FINITE-DIMENSIONAL SCHAUDER DECOMPOSITIONS IN π_{λ} AND DUAL π_{λ} SPACES

BY

WILLIAM B. JOHNSON¹

I. Introduction

DEFINITION. Let X be a Banach space and let $\lambda \geq 1$. X is a π_{λ} space (resp. dual π_{λ} space) iff there is a net $\{S_d : d \in D; \leq\}$ of linear projections on X such that

(1) each S_d has finite-dimensional range;

(2) $\lim_{d} S_{d}(x) = x$, for each $x \in X$;

(3) $|| S_d || \leq \lambda$, for each $d \in D$;

(4) $S_e S_d = S_d$, for $e \ge d$ (resp. $S_d S_e = S_d$, for $e \ge d$).

 $\{S_d : d \in D\}$ is called a π_λ (resp. dual π_λ) decomposition for X.

The concepts of π_{λ} and dual π_{λ} spaces are dual in the sense that if $\{S_d\}$ is a π_{λ} (resp. dual π_{λ}) decomposition for X, then $\{S_d^*\}$ satisfies the definition of dual π_{λ} (resp. π_{λ}) decomposition for X^* except that the convergence in (2) is weak * convergence. In case $\{S_d\}$ is a dual π_{λ} decomposition for X, it is easy to prove that $\{S_d^*\}$ is a π_{λ} decomposition for the Banach space $cl_{X^*}(U_{deD}$ Range (S_d^*)). We note that if $\{S_d\}$ is either a π_{λ} or dual π_{λ} decomposition for X, then U_{deD} Range (S_d) is dense in X.

Interesting results concerning π_{λ} and π_{1}^{∞} spaces (Section III) have been obtained by Lindenstrauss, [2], and Michael and Pełczynski, [3] and [4]. The proof of Lemma 3.1 in [2] can be modified to show that a dual π_{λ} space is a π_{β} space for any $\beta > \lambda$, so that many of these results apply to dual π_{λ} spaces as well.

The main results of Section II relate the concepts of dual π_{λ} and π_{1} decompositions to basis theory:

THEOREM 1. A separable Banach space, X, has a finite-dimensional Schauder decomposition iff X is a dual π_{λ} space, for some $\lambda \geq 1$.

THEOREM 2. A separable Banach space, X, has a finite-dimensional monotone Schauder decomposition iff X is a π_1 space.

Recall that $\{P_n, M_n\}_{n=1}^{\infty}$ is a Schauder decomposition for X iff each P_n is a continuous linear projection of X onto M_n ; $P_n P_m = 0$, for $n \neq m$; and for each $x \in X$, $x = \sum_{n=1}^{\infty} P_n(x)$. If $\{P_n, M_n\}_{n=1}^{\infty}$ is a Schauder decomposition for X, define the partial sum operators, S_n , by $S_n = \sum_{i=1}^{n} P_i$. $\{S_n\}_{n=1}^{\infty}$ is

Received July 29, 1968.

¹ The author was partially supported by a NASA traineeship. This paper represents a portion of the author's doctoral dissertation prepared at Iowa State University under the direction of J. A. Dyer.

pointwise convergent to the identity operator, hence $\{S_n\}_{n=1}^{\infty}$ is uniformly bounded when X is a Banach space. We denote by $G(\{M_n\})$ the number $\sup_{n=1,2,3,...} || S_n ||$, and call $G(\{M_n\})$ the Grynblum constant of the decomposition. If $G(\{M_n\}) = 1$, the Schauder decomposition is said to be monotone. If each P_n (and hence each S_n) has finite-dimensional range, $\{P_n, M_n\}_{n=1}^{\infty}$ is called a finite-dimensional Schauder decomposition.

It is easy to prove (and essentially known—see [5]) that a sequence $\{S_n\}_{n=1}^{\infty}$ of operators on X is a π_{λ} -dual π_{λ} decomposition for X iff $\{S_n\}_{n=1}^{\infty}$ is the sequence of partial sum operators associated with a finite-dimensional Schauder decomposition for X with Grynblum constant no larger than λ . In particular, the "only if" parts of Theorems 1 and 2 are immediate.

In Section III we prove that every C(K) space is a dual π_1^{∞} space. The Michael and Pełczynski result [4] that C(K) is a π_1^{∞} space when K is compact metric is an immediate consequence of Theorem 4.

If P is a linear operator, we denote by R(P) the range of P, and by ker(P), the null space of P. For a > 0, let $B(a) = \{x : ||x|| \le a\}$. I denotes the identity operator. C(K) is the Banach space of scalar (i.e., real or complex) valued continuous functions on the compact Hausdorff space K, endowed with the sup norm. If A is a subset of a linear space, sp A denotes the linear span of A.

II. The basis theorems

LEMMA 1. Let X be a normed space and Y a separable subspace of X. Suppose $\{S_d : d \in D; \leq\}$ is an equicontinuous net of linear operators of finite range on X which converges pointwise to I. Let M and a be positive numbers. Then there is $\{d_1 \leq d_2 \leq d_3 \leq \cdots\} \subset D$ such that $\lim_{n \to \infty} S_{d_n}(x) = x$, for each $x \in Y$, and $S_{d_{n+1}}$ moves each point of $B(M) \cap \operatorname{sp} \bigcup_{i=1}^n R(S_{d_i})$ a distance less than $a/2^n$.

Proof. Let $\{x_i\}_{i=1}^{\infty}$ be dense in Y. Choose $d_1 \in D$ such that $||x_1 - S_{d_1}(x_1)|| < a$. Suppose that $d_1 \leq d_2 \leq \cdots \leq d_n$ have been chosen. Choose $d_{n+1} \in D$ such that $d_n \leq d_{n+1}$ and for each

$$x \in A = \{x_i\}_{i=1}^{n+1} \cup [B(M) \cap \operatorname{sp} \bigcup_{i=1}^n R(S_{d_i})],$$
$$\|x - S_{d_{n+1}}(x)\| < a/2^n.$$

This choice is possible because $\{S_d : d \in D\}$ converges pointwise to I and is equicontinuous, so that the convergence is uniform on compact sets. A is closed, bounded, and finite dimensional, hence is compact. Now for each i, $\lim_{n\to\infty} S_{d_n}(x_i) = x_i$. Since $\{x_i\}_{i=1}^{\infty}$ is dense in Y and $\{S_{d_n}\}_{n=1}^{\infty}$ is equicontinuous, $\{S_{d_n}\}_{n=1}^{\infty}$ converges pointwise on Y to I.

Proof of Theorem 1. Suppose that X is a dual π_{λ} space. Let $M > \lambda$. We show that X has a finite-dimensional Schauder decomposition with Grynblum constant no larger than M.

By Lemma 1, we can assume that X has a dual π_{λ} decomposition $\{S_n\}_{n=1}^{\infty}$ such that for each n and each $x \in B(M) \cap \operatorname{sp} \bigcup_{i=1}^{n} R(S_i)$,

(1) $||x - S_{n+1}(x)|| < (M - \lambda)/2^n$.

For $j \ge n$, let $T_n^j = S_j S_{j-1} \cdots S_n$. Now if j > n, (2) $\| T_n^j \| \le \left[\sum_{i=n}^{j-1} (M - \lambda)/2^i \right] + \lambda < M$.

If j = n + 1, (2) follows from the fact that $|| S_n || \le \lambda$, (1), and the inequality

$$|| T_n^{n+1}(x) || \le || S_{n+1} S_n(x) - S_n(x) || + || S_n(x) ||.$$

In general, if (2) holds for j, then for $x \in B(1)$

$$\| T_n^{j+1}(x) \| \leq \| S_{j+1} T_n^j(x) - T_n^j(x) \| + \| T_n^j(x) \| \\ \leq (M-\lambda)/2^j + [\sum_{i=n}^{j-1} (M-\lambda)/2^i] + \lambda,$$

so that (2) also holds if j + 1 is substituted for j. Note that this argument also shows that for $x \in B(1)$ and $j > i \ge n$,

(3)
$$|| T_n^j(x) - T_n^i(x) || \le \sum_{k=i}^{j-1} (M-\lambda)/2^k.$$

Thus the Cauchy criterion guarantees that $\lim_{j\to\infty} T_n^j(x)$ exists for each $x \in X$ and $n = 1, 2, 3, \cdots$. Let $T_n = \lim_{j\to\infty} T_n^j$. Clearly each T_n is linear and $|| T_n || \leq M$.

Now for $n \ge m$ and $j \ge m$,

$$T_{m}^{j} T_{n} = S_{j} \cdots S_{m} \lim_{i \to \infty} S_{i} \cdots S_{n}$$
$$= \lim_{i \to \infty} S_{j} \cdots S_{m} S_{i} \cdots S_{n}$$
$$= \lim_{i \to \infty} S_{j} \cdots S_{m} = T_{m}^{j}.$$
Thus for $n \ge m$, $T_{m} T_{n} = T_{m}$. Similarly, for $j \ge m \ge n$,
$$T_{m}^{j} T_{n} = S_{j} \cdots S_{m} \lim_{i \to \infty} S_{i} \cdots S_{n}$$
$$= \lim_{i \to \infty} S_{j} \cdots S_{m} S_{m-1} \cdots S_{n} = T_{n}^{j}.$$

Thus for $m \ge n$, $T_m T_n = T_n$. That is, $T_m T_n = T_{\min(n,m)}$.

We next show that $\{T_n\}_{n=1}^{\infty}$ pointwise converges to *I*. Since $\bigcup_{n=1}^{\infty} R(S_n)$ is dense in X and $\{T_n\}_{n=1}^{\infty}$ is equicontinuous, it is sufficient to show that for each $x \in \bigcup_{n=1}^{\infty} R(S_n)$, $\lim_{n\to\infty} T_n(x) = x$. Let $x \in \bigcup_{n=1}^{\infty} R(S_n)$, say $x \in R(S_i)$, and without loss of generality assume that $x \in B(1)$. If j > n > i, we have from (3) and (1) that

$$\| T_n^j(x) - x \| \leq \| T_n^j(x) - S_n(x) \| + \| S_n(x) - x \|$$

$$\leq [\sum_{k=n}^{j-1} (M - \lambda)/2^k] + (M - \lambda)/2^{n-1}.$$

Passing to the limit on j, we get that for n > i,

$$|| T_n(x) - x || \le \sum_{k=n-1}^{\infty} (M - \lambda)/2^k.$$

Passing to the limit on n, we have that $\lim_{n\to\infty} || T_n(x) - x || = 0$.

Now for each n,

(4)
$$S_n T_n = S_n \text{ and } T_n S_n = T_n$$
,

so that ker $(T_n) = \text{ker}(S_n)$, and thus $R(T_n)$ and $R(S_n)$ have the same dimension. Therefore $\{T_n\}_{n=1}^{\infty}$ is a π_M -dual π_M decomposition for X, and the remarks in the introduction complete the proof.

Remark 1. Using the notation of Theorem 1, we have from (4) that T_n is an isomorphism from $R(S_n)$ onto $R(T_n)$ with inverse S_n . Thus for each $n, d(R(T_n), R(S_n)) \leq M\lambda$, where

 $d(A, B) = \inf \{ \|T\| \cdot \|T^{-1}\| : T \text{ is an isomorphism from } A \text{ onto } B \}.$

If each S_n is of norm 1, then each T_n is of norm 1, so that $R(T_n)$ and $R(S_n)$ are isometric. Of course, in this case the generated Schauder decomposition is monotone.

COROLLARY 1. Let X be a dual π_1 space and let Y be a separable subspace of X. Then there is a separable subspace Z of X such that $Y \subset Z$ and Z has a π_1 -dual π_1 decomposition.

Proof. Let $\{S_d : d \in D\}$ be a dual π_1 decomposition for X. Using Lemma 1, we can find $\{d_1 \leq d_2 \leq d_3 \leq \cdots\} \subset D$ such that $\lim_{n \to \infty} S_{d_n}(x) = x$, for each $x \in Y$, and $S_{d_{n+1}}$ moves each point of sp $\bigcup_{i=1}^{n} R(S_{d_i}) \cap B(1)$ a distance less than $\frac{1}{2}^n$. Let $Z = \{x \in X : \lim_{n \to \infty} S_{d_n}(x) = x\}$. Clearly Z is a separable (closed) subspace of X and $Y \subset Z$. Now $\{S_{d_n}\}_{n=1}^{\infty}$ is a dual π_1 decomposition for Z because each $R(S_{d_n})$ is a subset of Z. Thus by Theorem 1 and Remark 1, Z has a π_1 -dual π_1 decomposition.

The referee has noted that the proof of Proposition 6.1 in [4] can be generalized to give an easy proof of Theorem 2. Alternatively, Theorem 2 follows immediately from Lemma 1 and the following:

THEOREM 3. Let X be a Banach space and let $\{S_n\}_{n=1}^{\infty}$ be a π_{λ} decomposition for X. Suppose that there is a sequence $\{P_n\}_{n=1}^{\infty}$ such that for each n, P_n is a linear projection from $R(S_{n+1})$ onto $R(S_n)$, and that $\prod_{n=1}^{\infty} ||P_n|| = k < \infty$. Then X has a finite-dimensional Schauder decomposition with Grynblum constant no larger than λk .

Sketch of proof. For n > j, let $T_j^n = P_j P_{j+1} \cdots P_{n-1} S_n$. For each j, let $T_j = \lim_{n \to \infty} T_j^n$. (This pointwise limit exists because $|| T_j^n || \le \lambda k$, and for each m, $\{T_j^n\}_{n=j+1}^{\infty}$ is eventually constant on $R(S_m)$.) It follows by an argument similar to that used in Theorem 1 that $\{T_n\}_{n=1}^{\infty}$ is a $\pi_{\lambda k}$ -dual $\pi_{\lambda k}$ decomposition for X. The remarks in the introduction then complete the proof.

We conclude this section with an unsolved problem:

Problem 1. Does every separable π_{λ} space have a finite-dimensional Schauder decomposition?

III. Dual π_1^{∞} decompositions in C(K) spaces

A π_1 (resp. dual π_1) decomposition $\{S_d : d \in D\}$ is a π_1^{∞} (resp. dual π_1^{∞}) decomposition iff each $R(S_d)$ is isometric to an $l_{n(d)}$ space. It is known [2] that every C(K) space "almost" has a π_1^{∞} decomposition, $\{S_d : d \in D\}$, in the sense that each $R(S_d)$ is almost isometric to $l_{n(d)}^{\infty}$, and that if K is compact metric, C(K) is a π_1^{∞} space [3]. It is not known whether every C(K) space is a dual π_1^{∞} space. However, Theorem 4 shows that every C(K) space is a dual π_1^{∞} space.

Recall that $\{f_i\}_{i=1}^n \subset C(K)$ is a peaked partition of unity iff each f_i is non-negatively real-valued, $\sum_{i=1}^n f_i$ is the constant 1 function, and $||f_i|| = 1$. Sp $(\{f_i\}_{i=1}^n)$ is then called a peaked partition subspace, and is isometric to l_n^{∞} (cf., e.g., [3]).

THEOREM 4. Let K be compact Hausdorff. Then C(K) has a dual π_1^{∞} decomposition $\{S_d : d \in D\}$ such that each $R(S_d)$ is a peaked partition subspace.

Proof. Let D be the collection of all ordered pairs $(\{U_i\}_{i=1}^n, \{x_i\}_{i=1}^n)$ such that $\{U_i\}_{i=1}^n$ is a minimal open cover of K and $x_i \in U_i - \bigcup_{j \neq i} U_j$. Partially order D by

iff

$$(\{U_i\}_{i=1}^n, \{x_i\}_{i=1}^n) \leq (\{V_j\}_{j=1}^m, \{y_j\}_{j=1}^m)$$

 $\{V_j\}_{j=1}^m$ refines $\{U_i\}_{i=1}^n$ and $\{x_i\}_{i=1}^n \subset \{y_j\}_{j=1}^m$.

It is straightforward to verify that D is directed by \leq . For each $(\{U_i\}_{i=1}^n, \{x_i\}_{i=1}^n) \in D$, pick a peaked partition of unity $\{f_i\}_{i=1}^n$ such that f_i vanishes outside U_i (hence $f_i(x_j) = \delta_{ij}$). For each $d = (\{U_i\}_{i=1}^n, \{x_i\}_{i=1}^n)$ in D, define the projection S_d by $S_d(f) = \sum_{i=1}^n f(x_i)f_i$, where $\{f_i\}_{i=1}^n$ is the peaked partition of unity associated with d. If $d = (\{U_i\}_{i=1}^n, \{x_i\}_{i=1}^n)$ is in D, then clearly

$$\ker (S_d) = \{f \in C(K) : f(x_1) = f(x_2) = \cdots = f(x_n) = 0\}.$$

Thus if $d \leq e$, ker $(S_e) \subset$ ker (S_d) , and hence $S_d S_e = S_d$. Obviously $||S_d|| = 1$, for all $d \in D$. To complete the proof we must show that the net $\{S_d : d \in D; \leq\}$ pointwise converges to I. Let $f \in C(K)$ and let e > 0. Choose a minimal open cover $\{V_j\}_{j=1}^n$ of K such that if $\{x, y\} \subset V_j$, then |f(x) - f(y)| < e. Suppose $d = (\{U_i\}_{i=1}^m, \{x_i\}_{i=1}^m)$ is in D such that $\{U_i\}_{i=1}^m$ refines $\{V_j\}_{j=1}^n$. Then for all $x \in K$,

$$|f(x) - S_d(f)(x)| = |f(x) - \sum_{i=1}^m f(x_i)f_i(x)|$$

= $|\sum_{i=1}^m f_i(x)(f(x) - f(x_i))|$
 $\leq \sum_{i=1}^m f_i(x) |f(x) - f(x_i)| = k,$

where $\{f_i\}_{i=1}^m$ is the peaked partition of unity associated with d. Now if $x \in U_i$, $|f(x) - f(x_i)| < \varepsilon$, since $\{U_i\}_{i=1}^m$ refines $\{V_j\}_{j=1}^n$. If $x \notin U_i$, then $f_i(x) = 0$. Hence $k < \sum_{i=1}^m f_i(x)\varepsilon = \varepsilon$. This completes the proof.

Remark 2. The proof of Corollary 1 shows that a separable subspace of a dual $\pi_1^{\tilde{n}}$ space, X, is contained in a separable $\pi_1^{\tilde{n}}$ -dual $\pi_1^{\tilde{n}}$ subspace of X. Thus by Theorem 4, every separable subspace of C(K) is contained in a separable $\pi_1^{\tilde{n}}$ subspace of C(K). In particular, when K is compact metric, we have the result of Michael and Pełczynski [4], that C(K) is a $\pi_1^{\tilde{n}}$ space.

Recall that a Hausdorff space K is a Boolean space iff the compact-open subsets of K form a base for the topology. In [1], Dyer notes that Theorem 4 can be improved for Boolean spaces:

THEOREM 5. If K is a compact Boolean space, then C(K) has a π_1^{∞} -dual π_1^{∞} decomposition $\{S_d : d \in D\}$ such that for each $d \in D$, $R(S_d)$ is spanned the characteristic functions of the elements of a pairwise disjoint compact-open cover of K.

References

- 1. J. A. DYER, Integral bases in linear topological spaces, Illinois J. Math., vol. 14 (1970), pp. 468-477.
- 2. J. LINDENSTRAUSS, Extensions of compact operators, Mem. Amer. Math. Soc. no. 48, 1964.
- 3. E. MICHAEL AND A. PEŁCZYNSKI, Peaked partition subspaces of C(X), Illinois J. Math., vol. 11 (1967), pp. 555–62.
- 4. ——, Separable Banach spaces which admit l_n^{∞} -approximations, Israel J. Math. vol. 4 (1966), pp. 189–98.
- 5. W. H. RUCKLE, The infinite sum of closed subspaces of an F-space, Duke Math. J., vol. 31 (1964), pp. 543-54.

IOWA STATE UNIVERSITY Ames, IOWA UNIVERSITY OF HOUSTON HOUSTON, TEXAS