

In eaeh of ghe hree main heorems we make ghe following assumpgions"

(2.1) R () is holomorphie on h,
(2.2) R () is real on h,
(2.a) cos (A -e) > 0 for e> 0 small enough.

(2.2) could be replaced by ghe seemingly more general eondigion" ghere

exisgs complex eonsgangs and b such ghag e-R () is real on h. How-
ever, upon leing b e + id, where e and d are real, we find ha when h,

e-ee-R () B-’R (),

where e- and B e-. hus, we may replace (e) by () and
X by BX go obgain anogher series of eigher Class 1 or 2.

*

(.) + B < + , (.)

(.) h + O, , ..., . (.)

(.) e(e-) o(1/e).

,
he assumption is no necessary bu simplifies ghe proof.

conditions (2A) and (2.g) imply ha A (e h) < 1, and hus he heorem
is applicable o only series Mh a fairly narrow critical srip.

Coo 1. Sppoeh () r (). For e > 0,

1 fe -P() () ,
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where C denotes a curve, or curves, encircling the singularities of R (s ). Instead
of (2.6) assume that arg a (n)} is constantfor all n and that as x tends to O, x > O,

P (x v (q, /x + O (x-

where c ( is a non-negative constant and 0

_
p 1. Suppose there exists a

k e{k} such that

(2.7) (2)tc() < X-a a(k) I.
Then, there exists an infinite number of zeros for (s on the line h.

TEonE 2. Let be of Class 2. Suppose there exists a csnt p 0
such that as tends to O, e > O,

(2.8) (e’-)) 0(-).

If

(2.9) p < Ah + B N T 1,

then (s has an infinite number of zeros h.

THEORE 3. Let be of Class 2 and let R (s) be holomorphic for h.
Suppose that for Re z 0,

(2.]o) (z) o{ (ae z)-},
uniformly with respect to ]arg z , where > 0 is fixed. Let c be
chosen so that a (c ) O, but a (n ) O, n < c. Define * (s ) k (s) a (c )
and

f+ )_e,(.) () ( (h + i) a,

where H i positive coe o be choe ler. Aume lo

(.1 ( o(,

(.la) - 1 N 2h(A 1) +
if A 1 (rood 4), me

(2.1) N- 1 N 2h +
he, if (T) deeoe he mber of eroe of () for 0 < < ,

() > K.
One can sae a like resul for N (-T), > 0. Condition (2.12) is a very

restrictive one, and i ook considerable work for ekkerkerker [10]
ablish such a eondiion for a subclass of series when () r (). We
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remark that the proof and statement of Lemma 7 in his thesis [10] are incor-
rect, but that the remaining results are still valid with only a few minor modifi-
cations in the proofs. Our proof of Theorem 3 uses Lekkerkerker’s variation
of the Fourier transform method of Hardy and Littlewood [14, p. 222] used by
them to obtain the analogous result for i" (s).

THEOREM 4. Let be of Class 2 and suppose that is real, k 1, ..., N.
Then R(s) is real on (r h if and only if there exists a function
b (s b (n)- such that

(2.15) R(s) A(2h- s)f(2h- s)

and

(2.16) a(n) b (n

3. Preliminary results

We shall need a form of Stirling’s formula’

(3.1) F( + it) t+-1/2e-1/2"-+1/2(-1/2) (2)1/2(1 + 1/12( -t- it) - O(1/t)),
as tends to , uniformly for a

_
a

_
a . A similar formula

may be given for 0 as tends to o by using the fact that F () F-.
LEMMA 1. We have

E (z) 0 (I z e-:lzl z’A),
uniformly for arg z -- 1/2 r , where > 0 is fixed.
The constants ] and K could be determined exactly, but we have no need

to do so. Bochner [4] has incorrectly estimated E (z); equations (145)-
(147) in his paper are incorrect. For the special case A(s) F (s), the
estimate for E(z) has been given in [1].

Proof of Lemma 1. We induct on N. For N 1 we have

E(z) (z/"/a) exp (-z/").
Hence,

E,(z) O(J z 811 exp {- z 11/"1 cos (arg z/a1)})
0

From the theory of multiple Mellin transforms [13, pp. 53, 60] we find that

exp u/-" du_EN(Z)

’NN----21 aN-1 1/’aN-1exp (----.) du_
O/hr--1 O/10/2

( Z )l/al U-I/a2__(Z/Ul Uv_l)llal}dUlexp{--

-----A-- exp (---l/",-(z/u-) du_.
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LettingA_ Qa, we find by the induction hypothesis that

EN(z) 0 Izl’ 2 exp {--u1/"N K(Izl/u)1’-’} du

0 ]z’ + u exp {--za(u + Ku-"-’)} du

say. Let f(u) u exp - z Ku-"-}. If k 0, f (u) is increasing
on (0, );if k < 0, f(u) has a relative maximum at

U (-A_I/aK)-A-/a] z x-/aA.

In both cases

For k > 0,

( f.’ )11 0 z Ie-1"1’ exp (--I z I1/’u) du

0 (! z Ie-1"1’’").

( )12 0 zl’ u2exp (--IzlIAu) du

0 ([ z Ie-11’’),
upon successive integrations by parts. For k < 0,

I2 0 ziexp{-g[zl’az]-} exp (-Iz[u) du

0 (I z ie-’’’).
Combining our estimates for I and I, we are finished.
We now see that Es (z) behaves exponentially for ]z large in any sector in

the right-half plane bounded away from the imaginary is. In particular,
we note that if A @ 1 (mod 4), (2.6)and (2.8) are trivially satisfied.

LMMX 2. Let be of Class 1 with h (s r (s and let P (z be d@ned as in
Corollary 1. Then, for Re z > 0,

(z) z-" b(n)e-’’+ P(z).

A proof of Lemma 2 has been given by Bochner [4].. Proof of Theorem 1
Choose e > 0 so that (2.3) holds, > 0, and T0 such that

sup,, tl < T0.
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From the functional equation, (3.1), and the Phragmn-LindelSf principle we
easily deduce that for r

(4.1) (s)

as tl tends to
Let e X,} be chosen so that a () 0. By Cauchy’s theorem, for T > To,

(4.2)

say. Clearly, 11 0 (1). Using (4.1), we find that

13 0 (e-rT(a+-)).
Now, f(T) e-rT(+-)has a maximum at T A (ra d- h)/e.
for all T > To we conclude that

Ia 0 (e-’(+-)).
Lastly,

Thus, by (4.2) we have shown that upon letting T tend to ,
-tXa+(h q- it) dt a(X)/e d- O(e-(+-)),

since A ( h) < 1. It follows that

e-* , h d- it) dt h- e-"* X+’#(h d- it) dt

X- C"tX+t(h + it) dt

x- a(X)I/e +
For Re z > 0 and c > O" we have

(z) (1/2ri) f() R(s)z-" ds

(1/2i) {f, + fo,} R(s)z-" ds,
(4.4)

Hence,
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where

C (h i, h iTo) t (h -+- iTo, h + i
and

C (h iTo c iTo) t (c iTo c -+- iTo) t (c + iTo h iTo).

Letting z exp {i (1/2rA )}, we have shown that

(e(1/2-)) (1/2ri) f R(s)e-(’’-) ds / 0(1).

Now, from (3.1) as tends to ,
(4.5) A(s)[ De-1/2ll{I]- a + +-t}.{1 -}- O(1/t)},
where D (2r)1/2 exp (--r /.). A similar formula holds as tends
to -. In particular, as tends to -,

R (h at. it) 0 (I :e-’’t’),
nd so s tends to O,

f_ R(h -Jr-= 0(1).i)e(,- d

We have thus shown that

f: )e(4.6) e(1/2a-)(e(-)) (1/2r) R(h + it dt + 0(1).

Suppose now that there is not an infinite number of zeros on the line a h.
Then, there exists a T* >_ To such that R(h + it) is of constant sign for >_ T*.
From (4.5) we see that

R(h + it) e1/2"-) dt
(4.7)

D I(h + it) le-== last + =1"+=,- .{1 -t- O(1/t=)}dt.
k"-I

By (4.1) the contribution of the O-term is

(1: )0 e-=tt"(’+)+-- dt 0 (1),

by (2.4). Also, by (2.5) for T* large enough,

I(h + it) e-" II ]t / = dt >_ I(h -- it) le-=* dt.
k==l

Combining the above with (4.6) and (4.7), we conclude that

(4.8) q(h + it) e-t dt

_
27 (e’("-=)) l/D + 0(1).
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For e small enough, (4.3) and (4.8) now yield

X-h a(h)[/e + O(e-(’+-h))
_
2 I(e’(-)) liD + 0(1).

Now, from (2.6) we easily have a contradiction, and the theorem is proved.

Proof of Corollary 1. By Lemma 2,

[(e-))[ [a(n) le
(sin e)- b (n)e-"’i" + p (sin e)

[P(sine)[ + 0(1)

c()/sin e + O(e-).
(4.9) now yields

x- a(x)[/e + O(e-(+"-a)) (2)ic(e)/sin e + O(e-).

In view of (2.7) we arrive ag another contradiction, and the corollary is proved.

5. Proof of
Leg C denote a curve, or curves, enclosing the singularities of R (s) in the

half plane > h. By (4.4), (a.1), (2.1) and the residue theorem, we have
for Re z > 0,

J: R(s)" ds + (1/2i) ] R(s)" ds.O(z) (1/2i)

Again, let z exp {i(A -e)} where e > 0 is small enough so that (2.3)
holds. Thus, as e tends to 0,

(5.1) e(e("-")) (1/2r)e-("-) R(h + it)e’(- dt + 0(1).

Now, suppose there exists only a finite number of zeros for (s) on a h.
The integral on the right-hand side of (5.1) then converges absolutely, and so
by (2.8)

R (h + it) e’("-) dt 0 (e-)

as e tends go 0. Choose

T0 > sup (sup

and use (3.1) to obtain

k--1

If e l/T, then the above implies that as T tends to

ta+"-l (h + i) dt O(TO),



686 BRUCE C, BERNDT

which in turn implies that

f+ +_(s) l[dsl O(T)
h+iT

Now, choose h h} so that a (X) 0. Thus,

(5.2)
,+,ro

(s ds 0 (T).

In the quarter plane Re z h, Im z T0, the function

I (z) s"+"-t X (s) ds
+do

is holomorphic. If c > ,
(c + iy)

() "+-(x/x) a + 0(1)
c+iTO

f+’ +’- + a(n) +’(x/x.) + 0(1)a(X)
.+0 , +0

k’(c + iy)+-+ + O(y+-) + 0(1),

upon an integration by parts for the integrals in the infinite series.
Consider now the function (x) for I (x iy) i.e. for fixed x,

() inf { (z) O( y I)}.
By (5.3) we have shown that

(c) Ah + B N + 1.

From the fact that (x) is convex downward, we must also have

(h) Ah + B Y + .
However, from (5.2) and (2.9) this is a contradiction. Hence, R (h it),
and therefore (h it), has aa infinite number of zeros.. Proof of Theorem 3
We consider again (4.4). Since R (s) is holomorphic for a h, we have by

Cauchy’s theorem,

R (s)z-’ ds.(.1) (z) (/2i)
)

For real and e 0 small enough so that (2.3) holds, we put
z exp{Wi(rA-e)}. Ifwelet

F() (2)te+a(t’-)&(e+(ta-)) and G(t) R(h it)e(’-),



ON THE ZEROS OF A CLASS OF DIRICHLET SERIES II

we see that (6.1) can be written as

F () (2r)-t e-,,G (t) dt,

i.e. F () and G (t) are Fourier transforms. Since (h -b it) is of finite order,
we have from (3.1),

G(t) O(Itl exp (1/2rA s)t A tl ),

as t tends to . It follows that
t+s

I(t) G(u) du,
t

as well as I (t) and I (t) , are integrable on (- , ). A direct calcula-
tion shows that the Fourier transform of I (t) is (e 1 )F ()/i. Thus, by
Parseval’s formula,

I(t) dt 4 - sin H F() d.

Now, if A 1 (mod 4), from (2.10), F () 0 (e-a) as e tends to 0. Hence,

(6.2) 4 -siHF()d < Ke- -siNd
If A 1 (mod 4), F () 0 (1) as e gends go 0. Hence,

(6.3) 4 : -’ sin’ HF() d < KH.

From (3.1) it follows that for t[ T, say,

(6.4) h (h + it) > K +-ie-i.
Now let

(6.5) T T0 sup (1, 6H, T).

If lIT and T u 2T W H, then from (6.5) eu < 3 and u
3-tT+’-t. Hence, by (6.4)

f,+H KT+_, I,+J(t) G(u)] du > (h + iu) du.

Using the definition of * (s), we have

+ iu) a(c) 1 + a(c)%*(h + iu)

[a(c) Re {1 + a(c)-*(h + iu)}.
Thus,
(6.6) J (t) > K3 TA+-i {H T Re @ (t)},
where (t) is given by (2.11).
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Let S be the subset of (T, 2T) where iI(t) J(t). Note that

I(t)! J(t)

if and only if R (h + it) does not have a zero of odd multiplicity on (t, + H).
Letting e 1/T, we have by (6.2) and (6.3),

J(t) dt I(t) dt < [I(t) dt

(6.7)

_
dt I(t) d_

KiHtTh+i, A--- 1 (mod4)_
KHiT, A 1 (mod 4).

Denoting the measure of S by in (S), we have from (6.6) and (2.12),

T-*-=+1/2=LJ(t) dt>Ka{Hm(8)-pRoW(t)dt}
(0.s) > KS-S(S) K <St l@(t) I" d

> KI-Im() K.
Combinint (0.7) nd (6.0) nd mploying (2.13) and (2.14), w hv in
both cses that

K Htn() < K T -4- K HiT.
ow, hoos H lrg nouth so ha (KIII "4- KII-I)IK 1/11. Thn

(i.9) m() < T/l.

ow, subdivid (T, 2T) into [T/2H] pir of butint ubinrwls j, j.,
eh of lnlth H xp for possibly th las j.. Suppos h v j-intrvl
ontin onl points of S. Thn, H _< (S). Of h rmining [Till-/]
pirs of intervals, dhr j or O’ onins zro of R (h + 7t). B (0,5)

and (6.9),

Hence, R (h "4- it), nd therefore o (h -4- it), hs t les T/4H zros of odd
multiplidty in (T, ),d th roof is

7. Proof of Theorem 4
Suppose (2.15) and (2.16) hold. Then, for > a,
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By analytic continuation, for all s, (s) (). Thus,

R(--- ,’ (s)b (s) R (2h s).

Upon letting z h, we find that R (h + it) is real.
Conversely, if R (s) is real on z h, it follows from the reflection principle

that R (s) assumes conjugate values at the points s nd 2h . Thus,

R(s) A(2h- )(2h- ) A(2h- s)(2h- ).

Hence, (2.15) and (2.16) hold if we take b (s) -’.
8. Examples

The conditions of Theorem 1 are satisfied by a class of Epstein zeta-func-
tions associated with quadratic forms of two variables [9]. A still larger
class of Epstein zeta-functions satisfy the conditions of Corollary 1 [9]. More
precise results for certain Epstein zeta-functions have been given by Potter
and Titchmarsh [11]. Siegel [12] has obtained very sharp results for Epstein
zeta-functions associated with quadratic forms of a higher number of variables,
as well as precise results for Dirichlet L-functions.

If K is an imaginary quadratic field, the hypotheses of Corollary 1 are
satisfied by some Dedekind zeta-functions,

(s) F(n)n-,
where F (n) denotes the number of non-zero integral ideals of norm n in K.
The condition (2.7) here is

(2)a/Rh/ (w d ) < a(X) I/h1/2,

where R denotes the regulator, h the class number, w the number of roots of
unity, and d the discriminant of K. However, it has recently been shown
([5], [3]) that the Dedekind zeta-function for any quadratic field possesses an
infinite number of zeros on 1/2.

For examples illustrating Theorem 2 when A (s) F (s), we refer the reader
to Hecke’s beautiful paper [8] where a large variety of illustrations are given.
The following examples for a more complicated A (s) appear to be new.

Example 1. Let K denote an algebraic number field of degree

n r -t- 2r.

where r denotes the number of real conjugates in K and 2r. the number of
imaginary conjugates. Then,

If r <_ 3, condition (2.9) is satisfied. If also A 1/2r r 31/2,
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4, 41/2 (mod 4), i.e. n 7, 8, 9 (mod 8), then the Dedekind zeta-function of an
ideal class in K,

(s, ) a,m-, r > 1,

where am denotes the number of non-zero integral ideals of norm m in ,
has an infinite number of zeros on the line a 1/2.
Example 2. Let denote an ideal in the algebraic number field K and let
denote a nonprincipal character mod f. Then the Dirichlet L-function for

K and the character x is defined by [6]

L(s, x) -’ x(v)N(r)-’, a > 1,

where the sum is over all non-zero integral ideals r of K, and N (v) denotes
the norm of r. L (s, x) is an entire function. If we put

D (dN (f)r-’2-r ),
then for each real character mod (1) and for each character mod (1),
where (1) denotes the unit ideal, the function

(s, x) D’r (1/2s)’r (s)rL (s, x

satisfies the functional equation

(s, x) W(x)(1 s, ),

where W(x)W() 1 and IW(x)[ 1. Putting W(x) e’", we have

e’-i’" (1/2-it, x) ei’" (1/2--it, ) e-i’" ( - it, x).

Hence, e-i"(s, x) is real on a 1/2. We conclude that under the same
conditions on K as in Example 1, L (s, x) has infinitely many zeros on a 1/2.

Example 3. Lastly, we mention that certain zeta-functions with "GrSssen-
charakteren" [7] have an infinite number of zeros on a 1/2.

Functions which satisfy the conditions of Theorem 3 include the Dirichlet
series of signature (},, , ,), 0 }, < 2, which are entire and have real coeffi-
cients [8]. In particular, if (n) denotes Ramanu]an’s arithmetical function,
the conclusion of Theorem 3 is valid for r(n)/n" with h 6. See [10]
for details and other examples.
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