METABELIAN p-GROUPS WHICH CONTAIN A SELF-CENTRALIZING ELEMENT ${ }^{1}$

BY
Marc W. Konvisser

Introduction. An element x of a group G is called self-centralizing in G if the set $c_{G}(x)$ of all elements commuting with x is just the cyclic group generated by x. The existence of a self-centralizing element has a profound effect on the structure of the group. In this paper we will concern ourselves with groups G which are finite metabelian p-groups, $p \neq 2$, and which contain a self-centralizing element x.

We will analyze the structure of such a group by examining the action of the automorphism induced by a self-centralizing element x on a normal subgroup M of G. We will find a decomposition of M which is analogous to that of a vector space under the action of a linear transformation.

First we define the subsets Y_{i} of M by

$$
Y_{0}=1, \quad Y_{i}=\left\{g \mid g \in M \quad \text { and } \quad[g, x] \in Y_{i-1}\right\} \quad \text { for } i=1,2, \cdots
$$

It is clear from the definition that the Y_{i} 's are invariant under the action of x. Since G is nilpotent, it is easily seen that $1=Y_{0}<Y_{1}<\cdots<Y_{m}=M$ for some integer m. In Lemma 4 we show that each Y_{i} is a subgroup. Thus, the decomposition of M under x is analogous to a block triangular decomposition of a vector space under a linear transformation. In Theorem 1 we show that $Y_{i} \triangleleft Y_{i+1}$ and Y_{i+1} / Y_{i} is cyclic for $i=0,1, \cdots$. Thus, the blocks Y_{i+1} / Y_{i} are one dimensional and the decomposition of M into the subgroups Y_{i} is triangular under x.

As a simple consequence of Theorem 1, we find that the number of generators of a metabelian p-group, $p \neq 2$, containing a self-centralizing element is less than or equal to its class. Theorem 2 gives a different bound for the number of generators of an arbitrary p-group. It is shown that for the groups discussed in Theorem 1, we can exhibit a system of generators which is economical in the sense that it satisfies the bounds of Theorem 2 and Corollary 2. We conclude with an example which shows that both bounds are best possible.

Our notation will be that of Huppert [3] with the addition of the symbol $\left[a,{ }_{i} x\right]$ for the Engel element $[a, x, \cdots, x]$ where x appears i times.

[^0]The following identities will be useful in many of the calculations in this paper.

Identities. Let G be a group with elements a, b, c, \cdots; then

1. $[a b, c]=[a, c]^{b}[b, c]=[a, c][a, c, b][b, c]$
2. $[a, b c]=[a, c][a, b]^{c}=[a, c][a, b][a, b, c]$
3. $\left[a, b, c^{a}\right]\left[c, a, b^{c}\right]\left[b, c, a^{b}\right]=1$, and if G is a metabelian group, then
4. $[a, b, c, d]=[a, b, d, c]$
5. $[a, b, c][c, a, b][b, c, a]=1$
6. $[a b, c]=[a, b][a, c]$ for b in G^{\prime}
7. $\left[b, a^{m}\right]=\prod_{i=1}^{m}\left[b,{ }_{i} a\right]^{C(m, i)}$

Proof. Identities 1 and 2 are found in [2, p. 150]. Identity 3 can be found in [7, Theorem 5.1]. Identity 4 is from [8, Lemma 34.51]. Identity 5 follows trivially from Identity 3 , and Identity 6 is a simple consequence of Identity 2. Identity 7 is proved in [4, Lemma 3].

We will need several technical lemmas.
Lemma 1. Let G be a metabelian p-group, $p \neq 2$, and $\left\langle\left[c,{ }_{j-1} x\right]\right\rangle \triangleleft G$; then

$$
\left\langle\left[c^{p^{n}},{ }_{j-1} x\right]\right\rangle=\left\langle\left[c,{ }_{j-1} x\right]^{p^{n}}\right\rangle .
$$

Proof (by induction on n). Since G is metabelian,

$$
\left[[c, x],{ }_{j-2} x\right]^{p}=\left[[c, x]^{p},{ }_{j-2} x\right]
$$

by Identity 6 . So for $n=1$ it will suffice to show that

$$
\left\langle\left[c^{p},{ }_{j-1} x\right]\right\rangle=\left\langle\left[[c, x]^{p},{ }_{j-2} x\right]\right\rangle .
$$

Now using Identities 6 and 7 we have

$$
\left[\left[x, c^{p}\right],{ }_{j-2} x\right]=\prod_{k=1}^{p}\left[\left[x,{ }_{k} c\right]^{C(p, k)},{ }_{j-2} x\right]
$$

Letting $\delta_{k}=C(p, k) / p$ we get

$$
\left[\left[x, c^{p}\right],{ }_{j-2} x\right]=d \prod_{k=2}^{p-1}\left[\left[x,{ }_{k} c\right],{ }_{j-2} x\right]^{p \delta \delta_{k}}\left[x,{ }_{p} c,{ }_{j-2} x\right]
$$

where $d=\left[[x, c]^{p},{ }_{j-2} x\right]$, and using Identities 4 and 6

$$
\left[[x, c]^{p},{ }_{j-2} x\right]=d\left[x,{ }_{p} c,{ }_{j-2} x\right] \prod_{k=2}^{p-1}\left[d,{ }_{k-1} c\right]^{\delta_{k}}
$$

Now $\left\langle\left[c,{ }_{j-1} x\right]\right\rangle \triangleleft G$ implies $\langle d\rangle=\left\langle\left[c,{ }_{j-1} x\right]^{p}\right\rangle \triangleleft G$ implies $\left\langle d^{p}\right\rangle \triangleleft G$.
We consider the above equation modulo $\left\langle d^{p}\right\rangle$.

$$
\left[\left[x, c^{p}\right],{ }_{j-2} x\right] \equiv d\left[x,{ }_{p} c,{ }_{j-2} x\right] \quad \bmod \left\langle d^{p}\right\rangle
$$

Since for $k \geq 2,\left\langle\left[d,{ }_{k-1} c\right]\right\rangle<\langle d\rangle$ implies $\left\langle\left[d,{ }_{k-1} c\right]\right\rangle \leq\left\langle d^{p}\right\rangle$. But $\left[x,{ }_{p} c,{ }_{j-2} x, c\right] \epsilon\langle d\rangle$ implies $\left[x, c,{ }_{j-2} x, c, c\right] \epsilon\left\langle d^{p}\right\rangle$ so we have

$$
\left[\left[x, c^{p}\right],{ }_{j-2} x\right] \equiv d\left[x, c,{ }_{j-2} x,{ }_{p-1} c\right] \equiv d \bmod \left\langle d^{p}\right\rangle
$$

which implies that

$$
\left.\left\langle\left[\left[x, c^{p}\right],{ }_{j-2} x\right]\right\rangle=\langle d\rangle=\left\langle[x, c]^{p},{ }_{j-2} x\right]\right\rangle .
$$

Induction Step. Assume $\left\langle\left[c^{p^{m}},{ }_{j-1} x\right]\right\rangle=\left\langle\left[c,{ }_{j-1} x\right]^{p^{p}}\right\rangle$ for all $m<n$.
To apply induction we must first show that $\left\langle\left[c,{ }_{j-1} x\right]\right\rangle \triangleleft G$ implies $\left\langle\left[c^{p^{k}},{ }_{j-1} x\right]\right\rangle \triangleleft G$ for any integral $k>0$. Now

$$
\begin{array}{rlr}
{\left[c^{p^{k}},{ }_{j-1} x\right]} & =\left[\left[x, c^{p^{k}}\right]^{-1},{ }_{j-2} x\right] & \\
& =\left[\left[x, c^{p^{k}}\right],{ }_{m-2} x\right]^{-1} & \\
& =\left[\prod_{i=1}^{p^{k}}\left[x,{ }_{i} c\right]^{c\left(p^{k}, i\right)},{ }_{j-2} x\right]^{-1} & \\
\text { by Identity } 6 \\
& =\prod_{i=1}^{p^{k}}\left[x,{ }_{i} c,{ }_{j-2} x\right]^{-c\left(p^{k}, i\right)} & \\
\text { by Identity } 7 \\
& \\
&
\end{array}
$$

Hence,

$$
\left[c^{p^{k}},{ }_{j-1} x\right] \in\left\langle\left[c,{ }_{j-1} x\right]\right\rangle \triangleleft G .
$$

Since all subgroups of a cyclic normal subgroup are normal,

$$
\left\langle\left[c^{p^{k}},{ }_{j-1} x\right]\right\rangle \triangleleft G .
$$

Now by induction since $n>1$ we get

$$
\begin{aligned}
\left\langle\left[c^{p^{n}},{ }_{j-1} x\right]\right\rangle & =\left\langle\left[c^{p^{n-1}},{ }_{j-1} x\right]^{p}\right\rangle \\
& =\left\langle\left(\left[c,{ }_{j-1} x\right]^{p^{n-1}}\right)^{p}\right\rangle \quad \text { applying induction again } \\
& =\left\langle\left[c,{ }_{j-1} x\right]^{p^{n}}\right\rangle
\end{aligned}
$$

Lemma 2. If G is a metabelian p-group, $p \neq 2$, and $c \in N_{G}\langle[x, c]\rangle$, then

$$
\left\langle\left[x, c^{p^{n}}\right]\right\rangle=\left\langle[x, c]^{p^{n}}\right\rangle
$$

Proof (by induction on n). $\quad n=1$. By Identity 7

$$
\begin{aligned}
{\left[x, c^{p}\right] } & =[x, c]^{p} \prod_{k=2}^{p-1}\left[x, c,{ }_{k-1} c\right]^{c(p, k)}\left[x,{ }_{p} c\right] \\
& =[x, c]^{p} \prod_{k=2}^{p-1}\left[[x, c, c]^{p},{ }_{k-2} c\right]^{\delta_{k}}\left[x,{ }_{p} c\right]
\end{aligned}
$$

where $\delta_{k}=C(p, k) / p$. Now since $c \in N_{G}\langle[x, c]\rangle$ implies that $c \in N_{G}\langle[x, c, c]\rangle$, we see that $\langle[x, c, c, c]\rangle \leq\left\langle[x, c, c]^{p}\right\rangle$, and if we consider the above equation modulo $\left\langle[x, c, c]^{p}\right\rangle$, we have

$$
\left[x, c^{p}\right] \equiv[x, c]^{p} \quad \bmod \left\langle[x, c, c]^{p}\right\rangle
$$

By Identity 6 we have $[x, c, c]^{p}=\left[[x, c]^{p}, c\right]$. Since $c \in N_{G}\langle[x, c]\rangle$

$$
\left\langle[x, c, c]^{p}\right\rangle=\left\langle\left[[x, c]^{p}, c\right]\right\rangle\langle\langle[x, c]\rangle .
$$

Thus, $\left\langle\left[x, c^{p}\right]\right\rangle=\left\langle[x, c]^{p}\right\rangle$.
Now assume we have shown $\left\langle\left[x, c^{p^{m}}\right]\right\rangle=\left\langle[x, c]^{p^{m}}\right\rangle$ for all $m<n$. Since $c \in N_{G}\langle[x, c]\rangle, c^{p^{n-1}} \in N_{G}\left\langle\left[x, c^{p^{n-1}}\right]\right\rangle$. So by induction we see that

$$
\left\langle\left[x,\left(c^{p^{n-1}}\right)^{p}\right]\right\rangle=\left\langle\left[x, c^{p^{n-1}}\right]^{p}\right\rangle
$$

i.e.,

$$
\left\langle\left[x, c^{p^{n}}\right]\right\rangle=\left\langle\left[x, c^{p^{n-1}}\right]^{p}\right\rangle
$$

and applying induction again,

$$
\left\langle\left[x, c^{p^{n}}\right]\right\rangle=\left\langle[x, c]^{p^{n}}\right\rangle .
$$

Lemma 3. Let G be a metabelian p-group, $p \neq 2$, and let c normalize $\langle[x, c]\rangle$; then

$$
\left[x, c^{i}\right]=\left[x, c^{j}\right] \quad \text { implies } \quad i \equiv j \bmod |[x, c]|
$$

Proof (by induction on the order of $[x, c]$). Assume $|[x, c]|=p$. Suppose $\left[x, c^{i}\right]=\left[x, c^{j}\right]$. Then using Identity 4 we have

$$
\left[x, c^{i}\right]=[x, c]^{i} \prod_{k=2}^{i}\left[x, c,{ }_{k-1} c\right]^{c(i, k)}=[x, c]^{i}
$$

since $\langle[x, c, c]\rangle \leq\left\langle[x, c]^{p}\right\rangle=1$. Doing the same thing for j we get

$$
\left[x, c^{i}\right]=[x, c]^{i}=[x, c]^{j}=\left[x, c^{j}\right]
$$

which implies that $i \equiv j \bmod |[x, c]|$.
Assume the lemma is true for commutators of order $\leq p^{n}$, and let $|[x, c]|=p^{n+1}$. Let $H=\langle c,[x, c]\rangle$ and $b=[x, c]$. Then $\left\langle b^{p^{n}}\right\rangle \triangleleft H$. Let $\sigma: H \rightarrow H /\left\langle b^{p^{n}}\right\rangle$ be the natural homomorphism. By induction

$$
\left[x, c^{i}\right] \equiv\left[x, c^{j}\right] \quad \bmod \left\langle b^{p^{n}}\right\rangle
$$

implies

$$
\left.i \equiv j \bmod p^{n} \quad \text { (since }\left|[x, c]^{\sigma}\right|=p^{n}\right)
$$

implies

$$
i=j+\delta p^{n}
$$

We will show that p divides δ which will imply that $i \equiv j \bmod p^{n+1}$.

$$
\begin{aligned}
{\left[x, c^{j}\right] } & =\left[x, c^{i}\right]=\left[x, c^{j+\delta p^{n}}\right] \\
& =\left[x, c^{j}\right]\left[x, c^{\delta p^{n}}\right]\left[x, c^{j}, c^{\delta p^{n}}\right] \\
& =\left[x, c^{j}\right]\left[x, c^{\delta p^{n}}\right]
\end{aligned}
$$

since the order of $[x, c]$ is p^{n+1} and the p-part of the order of the automorphism group of a cyclic p-group is less than the order of the group, we see that the automorphism induced by c on $\langle[x, c]\rangle$ has order less than p^{n+1}. So applying Lemma 2 we see that

$$
1=\left[x, c^{\delta p^{n}}\right] \text { implies } p \text { divides } \delta
$$

Now we will discuss the structure of finite metabelian p-groups, $p \neq 2$, which contain a self-centralizing element.

Lemma 4. Let G be a finite metabelian p-group with $x \in G$ and $M \triangleleft G$. Let $Y_{0}=1$ and

$$
Y_{i}=\left\{m \mid m \in M \text { and }\left[m,{ }_{i} x \mid=1\right\} \quad \text { for } i=1,2, \cdots\right.
$$

Then Y_{i} is a group for $i=1,2, \cdots$.
Proof. Let $m, n \in Y_{i}$. Then using Identities 1 and 6 we get

$$
\left[m n^{-1},{ }_{i} x\right]=\left[m,{ }_{i} x\right]\left[m, x, n^{-1},{ }_{i-1} x\right]\left[n^{-1},{ }_{i} x\right] .
$$

Now $m \in Y_{i}$, so $[m, i x]=1$. We apply Identity 4 to the second term and Identity 1 to the third term to get

$$
\left[m n^{-1}, i x\right]=\left[m, i x, n^{-1}\right]\left[[n, x]^{-1}, i_{i-1} x\right]\left[\left[n, x, n^{-1}\right]^{-1}, i-1 x\right] .
$$

Applying Identities 4 and 6 we have

$$
\left[m n^{-1}, i x\right]=[n, i x]^{-1}\left[n, i x, n^{-1}\right]^{-1}
$$

and since $n \in Y_{i}$,

$$
\left[m n^{-1}, i x\right]=1 .
$$

So $m n^{-1}$ is in Y_{i}.
Lemma 5. Let G be a finite metabelian p-group, $p \neq 2$, and x be self-centralizing in G. Then if $\langle x\rangle \neq G$,

$$
1 \neq\langle x\rangle \cap G^{\prime} \triangleleft G
$$

Proof. $\quad 1 \neq Z(G) \cap G^{\prime} \leq\langle x\rangle \cap G^{\prime}$. Let $w \in\langle x\rangle \cap G^{\prime}$ and $g \in G$. Then

$$
\left[w^{a}, x\right]=\left[w, x^{0^{-1}}\right]^{0}=\left[w, x\left[x, g^{-1}\right]\right]^{0}=[w, x]^{0}=1 .
$$

Hence, $w^{\theta} \in G^{\prime} \cap\langle x\rangle$ since $c_{G}\langle x\rangle=\langle x\rangle$. So $\langle x\rangle \cap G^{\prime} \triangleleft G$. We now prove the main theorem.
Theorem 1. Let G be a finite metabelian p-group, $p \neq 2$, and x self-centralizing in G. Let M be a normal subgroup of G. If subgroups Y_{i} are defined as in Lemma 4, then

$$
Y_{i} \triangleleft Y_{i+1} \quad \text { and } \quad Y_{i+1} / Y_{i} \text { is cyclic for } i=1,2, \cdots
$$

Proof. Since Y_{1} is cyclic, it will suffice to show that
(a) $Y_{i-1} \triangleleft Y_{i}$ implies Y_{i} / Y_{i-1} cyclic
(b) Y_{i} / Y_{i-1} cyclic implies $Y_{i} \triangleleft Y_{i+1}$.

We first show $Y_{i-1} \triangleleft Y_{i}$ implies Y_{i} / Y_{i-1} is cyclic. We use the fact that a p-group, $p \neq 2$, is cyclic if and only if it has exactly one subgroup of or$\operatorname{der} p$ [2, Theorem 12.5.2]. Let $c, d \in Y_{i} \backslash Y_{i-1}$ and $c^{p}, d^{p} \in Y_{i-1}$. Now $1 \neq\langle x\rangle \cap G^{\prime} \triangleleft G$, so we apply Lemma 1 as follows:

$$
\begin{aligned}
& 1=\left[c^{p},{ }_{i-1} x\right] \text { implies }\left[c,{ }_{i-1} x\right]^{p}=1 \text { and }\left[c,{ }_{i-1} x\right] \epsilon\langle x\rangle \cap G^{\prime} \\
& 1=\left[d^{p},{ }_{i-1} x\right] \text { implies }\left[d,{ }_{i-1} x\right]^{p}=1 \text { and }\left[d,{ }_{i-1} x\right] \epsilon\langle x\rangle \cap \cap G^{\prime} .
\end{aligned}
$$

Thus,

$$
\left\langle\left[c, i_{-1} x\right]\right\rangle=\left\langle\left[d, i_{i-1} x\right]\right\rangle .
$$

Now we note that the commutators $\left[d^{j},{ }_{i-1} x\right]$ for $j=1,2, \cdots, p-1$ all lie in the group $\left\langle\left[d, i_{1} x\right]\right\rangle$ which has order p, and by Lemma 3 we see that these commutators are all different so there exists an integer $\delta, 1 \leq \delta \leq p-1$, so that

$$
\left[d^{-\delta}, i_{1-1} x\right]=\left[c, i_{1-1} x\right]^{-1} .
$$

Now by Identities 1 and 6 ,

$$
\left[d^{-\delta} c, i_{i-1} x\right]=\left[d^{-\delta}, i-1 x\right]\left[d^{-\delta}, x, c, i-2^{2} x\right][c, i-1 x]=\left[d^{-\delta}, x, c, i_{i-2} x\right]
$$

and by Identity 4,

$$
\left[d^{-\delta} c,{ }_{i-1} x\right]=\left[d^{-\delta},{ }_{i-1} x, c\right]=1
$$

since $\left|\left[d^{-\delta}, i_{1-1} x\right]\right|=p$ and $\left\langle\left[d^{-\delta},{ }_{i-1} x\right]\right\rangle \triangleleft G$. Thus, $c d^{-\delta} \in Y_{i-1}$, which means that $\langle c\rangle \equiv\langle d\rangle \bmod Y_{i-1}$, i.e., Y_{i} / Y_{i-1} has only one subgroup of order p. Thus, since $p \neq 2, Y_{i} / Y_{i-1}$ is cyclic.

We now show Y_{i} / Y_{i-1} cyclic implies $Y_{i} \triangleleft Y_{i+1}$. Let $y \in Y_{i}$ and $g \in Y_{i+1}$. Then $y^{\sigma} \in Y_{i}$ if and only if $[y, g] \in Y_{i}$ if and only if $[y, g, i x]=1$. Now

$$
\begin{array}{rlr}
{\left[y, g,{ }_{i} x\right]} & =\left[y, g, x,{ }_{i-1} x\right] & \\
& =\left[x, y, g,{ }_{i-1} x\right]^{-1}\left[g, x, y,{ }_{i-1} x\right]^{-1} & \\
\text { by Identity } 5 \\
& =\left[\left[x, y,{ }_{i-1} x\right], g\right]^{-1}\left[[g, x], y,{ }_{i-1} x\right]^{-1} & \\
\text { by Identity } 4 \\
& =\left[[g, x, y],{ }_{i-1} x\right]^{-1} & \\
\text { since } y \in Y_{i}
\end{array}
$$

and since $[g, x] \in Y_{i}$ and Y_{i} / Y_{i-1} cyclic imply $[[x, g], y] \in Y_{i-1}$

$$
[y, g, i x]=1
$$

Corollary 1. Let G, x, M, Y_{i} be as in Theorem I. Then
(1) $\left|Y_{i+1} / Y_{i}\right| \leq\left|Y_{i} / Y_{i-1}\right|$ for $i=1,2, \cdots$;
(2) if $\left|Y_{i+1} / Y_{i}\right|=\left|Y_{i} / Y_{i-1}\right|$ and if $Y_{i+1}=\left\langle b_{i+1}, Y_{i}\right\rangle$, then

$$
\left\langle\left[b_{i+1}, x\right], Y_{i-1}\right\rangle=Y_{i}
$$

Proof. Let $\delta(i+1)$ be chosen so that $b_{i+1}^{p^{8(i+1)}} \in Y_{i}$, but $b_{i+1}^{p^{p(i+1)-1}} \in Y_{i}$. Since $\left\langle\left[b_{i+1}, i x\right]\right\rangle \leq\langle x\rangle \cap G^{\prime},\left\langle\left[b_{i+1},{ }_{i} x\right]\right\rangle \triangleleft G$ so we can apply Lemma 1 to get

$$
1=\left\langle\left[b_{i+1}^{p^{8(i+1)}},{ }_{i} x\right]\right\rangle=\left\langle\left[b_{i+1},{ }_{i} x\right]^{p^{(i+1)}}\right\rangle
$$

By applying Identity 6 we get

$$
1=\left\langle\left[\left[b_{i+1}, x\right]^{p^{\delta(i+1)}},{ }_{i-1} x\right]\right\rangle,
$$

i.e.,

$$
\left[b_{i+1}, x\right]^{p^{8}(i+1)} \in Y_{i-1}
$$

Thus, we see that

$$
p^{\delta(i+1)}=\left|Y_{i+1} / Y_{i}\right| \leq\left|Y_{i} / Y_{i-1}\right|
$$

and if $\left|Y_{i+1} / Y_{i}\right|=\left|Y_{i} / Y_{i-1}\right|$, then $\left|\left[b_{i+1}, x\right] \bmod Y_{i-1}\right|=\left|Y_{i} / Y_{i-1}\right|$. Hence,

$$
\left|Y_{i+1} / Y_{i}\right|=\left|Y_{i} / Y_{i-1}\right| \quad \text { implies } \quad Y_{i}=\left\langle\left[b_{i+1}, x\right], Y_{i-1}\right\rangle .
$$

Corollary 2. Let G be a finite metabelian p-group of class n containing a self-centralizing element. Then $d(G) \leq n$.

Proof. Let M be a normal supplement for $\langle x\rangle$. Since the class of G is n, for all $a \in M,\left[a,{ }_{n} x\right]=1$. Thus, $M \leq Y_{n}$.

The groups Y_{i} / Y_{i-1} are cyclic, so we can find elements b_{i} of M so that $Y_{i}=\left\langle b_{i}, Y_{i-1}\right\rangle$. Now

$$
G=\langle x, M\rangle=\left\langle x, b_{1}, \cdots, b_{n}\right\rangle=\left\langle x, b_{2}, \cdots, b_{n}\right\rangle
$$

since $b_{1} \in\langle x\rangle$. Hence, $d(G) \leq n$.

Application. We wish to find an economical generating system for a metabelian p-group, $G, p \neq 2$, which contains a self-centralizing element. Applying Theorem 1 to G with $M=G$ we have $1=Y_{0}<Y_{1}<\cdots<Y_{m}=G$. Using Corollary 1 we choose elements b_{i} of G so that
(a) $x=b_{1}$,
(b) $Y_{i}=\left\langle b_{i}, Y_{i-1}\right\rangle$ for $i=2,3, \cdots$,
(c) if $\left|Y_{i+1} / Y_{i}\right|=\left|Y_{i} / Y_{i-1}\right|$, then $b_{i}=\left[b_{i+1}, x\right]$ for $i=2,3, \cdots$.

Now $G=\left\langle x, b_{2}, b_{3}, \cdots\right\rangle$, but we may eliminate each b_{i} for which $\left|Y_{i+1} / Y_{i}\right|=\left|Y_{i} / Y_{i-1}\right|$ from this system of generators. This leaves only those b_{i} 's for which $\left|Y_{i+1} / Y_{i}\right|<\left|Y_{i} / Y_{i-1}\right|$. Call these b_{i} 's $b_{i_{1}}=x$, $b_{i_{2}}, \cdots, b_{i_{v}}$.

We will show that $v \leq w+1$ where $p^{w}=\left|G^{\prime} \cap\langle x\rangle\right|$. Now by Lemma 2 $\left|Y_{2} / Y_{1}\right|=\left|\left[b_{2}, x\right]\right| \leq\left|G^{\prime} \cap\langle x\rangle\right|=p^{w}$. Thus, for $i \geq 2$, $\left|Y_{i+1} / Y_{i}\right|<\left|Y_{i} / Y_{i-1}\right|$ can happen at most w times. Hence, $v \leq w+1$, and so $d(G) \leq w+1$.

This result is a specific case of the following theorem which was pointed out to me by the referee.

Theorem 2. Suppose G is a p-group, x an element of $G, C=c_{G}(x)$, and $\left|G^{\prime} \cap C\right|=p^{w} . \quad$ Then $d(G) \leq w+d(C)$.

Proof. Since G is a p-group,

$$
d(G)=d\left(G / G^{\prime}\right) \leq d\left(G / C G^{\prime}\right)+d\left(C G^{\prime} / G^{\prime}\right) .
$$

Using $C / C \cap G^{\prime} \cong C G^{\prime} / G^{\prime}$ and $C^{\prime} \leq C \cap G^{\prime}$ we have

$$
d(G) \leq d\left(G / C G^{\prime}\right)+d(C)
$$

Now $\left|G / C G^{\prime}\right|=|G|\left|G^{\prime} \cap C\right| /|C|\left|G^{\prime}\right|$ and since
$|G: C|=$ number of conjugates of $x=$ number of commutators $[x, a]$,
we have

$$
|G| /|C|=|G: C| \leq\left|G^{\prime}\right|
$$

So

$$
\left|G / C G^{\prime}\right| \leq\left|C \cap G^{\prime}\right|=p^{w}
$$

Hence,

$$
d\left(G / C G^{\prime}\right) \leq w
$$

Thus,

$$
d(G) \leq w+d(C)
$$

The following example will show that the results of Theorem 2 and Corollary 2 are best possible in the sense that we can find groups for which the bounds are attained.

Example 1. We construct the group as follows. Let

$$
M=\left\langle a_{1}\right\rangle \times\left\langle a_{2}\right\rangle \times \cdots \times\left\langle a_{n}\right\rangle,
$$

where $\left|a_{i}\right|=p^{n-i+1}$ for $i=1,2, \cdots, n$. Let τ be the automorphism of M so that

$$
\tau: a_{1} \rightarrow a_{1}, \quad \tau: a_{i} \rightarrow a_{i} a_{i-1}^{p} \quad \text { for } i=2,3, \cdots, n
$$

τ is an automorphism of M since τ preserves the defining relations of M (since M is abelian, this means τ preserves orders of elements) and τ is onto.
Let $G=\langle x, M\rangle$ where $M \triangleleft G$, and $a^{\tau}=a^{x}$ for all $a \in M$, and $x^{|\tau|}=a_{1}$.
We now show x is self-centralizing in G. It suffices to show $c_{M}\langle x\rangle=\langle x\rangle \cap M$. Let us define $A_{i}=\left\langle a_{1}, \cdots, a_{i}\right\rangle$ for $i=1, \cdots, n$. We will show $c_{M}\langle x\rangle=\left\langle a_{1}\right\rangle$. Suppose $g \in M \backslash A_{1}$ and $1=[g, x]$. Since $g \in M$, there is an integer j so that $g \in A_{j} \backslash A_{j-1}$. Thus, g can be written as $g=a_{j}^{\eta p^{\lambda}} m$ where $m \in A_{j-1}$ and $(\eta, p)=1$. Also $p^{\lambda}<\left|a_{j}\right|=p^{n-j+1}$. Now $1=[g, x]$ implies

$$
\begin{aligned}
1 & \equiv\left[a_{j}^{\eta p^{\lambda}} m, x\right] & \bmod A_{j-2} \\
& \equiv\left[a_{j}^{\eta p^{\lambda}}, x\right] & \bmod A_{j-2}
\end{aligned}
$$

Hence,

$$
1 \equiv a_{j-1}^{\eta p^{\lambda+1}} \quad \bmod A_{j-2}
$$

But this means that $a_{j-1}^{p^{\lambda+1}}=1$ so $p^{\lambda+1}| | a_{j-1} \mid$, i.e., $\lambda+1 \geq n-j$, a contradiction since $p^{\lambda}<p^{n-j+1}$. Thus, $c_{m}\langle x\rangle=\left\langle a_{1}\right\rangle=M \cap\langle x\rangle$.

Now $G^{\prime}=\left\langle a_{1}^{p}, a_{2}^{p}, \cdots, a_{n-1}^{p}\right\rangle$ so $\langle x\rangle \cap G^{\prime}=\left\langle a_{1}^{p}\right\rangle$, and $\left|\langle x\rangle \cap G^{\prime}\right|=p^{n-1}$. Since $d(G)=d\left(G / G^{\prime}\right)$ we see that $\left\{x, a_{2}, \cdots, a_{n}\right\}$ is a minimal generating system for G. Thus, $d(G)=n$.

We also see that since $\left[a_{i}, x\right]=a_{i-1}^{p},\left[a_{n, n-1} x\right] \neq 1$, but $\left[a_{n, n} x\right]=1$. Hence, $\operatorname{cl}(G) \geq n$. Corollary 2 gives $\operatorname{cl}(G) \leq n$ so $\operatorname{cl}(G)=n$, and the bound of Corollary 2 is attained.

References

1. J. Domber, Anticenters of several classes of groups, Amer. Math. Monthly, vol. 69 (1962), pp. 738-741.
2. M. Hall, Jr., Theory of groups, Macmillan, New York, 1959.
3. B. Huppert, Endliche Gruppen, Springer-Verlag, Heidelberg, 1967.
4. W. Kappe, On the anticenter of nilpotent groups, Illinois J. Math., vol. 12 (1968), pp. 603-609.
5. -_, Self-centralizing elements in regular p-groups, to appear
6. N. Levine, The anticenter of a group, Amer. Math. Monthly, vol. 70 (1960), pp. 61-63.
7. W. Magnus, A. Karrass, and D. Solitar, Combinatorial group theory, Wiley, New York, 1966.
8. H. Neumann, Varieties of groups, Springer-Verlag, New York, 1967.
9. K. Seksenbaev, On the anticenter of bundles of groups, Izv. Akad. Nauk Kazah. SSR Ser. Fiz.-Mat. Nauk, No. 1 (1966), pp. 20-24.

Battelle Memorial Institute
Columbus, Ohio

[^0]: Received July 31, 1968.
 ${ }^{1}$ The results of this paper constitute a part of a doctoral dissertation written at The Ohio State University under the direction of Professor Wolfgang P. Kappe. Sincere thanks are extended to Professor Kappe for his encouragement and advice.

