EXTENSIONS OF COHOMOLOGY THEORIES

BY
James C. BECKER

Introduction

The orientability of a sphere bundle relative to a cohomology theory A is
essential to some of the basic results of algebraic topology which center around
the Thom isomorphism theorem [3], [8], [12]. In the case of integral cohomol-
ogy corresponding results can be obtained in the non-orientable case by
introducing local coefficients. The purpose of this paper is to give an anal-
ogous construction for an arbitrary cohomology theory.

Let ®* be the category of finite CW-pairs and let ® (B(0)) be the category
of triples (X, 4, f) with (X, A)e®*and f: X — B(0). We will construct,
for a spectrum F, a cohomology theory H( ; F) on ®*(B(0)) which is an
extension of the cohomology theory on ®* determined by F. The essential
property of this extension is that if Y = (¥, X, r)isan (n — 1)-sphere bundle
with classifying map f: X — B(0) then (Y, f) has a Thom class. This
allows us to establish a Thom isomorphism theorem for arbitrary sphere
bundles.

MacAlpine [9] has recently introduced twisted cohomology groups asso-
ciated with a spectrum F and bundle Y. By virtue of the Thom isomorphism
theorem we can exhibit the relation between his groups and ours (see (12.9)).
There is also some overlap between our work and recent work of Israel Ber-
stein on the Thom isomorphism.

A Thom class u for (Y, f) relative to F determines an Euler class X in the
usual way. Many of the properties of the integral Euler class carry over
here and, in particular, a necessary condition that Yy admit a cross-section is
that € = 0. On the other hand, if F is the sphere spectrum S and X is
(2n — 2)-connected, this is also a sufficient condition (Theorem (13.23)).
An application of this fact to immersions of manifolds in Euclidean space is
given in Section 14. Further applications are given in [13].

1. Preliminaries
The unit interval will be denoted by I. The space of maps X — B with the
compact open topology will be denoted by 9 (X, B) and
Mg) : M(X, B) - mM(X, B')

(respectively, M (g) : M (X', B) — M (X, B)) will denote the map induced
by g : B — B’ (respectively, g : X — X').
Recall that the reduced join of pointed spaces F and F’, with base-points
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o and z, respectively, is the pointed space

FAF =F XF/F X {z}u{w} XF
with base-point [X,, #o]. We have a canonical mapping
(1.1) TR EYNXE) > QHEF N F)

by x" o, (- tigg) = [o(t -+ ), T - L))
The boundary operator in the homotopy sequence of the path space fibra-
tion

QF)—>PF)LF,

where ¢(c) = ¢(0), produces an identification

1.2) Oy i (F) — ma (Q(F)), n > 1.
Explicitly, dg[o] = [¢] where
Gt tar)(tn) = ot -+ tar, tm).
We have a pairing
(1.3) Nim(F) @ m(F') = mope(F N\ F')
defined by letting [¢] A [¢'] be the class of

’
s Xo
—_—

X I FXF _2,FAF

where w is the projection map. Now consider the diagram

T @F)) ® 1(F) —Ls mopia(@F) A FY)

1,0
(—1)%3¢ X 1 \%‘
7 /\ 7 a \ 4
(14) mF) @ = (F) S mu(F A F) 22, Tera(QF A F)
//‘
HE o e,

w(F) ® 7 s@(F)) L mes(® A 2
(1.5) LEmMMA. The above diagram is commutative.

The proof is left to the reader.

We will take S™ to be the one-point compactification of R*. The point at
infinity will be denoted by 2z, and is to be the base-point. We have a natural
correspondence

1.6) MX A S, Y)—-mX, Q" (7))
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by f — f where

Fla, e tw)
= f(z, tan (#/2(26 — 1)), -+, tan (#/22t, — 1))) f0 < ; < 1,
= 2z otherwise.

In general, this is a continuous, one-one, and onto mapping and if X is com-
pact, it is a homeomorphism. These facts are easily deduced from [4].
We have an identification

(1‘.7) g‘n,m : Sn /\ Sm N Sn+m

by
Saml® Yyl = (@X,Y), T 5 20, Y = 2m,

= Yntmy, L = 2 OLY = 2Zm,

and the following diagrams are commutative:

Sn /\ Sm /\ St M__/\_l) Sn+m /\ St
(1'8) ]- /\ g‘m,t l§n+m /\ 1
Sn /\ Sm+t ?n,m+t Sn-{—m+t

Sn /\ Sm g‘n,m Sn+m
(1.9 la lon,m

Sm /\Sn g‘m,n Sn—Hn
where afz, y] = [y, ] and C,, is the extension of

C¥m:R™™ — R™™
defined by
Corm(@1 Topm) = @ngs *** Tngm, T+ Tn).
2. Cohomology theories

For a space B, let ®(B) (respectively, ®*(B)) be the category of objects
(X, A, f) such that (X, A) is a CW-pair (respectively, (X, 4) is a finite
CW-pair) and fe W (X, B). A mapping

9: (X, 4,f) - X', A1)
in either category is to be an ordinary map g : (X, 4) — (X', A’) such that
f = f'g. Let @ denote the category of abelian groups.

A cohomology theory h on ® (B) consists of a sequence of contravariant func-
tors A" : ®(B) — @ and natural transformations

d" k"o T — ™,
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where T : ®(B) — (B)isdefined by (X, 4,f) = (4,¢,f14) and T(g) = g4 -
They are to have the following properties.
21) For X XI,AXI,F)e®(B)
B"(4) : B"(X X I, A X I, F) —» h"(X, 4, fo)

78 an isomorphism, where 7 : (X, A) — (X X I, A X I) 7s defined by
() = (x,0) and fo = F1y.
(2.2) For (X, A, f) e ®(B), the sequence

e P e, D, ey D s L

18 exact, wheret : A — X andf : X — (X, A) are inclusions.

23) If X = A, u A, where Ay and A, are subcomplexes of X, then for
feMm(X, B),
R (@) 2 B'(X, A2, f) > 1" (A1, A1 n As, fla,)

18 an isomorphism, where 1 . (A1, Ain Az) — (X, A2) is the inclusion.
A cohomology theory on @*(B) is defined analogously.

Example. When B consists of a single point we may identify @ (B) with the
category of CW-pairs. Having done this, axiom (2.1) is easily seen to be
equivalent to the homotopy axiom so that a cohomology theory on ®(B) is
just a generalized cohomology theory as in [12].

Remark. Hereafter we will revert to the usual convention and write g*
instead of A" (g) for a mapping g ¢ ®(B).

Notice that (2.1) implies that 4; is also an isomorphism, for we have a com-
mutative diagram

(X X I,A X I,F)
N
(2.4) o P KX, A, f1)

X XI,AXIF™

where o : X X I — X X [ is the involution (z,t) — (x,1 — t).
Now for F : X X I — B, a homotopy from f, to fi, define

(2-5) F# : h”(X, A;fl) - h”(-Xy A’ fo)

by Fy = tst1 . The isomorphism Fy has the following easily established
properties.
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(2.6) The assignments f — h"(X, A, f), f ¢ M(X, B), and F — Fg,
F e M (X, B)', define a local system of abelian groups on M (X, B).
2.7) Commutativity holds in the diagram

P, i) —Ts WX, 4, 5)
J(F |A><I)# . lF #
WA, foa) —S WX, 4, 0.
(2.8) Forg: (X', A") = (X, A), commutativity holds in the diagram

%

WX, A, f) —L— w(X', A, fig)
Py ) jmg X 1))y
WX, A, f) —L— WX, A, fog).

Finally, suppose that a homotopy G : (X/, A’) X I — (X, A) from g, to

g1 and a map f : X — B are given. We have the following “homotopy prop-
erty”.

(2.9) Commutativity holds in the diagram

hn(X,, Al, fgl)

e
(f&x

Y

N
h’n(le A,’ f90)°
Let A and /% be cohomology theories on B and B respectively. A homo-
morphism = . h — F covering v : B — B is to be a collection of homomorphisms
(2.10) N: k"X, A,f) =B (X, 4,7f), (X,4,f)e®(B), —o <n< w,

satisfying the obvious commutativity relations. In the case where 7 is an in-
clusion and each \ in (2.10) is an isomorphism, we will call / an extension of k.

h'(X, 4, f)

3. The spectral sequence of a fibration

In [1] we described the spectral sequence associated with a fibrationz : ¥ — X
and map f : X — B. Here, we wish to outline a more general version of this
spectral sequence.

Suppose now that = : ¥ — X is locally trivial, X is a polyhedron and for
each pair (K, L) of subcomplexes of X the pair (v~ (K), = (L)) is a CW-pair.
ForzeXlet F(z) = = ().
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Fix a map g : ¥ — B. We will describe how the collection of groups
K" (F (z), 9), x e X, form a local system over X. Leto : I — X be a path from
Zo to 21. By the covering homotopy property, construct

S@):F() XI—->Y

such that S(¢)o : F(x0) — F(xo) is the identity and #S(¢)(y, t) = o (),
yeF(1),0<t<1. WethenhaveS(o):: F(x)— F(x1). Define

@3.1) o 2 B*(F (1), g) — 1" (F (o), 9)

to be the composition

*
32 K F @) 0) DU 12 F @), S@)h g) —SDDE, 12 (7 (20), 9).
It is easy to establish the following.

(3.3) LEMMA. The assignment of K" (F (z),g) tox e X and oy too e X' isa
local system on X.

Denote this local system by [2" (F, g)].
Let X, be the p-skeleton of X and let ¥, = = *(X,). Piecing together the
exact sequences

o %
e YL Y, ) s BT, Y, g) —s KNV, Yyt g) >

leads to an exact couple with

(34) B = W(Y,, Yo, g), DI = WYY, Yy, g).
A natural identification

35) ¥ By — HY(X; W (F, 9)])

is constructed just as in the special case treated in [1] where we had assumed
that g factored through X. That is, g = fr for some map f : X — B. The
required modifications will be left to the reader. (They amount essentially to
replacing fr by g everywhere that it appears in [1, Section 4].)

Now we have a filtration

(3.6) B(Y,9) =J"D ... DJ"P D ...

where
J*"? = Image ("(Y, Ypu1, 9) = B (¥, ).

Setting E3™? = J?"?/J7H "7 we have

(3.7) TaroreM. Suppose that either (a) X s finitely coconnected or (b) Y
and F (z), x € X, are finitely coconnected. Then

(1) For each pair (p, q) there is an integer r (p, q) such that E7 .o >~ E3'.
(2) The filtration (3.6) s finite.
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See Theorem (4.14) of [1].
Now, suppose that % and % are cohomology theories on ®(B) and ®(B)
respectively and \ : & — £ is a homomorphism covering 7 : B — B.

(3.8) TuroreM. IfN": A" (X,f)— k" (X, 7f) is an isomorphism when X is o
point, —o < n < 4o, then

N RNX, A, f) - BN(X, A, 1f)
18 an isomorphism for all (X, A, f) e ®(B).

When B and B are points, this is a theorem of Dold [3]. The spectral se-
quence argument in the general case is exactly the same.

4. Sectioned fibrations

Let 3 denote the category with objects & = (E, B, p, A) where E, B are
spaces, p : E — B, A : B— E are maps and pA = 1. A mapping

“4.1) (, T) : (E, B, p, A) — (B, B,; p,’ A’)

in 3 consists of N : E — E’ and 7 : B — B’ such that p’A = 7p and A’r = M,
When B = B’ and 7 is the identity we will abbreviate (A, 7) to \.
The loop space of & = (E, B, p, A) in Jis

(4.2) Q2(g;4) = (Q(E; ), B, 2(p), 2(4))
where
Q@A) ={c:I—>E|oc()cp (), some beB,oc(0) =o(l) = AD)},

and @(p) (@) = o(1),2(A)(0)(¢) = A(),0<¢< L
Given § = (E, B, p,A), & = (E', B, p’, A") in 3 we have their product

4.3) eX8&=(EXE,BXB,pXp,AXA)
and their reduced join
44) A = (FEAE,BXB,pAD,AALN)

where E A E’ is the quotient of £ X E’ obtained by identifying
p(0) X AO)UAB) X pT ()
with a point for each pair (b, b’) ¢ B X B/, and
p Al = () (€)), AAADDY)=[A0)a )]
In the case where B = B’ we have the internal product
4.5) 808 =FE®E,Bp@p,AdA)
and the internal reduced join

4.6) eAE =EAE,BpADY,AAA)
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where

E®E ={(e¢)eE XE |ple) =p' (N
and E A E’ is obtained from E @ E’ by identifying

p (b)) X A'(B)uAD) X p' 7 (B)
with a point, b ¢ B.
We have a mapping

.7) W QNE) AYE)-CYEAE)
and when B = B’ a mapping
(4.8) I QE)A X E) - S EAE)
defined by the rule
o, 7l - b)) = [ - 8, T (i -+ L)l

Notice that in each case the pair (x*, 1) is a mapping in 3.
We will say that § = (E, B, p, A) in 3 is a secttoned fibrationif p : E — Bisa
fibre map in the sense of Serre. The following fact is easily established.

(4.9) The loop space 2(8; A) of a sectioned fibration & is a sectioned fibra-
tion.

Given (X, A,f)e®(B)and 8§ = (E, B, p, A) €3, let
(410) £X,4,f;8)={g: X—>E|pg=Ff and gu = Afiu},
with the compact open topology, and let
(4.11) L(X,A,f;8) = m(L(X,A4,Tf;§)).

We regard £(X, 4, f; &) as a pointed space with base-point Af. Notice that
by the exponential law we have an identification

(412) p: £(X1 A,f;ﬂ(G;A)—)Q(S(X,A,f;S))

by p(@)(#)(x) = g(@)(¢),2eX,0< ¢t < L
AlSO, for (X’ A: f) € O(B)’ (X, A,’ f,) € O(B') and & = (E, B’ p, A),
g = (B, B, p', A") in 3 we have a mapping

413) ¢v: X, 4,,8) NeX, A, f,&)>LX,AvA,fXf,EAE)
by lettin ¢[g, g'] be the composition

Vs
X IX9 pxE-“ . EAE

where  is the projection map.
One more remark. In the sequel we will usually abbreviate Q(8; A) to
Q(&) and Q(E; A) to Q(E).
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5. Spectra

Recall from [12] that a spectrum F (here to be called a point specirum) is a
collection of pointed spaces F; and connecting maps & : Fiy — Q(Frn),
— o <k < +o. Then-th homotopy group of F is defined to be

(51 ) Tn (F) = DIR LIMk Tntk (Fk),
the direct limit taken via

—1
Tats (F) =2 10s @(Fra)) — 2 masii Fana).
Example. The sphere spectrum S is defined as follows. The k-th space is
S, % > 0,and €7%(S°), 5 < 0. The connecting maps are

Gen: SF > @S, k>0,
and the identity
27 (8" — @ ™ (8%)), k <O.

Here § 1 corresponds to {11 : S¥ A §' — 8 under the correspondence (1.6).
A B-spectrum E is a collection of sectioned fibrations

& = (Ek ’ B; Dk Ak)
and maps

(5.2) & (Bx,B,pr, &) = (Q@Frp1), B, 2 (Dr41), 2(Qps1)), — 0 <k < oo,

Of course when B is a point we have a natural identification between B-spectra
and point spectra.

Suppose E and E’ are B and B’ spectra respectively and = ¢ B — B’ is a map.
A mapping \ 1 E — E’ covering 7 is a collection of maps N : By — Ej,
—w < k < o, such that

(5°3) ()‘k, T) : (EIMB: pk,Ak) - (EIIMB,’ p;’A’z)
is a mapping and the diagram
Ne ’

E; — E

(54) l o o
Q(Er41) M—-’ (B

is homotopy commutative by a homotopy which is fibre and cross-section pre-
serving.

The construction of a cohomology theory A( ; E) on ®(B) from a B-
spectrum E is carried out as follows. Given (X, 4, f) ¢ ®(B) form the point
spectrum £ (X, 4, f; E) whose k-th space is £ (X, A, f, &) and whose connect-
ing maps are

£(X, A, 1, &) —2E) L o(X, A, 1, 2(E)) —Po QS (X, 4, , 8)).
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Then let
(5.5) B*(X, A, fE) = m_a(£(X, 4, f; E)).

Foramapg : (X, 4, f) — X', 4', f') in ®(B), the collection of maps
@)X, A, &) > £(X, A,f,&), —» <k < o, constitute a map of
spectra

£@g) X, 4, f;E) > £(X, 4, f,E).
Let

(56) K9, E) =2(@x: "X, A", f;E) > k" (X, 4, f; E).

The boundary operator
67) "X, A f ) ENAS )= ETX A ), (XA, f) e ®(B),
is defined to be the direct limit of the homomorphisms

(—1)" 0y : m(L (A, f, &) = T (£ (X, 4, f, Enri))

where 9y is the boundary operator in the homotopy sequence of the fibration

NECRES —£U) | o (x, 1, gps) =)
an

£ (A) .f’ 8n+k))

A x I, (x4

are the inclusions. That the collection of functors A"( ; E) and natural
transformations d” define a cohomology theory on @ (B) is established in [1].

As expected, a mapping A : E — E’ covering 7 : B — B’ determines a homo-
morphism of cohomology theories

(5.8) Me th( ;E)—>h( ;E)

covering 7.
The loop spectrum 2 (E) of E is the spectrum whose k-th space is @ (8x41) and
whose connecting maps are @ (ex41). The maps

&t & — Q(8r1)
define a map of spectra € : E — Q(E) and it is clear from the definitions that
(5.9) eyt h( SE)—>h( ;2(E))
is an equivalence.

6. Pairings of spectra

Whitehead [12] has defined the notion of a pairing of point spectra and has
shown how such a pairing yields a pairing of the associated cohomology the-
ories. The purpose of this section is to describe the generalization of these
ideas to B-spectra.
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For us, a pairing 9 : (F*, F*) — F° of point spectra is to consist of maps

(6.1) i Fs NFi > F,, —o < §t< Foo,
having the following property. Consider the diagram
1 0

Q(F +1) A\ Ft "—> Q(Fa-!-l/\Fﬂ)

AN
gi /\ 1 g("h+l,t)
N
3
(6.2) F: \F, Tt Fi, Cott Q(Fiy)

s

1A &
‘ o1 Aﬂs.ul)
F 2 K’

/\ Q(Fz-«-l) — Q(F: /\ F§+1)

We are to have
63) (=1 T2@er,) (eh A D] = lebes, md = [Q0.a)x™ (LA €1)],
in the group [F: A\ F}, Q(F2 )]

(6.4) Example. The natural pairing \' : (F, 8) — F is defined by letting
Moot Fo AS*— F.pi,t > 0, be the mapping which corresponds to

t—1
By, () —2eer) O Ee) ge

under the correspondence (1.6). For ¢t < 0, \i. is to be the constant map.
The natural pairing \* : (S, F) — F is defined by letting \? , be (—1)** times
the composition

>\a¢

SCANF, 2L F A8 22, F,,,

where aly, z] = [z, y]
Given a pairing n : (F', F*) — F°, let

(6.5) % % Togr (Fe) ® mepa(F1) = Torrisr Frrd)

be the composition
Toix (F3) ® mopa(FY) AN Torerort (Fr A FD) 2 it (Fhg).

Using the commutativity of the diagram (1.4) we see that the homomorphisms
(—1)"nk,1, commute with the direct limit maps and so define a pairing

6.6) n t T (FY) ® m (F?) — mope (FP).
Now suppose that B*-spectra
Ei=7r8’1; = {(E;;’Bi; p;;7A;6)78;c}’ i = 1, 2,3,
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and a map
p:B' X B'— B
are given. A u-pairing n : (E', E’) — E®is a collection of maps
Ns,t + E: A Bt — E§+t
such that
(ﬂs.t, l") : (E: A E%’ Bl X B2, p:’ A P%, A: A A%)

6.7)
— (Bors, B’y Pose, Aoyr)
is a mapping in J, and in the diagram

1,0

QB L) AE 5 (B, A EY)

2(ns
St Al \(’1 +1,z)

N
3
(6.8) E], A Ef et E3+t ﬂ" Q(Ez:+t+1)

1AE
t o1 A,t+l)

E: A QEL) -, Q(E; A Ei)

we have
6.9) (=1)'[@e1,e)x (62 A 1)] = o1 0] = [Q(e,)x™ (1 A £2)]
in the group

L(E: A B, 51 A 8i(B' X B'), u(ps A ); 2(8esen)).

(6.10) Ezample. From 7 : (E', E*) — E® we have an induced pairing
7 (QEY), QE?)) — @ (E®) defined by letting

oy ¢t Q(Eri1) A QELL) — 9 (Blpire)

be the composition
1,1

QEL) N QEL) —— @ (Era A Bin)
2 _1y\¢
_FOmas) sy (CL gy

A straightforward calculation shows that 7'" satisfies (6.9). Furthermore,
the diagram

3
By A B By S QB )
oL A gl Q(ed 1)

1,1
UEr) A UEL) —2 s 04 (B y14e)
is commutative. '
Now suppose that cohomology theories #; on ®(B*), 2 = 1, 2, 3, and
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p: B' X B*— B'aregiven. A u-pairingn : by ® hy — hs consists of homo-
morphisms

6.12) 7 : h(X, A1, f1) ® hi(X, Az, fo) = kst (X, A1 U As, u(fr X f2)),

(X, A, f1) € ®(B"), (X, Az, f») ¢ ®(B*), having the following properties.
(as usual, denote n(u ® v) by v uv.)

6.13) Ifg: X — X' s such that
g: X, A1, fr) > (X, A1, 1) and g (X, As, o) = (X', A3, f2)
are maps in ®(B') and ® (B®) respectively and

wehi(X', A1, f1), vehs(X', A3, f2)
then

g*wuv) = g*(u)ug*®)
m h;+t(X, A]_ U Ag, [.l,(fl X fz))

For the next two properties let (X, 4,f1) ¢ ®(B') and (X, 4, f,) ¢ ®(B*) be
given and let 7 : A — X denote the inclusion.

6.14) Ifuehi™(4,f) andv e b3 (X, f2) then
duut*@)) =dw)uy
m b (X, A, u(fi X f2)).
(6.15) Ifuehi(X,f) andvehi (4, f2) then
d@*(w)uv) = (—1)uud(@)
n T (X, A, (i X f2)).

These are the analogue of the axioms given by Steenrod [11] for a pairing of
two ordinary cohomology theories to a third.

Suppose that M : X X I — B', N : X X I — B’ are homotopies. We then
have a homotopy

M XN
_—

XXI B x B L,p

and a diagram
M(X, A, My) ® hi(X, Az, Ni) —o BH(X, Ay u Az, w(My X N))
(6.16) lMﬁ ® Ny l“(M X Ny
hi(X, Ay, Mo) ® hi(X, Az, No) —1— hi* (X, A1 u Az, p(M1 X N1))
(6.17) LEmMA. The above diagram is commutative.

This is immediate from (6.13) and the definition of the operator # .
We will now describe how a p-pairing 1 : (E', E*) — E® of spectra determines
a u-pairing
n%:h( GE) @ h( ;E)—h( ;E)
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of cohomology theories. For (X, A1, f1) e ®(B') and (X. 4., f;) e ®(B*) let
‘Q’A("'s.t) : S(X’ Al’fly 8:) /\ £(X7 A2’f2, 8%)

(6.18) 8
- £(X, A;u A27 H(fl X f2)7 88+t)

be the composition

£(X. A1, 1, 8) N £(X, Az,fz,sf)—f—),e(X,Alqu,fl X f2, &2 A &)

' —E—(—"B’t—)% £(X. Al 8] Az, M(fl X fz), 8?44),
where ¢ is given in (4.13).

(6.19) LEMmA.  The collection of maps £ (1,,:) is a pairing of point spectra’
£A(’7) : (S(X’ A1 7f1 ;El))"e(X’A2 y.f2 ;Ez)) —8£ (X)AIUA2,”(f1 Xf2);E8)'

This is a straightforward calculation (compare [12, Lemma (6.4)]). Now
we may define

n% - ha(X; Al)fl 5 El) ® ht(X’ Aﬁ’ fy H E2)

(6.20)
— BN(X, Aru As, w(fi X £2); E)

to be
L)yt T (€(X, A1, fi5EY)) ® 7 (S(X, Ao, fo; E))

- T —(s4-1) (ee (X, Al U A2)M(fl X f2); Ea))
asin (6.6).

(6.21) TurorEM. The collection of pairings ng in (6.20) defines a u-pairing
of cohomology theories

m:h( ;E)®RK( GE)— ( GE).
The proof is straightforward and will be omitted (compare [12]).

7. Construction of »

We will use Milnor’s construction [10] of a universal principal G-bundle
(BE(@), B(@), r(@)) for a countable CW-group G. Recall that E(G) =
Us—o E.(G) where E,(G) is the (n + 1)-fold join of G with itself. There is
the natural action of G on the right of E (G) and B (@) is the orbit space. We
have G C E (@) as the first factor in the infinite join.

Let 0, denote the n-dimensional orthogonal group. The usual inclusion
Tn + Op — Ony1 induces inclusions

E@,) : E(0n) > E(Ont1) and B(%) : B(0x) — B(Ont1).

In this way we regard E (0,) and B (0,) as subspaces of E (0,41) and B (0p41)
respectively. Let Mm@ On X On — Onim denote the usual inclusion and let
A" € Og,42 be defined by the formula

(71) A1 -+ Tang2) = (@1 *** Tn, Tugz *** Xong1, Tngl, Tonga).
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Next, define B" ¢ 0,, by setting B* = 1 and B" = 4° -.- A™ n > 0.
We will construct A, .-equivariant maps
(7.2) va + E(0n) X E(0n) = E(O2)
having the following properties.
(7.3) wn : E(0,) X {1} — E(02,) is given by v, (x, 1) = z-B".
(7.4) Commutativity holds in the diagram

E(6,) X E(0,) —2—s B(0y,) LCmtVEG) g
EG) X EG) jA"
E(0n41) X E(Ony1) Pnil E(0242).

Let vy : E(0) X E(0y) — E (09) be the projection onto the first factor and
assume now that », has been constructed. Let M* denote the orbit of
E(On) X E(@n) in E(en+l) X E(en+1)~

M* = {(x1 81,2 8:) | zi e E(On), Si € Opp1, ¢ = 1, 2},
Let M = (E(Ony1) X Ony1) U M* and define
1 (x, S)
75) = 2B N1 (1, 8), z e E(On1), S € Onya.
2% (x1 Sy, 22 82)
= vn (@1, 22)A " Mt1,041 (81, S2), 2i e E(0n), Si€ Onr,t = 1,2,
Using the relations

@) A8, 1) = My (S, 94,0 <7 <n+1,8¢ 0,
(b) An)‘n+1.n+l(sy T) = )‘ﬂm(ss T)A”) S: Te On,

we see that 7,,1 is well defined and is My1,n11-equivariant. Now apply The-
orem 7.1 of [6] to find a Mj1,xs1-equivariant extension

Va1 ¢ B (Oni1) X E(Ony1) = E (O2n42).

Properties (7.3) and (7.4) are easily checked.
Let B(0) = U,—B(0,) and take 1 ¢ 0o C E (9) = B () as the base-point
bo of B(0®). Let

(7.6) Mn o B(en) X B(en) - B(Ozn)

be the orbit map of »,. From property (7.5) we have a commutative dia-
gram

B(0,) X B(e,) —— B(os)
(77)

B(0n11) X B(Oniz) —222s B(Osnya).
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Thus we may define

(7.8) w: B(©) X B(®) — B(0)
to be the direct limit of the u,. Property (7.4) implies that
(7.9) g B(0) X {b} — B(0)

is given by u (b, bo) = b.

Remark. Note that the mapping u, is a classifying map for Whitney sum.
From this fact it follows that u endows B (0) with an H-space structure which
is the canonical one. That is, the natural mapping Ko (X) — [X, B(0)],
X e ®*, is an isomorphism.

8. Construction of H( ; F)

The usual left action of 0, on R" extends to an action of ©, on S" by setting
Wz = 20, We0O,. NowletF = {F;, &} be a point spectrum and let 9, act
on Fiy A 8" by Wiz, y] = [z, Wyl, W € 0.. Form the sectioned fibration

(8.1) §i = (Fi, B(0n), pk, A%)
where Fi;, = E(0,) X (Fr—n A\ 8")/0,, the action of 0, defined by
W°[3, [il:, y]] = [eW_Iy W[x’ y]]’ We On,

and pile, [z, y]] = [e], Akle] = [e, [Xr—n, 2n]], where xx—, is the base-point of
Flp-.n .
The mapping
&rn A 1 @
Fk_n /\ S"——_—"——-——-—# Q(Fk-(-l—n) /\ S” ——e— Q(FIH.]._“ /\ Sn)

is equivariant so that we may define
8.2) & 1 Fy — Q(Frn)
to be

[1 X ”l'o(ek—n /A\ 1)]

We now have a B (0, )-spectrum

E(On) X Q(Fk—-n+1 /\ S")/On = Q(F)?-u).

(83) F* = {5k = (Fk, B(0a), pi, AF); &k}
Next, we define a mapping of spectra
(84) 0" : F* — QF")

covering the inclusion B (¢,) : B(0,) — B(0441) as follows. Let
Ear i 8" — Q8™

correspond to {1 : 8" A 8" — 8™ under the correspondence (1.6). There is
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the inherited action of ©,4; on 2(S™*) and §, 1 is 4,-equivarient. Consequently,

(4 0,1
Fiow A S" 20500 L5 A Q™) — 2, Q(Frn A 8™
is Zn-equivariant. Let
(8.5) O : Fr — Q(Fi™)

be the composition

Flf; [E('Ln) X (1 /\ fn.l)] N Q(F,?-H) (—l)k Q(F:+l).

It is easily checked that 6" is a mapping of spectra.
Now for (X, 4, f) ¢ ®*(B(0)) let n(X) be the smallest integer » such that
Ff(X) € B(0,) and let

(8.6) H*(X, A, f; F) = DIR LIMsnx K (X, 4, f; F*)
be the direct limit taken via the homomorphisms

K (X, 4, f; F*) O, 1 x, A, f; 2F™)) DT (X, 4, f; F**,
(See (5.9).)
Forg: (X, 4,f) > X', A, f') in @*(B(0)) let
(8.7) H*(g;F) : H'(X', A", f';F) > H* (X, A, f; F)
be the direct limit of the
K (g; F™) : BF(X, A", FY) = B (X, A, f; F"), 0> max (X),n(X)).
The boundary operator
(88) d":H'(A,fia;F)—>H (X, A,f;F), (X,4,f)e®*B(0)),
is defined to be the direct limit of the maps
& B (4, fla; FY) = BN(X, A, FY, n 2 n(X).

(8.9) TueorEM. The collection of functors H* ( ; F) and natural transfor-
mations d*, —0 < k < oo, constitute a cohomology theory on ®*(B(0)).

This is easily established. Now suppose that A : F — G is a map of point
spectra. Define

(8.10) NS G
to be the collection \; : Fi — Gi where
)‘7?[6) [xa y]] = [e[)‘k—n(x)’ y]] €e E(On)’ Ye Fk—'n’ Ye S”.

The induced homomorphisms Ag : h( ;F") - h( ;G") commute with the
direct maps and so define

(8.11) Nt H(;F)—>H( ;G).
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Evidently, the assignments F — H( ; F) and A — Mg define a covariant
functor from the category of point spectra to the category of cohomology the-
ories on ®*(B(0)).

9. The associated u-pairing

Suppose that F = {Fy, &}, G = {Gx, 4} and D = {Dy, 8;} are point spectra
with Fi and Gy countable CW-complexes, —« < k < ., We will associate
with each pairing 4 : (F, G) — D a u-pairing

9.1) 7% H( ;F)® H( ;G)—>H( ;D)
where u : B(0) X B(0) — B(0) is the mapping (7.9).
Consider the mapping

9.2) @i Fen AS") X (Geen A8") = Feen /\ Gen) N\ (8" A\ S™)

by a ([x, y]y [w, y’]) = [[x, ’Ll)], [y7 ?/]]- Since F,_, and G, are countable CW-
complexes both

Foen AS") X (Gea AS") and  (Fon A\ Gin) N\ (8" A S7)

inherit a CW-structure. Now we may check that « is continuous by checking
that its restriction to each cell is continuous.

We have the product action of ©, X 0, 0on8" A S"and ¢, : 8" A 8" — 8™
in (1.7) is M\, n-equivariant. The composition

(E0) X (Foun A 8") X (E(02) X (Gin A 8))
—ql-——> E(On) X E(en) X ((Fa—m /\ Gt—-n) /\ (Sn /\ Sn))
Vo X (oen,ten /\ Enm) E(@m) X (D3+t—270 A S%),

where o’ (¢, [z, y], €, [w, ¥']) = (e, €, [z, w], [y, ¥']), is continuous since a in
(9.2) is continuous and is N\, z-equivariant. Let

9.3) "new t FI X G — D%
denote the orbit mapping. This in turn yields

94) et Fo A G — Dty
and we have a mapping of sectioned fibrations

(9.5) (Mety n) © 52 A G — Dk,
Now define

9.6) it F? A Gr — QD)

to be the composition
8o (=)

1n
oA Gy I, D, QD) ——2 QD).
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By a direct calculation we have

(9.7) Lemma. The collection of mappings #s. constitute a u,-pairing
it (F°, G") — Q(G™).

Now the composition

—1
WY @ A( 56" B a( a@my) 7 4 D
is a n,-pairing of cohomology theories
9.8) g :h( ;F)®hK( ;G")—h( ;D).

By a tedious but entirely straightforward calculation we see that the pair-
ings (—1)"*™"%" commute with the direct limit maps. Now let ng in (9.1)
be the direct llmlt of these pairings

10. The equivalence ¢

Let F = {F}; &} be a point spectrum and form the specturm F A S* whose
k-th space is Fx_1 A\ S and whose connecting maps

8}; ¢ Fra N S1—>Q(Fk A Sl)

are the composition

1,0
Fii A\ Sl_&Lﬁ_L Q(F,) A S -~

Define § : F — Q(F A 8') by letting 6; be

QF: A S).

Fo— o A8 0o A Y,
where 7 corresponds to the identity mapping 1 : F A St —>F: AS. Wehave
(10.1) 0s : n(F) = 7 (QF A SY)).
(10.2) LEMMA. 04 75 an tsomorphism.

Proof. Define ¢* : FA 8' — F by letting & : Fi_y /A S~ — F; correspond
to (—1)*7e,. We have a homotopy commutative diagram of spectra

A
€

F «— FARS

18 N lel
aF) & o(m A 1),
Since ey and &k are isomorphisms, so is 8y .
Now, for (X, A, f) ¢ ®*(B(0,)), consider
(10.3) 0% : B (X, A, f; F*) —» h™(X, A, f; QE"™))
as in Section 8.

(104) LEMMA. 0 is an isomorphism.
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Proof. The preceding lemma implies that
0% : A" (X, f; F") = k™ (X, f; Q@)
is an isomorphism when X is a point. Now apply Theorem (3.8).

Let ®@* denote the category of finite CW-pairs. The spectrum F determines
a cohomology theory j( ;F) on ®* asin [12]. We have

(10.5) "X, 4; F) = 7_.(X, 4, F)),

where 910 (X, A, F) is the spectrum whose k-th space is I (X, A, F;,) and whose
connecting maps are

(106) IN(X, 4, Fy) ), 00X, 4,2 (Fr)) —P= QOU(X, 4, Fapr) ).

The spectrum F also determines a cohomology theory H( ;F)on @*(B(0))
as in Section 8, and we have an embedding

i 1 @* — @*(B(0))

by (X, A) = (X, A, by), by the constant mapping of X to by. Let H( ;F)
denote the cohomology theory on ®* induced by % from H( ;F). We will
define an equivalence

(10.7) v:5( ;F)—H( ;F).
Recall that Fy = E(0) X (Fu /\ So) = B(0y) X F so that
Fp = (B(®) X Fr, B(®), pi, A%)

where pj is projection onto the first factor and A3 (b) = (b, x:),beB(0). We
have a homeomorphism of function spaces

(10.8) 0 2 M(X, 4, i) - £(X, 4, b, %)

by ¥x(9) (x) = (bo,g(x)), zeX. The collection of these ¥ is a map of point
spectra

(10.9) ¥:MX, A, F)—> &(X, A4, b;F
which yields an isomorphism

(10.10) ¥u (X, A; F) - k" (X, 4, by ; F°).
Now define

(10.11) V"X, A;F) - H* (X, A, b ; F)

to be the composition
P& A F) 1 (X, 4, B ) — H(X, 4, B F),

the latter being inclusion into the direct limit which by (10.4) is an iso-
morphism. Now let ¥ in (10.7) be the collection {y"}.
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Note. Hereafter, when we speak of a point spectrum F, it will be under-
stood that each Fy is a countable CW-complex. This is not a severe restric-
tion for, by a theorem of E. H. Brown [2], every cohomology theory on @*
with countable coefficient group is equivalent to one of the form j( ; F)
where F is a spectrum of this type.

11. Commutativity
A point spectrum F is a réng spectrum if there is a map » : S — F and a pair-
ing 9 : (F, F) — F such that the diagrams

SAF, AL poAp LAe b AP,

1 Ns,t s
Ne,t Aot

(11.1) N L
Foys
F, /A F, Tt > F:-H Sett Q(Fc+t+1)
\ o
F,N\F, UL Foye Cot Q(Fopet1)

are commutative, — o < s,{ < «. Herealz,2’] = [¢/,z]and \' : (F,S) —F,
M : (S, F) — F are the natural pairings. The commutativity of the second
diagram implies that the induced pairing

(11.2) 2 :j( ;F)®j( ;F)—>j( ;F)
is commutative in the graded sense. That is,
uuv = (—1)uu, uei’(X,A;F), vej (X, A;F).

The purpose of this section is to discuss the commutativity properties of the
induced p-pairing

(11.3) 2w H( ;F)® H( ;F)—>H( ;F).
Firse we define an involution
(114) T:H( ;F)—>H( ;F),

(a natural transformation such that T° = 1) as follows. Let
Ty : Fr — Fx
be the orbit map of
E©) X (Facn A S") AT) L B©.) X (Fan A S")

where 7 : 8" — 8" is the compactification of the involution B" — R" by

1X
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y — —y. The collection of maps Tk is a map of spectra

(11.5) ™ : F* — F",
We calculate directly that the transformations
(11.6) (=1)"T% : h( ;F")—>h( ;F")

commute with the direct limit maps. Let T'in (11.4) be the direct limit of the
collection { (—1)"T%}. Since (T")* = 1 we have T* = 1.

(11.7) ProrosiTioN. Letu e Ho(X, A, f; F). Then T (u) = u modulo
2-torsion.

Proof. The proof is broken up into several steps.
(a) The proposition is true when f = by. We have a commutative dia-
gram
- T° ~
W™(X, A, bo; F°) — 2 B™(X, A4, bo; F°)

H™X, A, bo; F) — L H™(X, 4, bo; F)

where the vertical maps are inclusion into the direct limit and by (10.4) are
isomorphisms. Since 7° is the identity map, so is T.

(b) Theproposition is true when f is homotopictoby. LetM : X X I —B(0)
be such that M, = boand M, = f. Since T is natural we have a commutative
diagram

T
My lM ¥
H™(X, 4, bo; F) —— H™(X, A, bo; F)

From part (a) wehave My T (u) = TMg(u). Since My is an isomorphism we
have T (u) = u.
(¢) If the proposition is true for any two of (X, A, f), (X, f) and (4, f) then
1t 1s true for the third. We have the exact sequence
£ *

o A BT A5 F) - B X AL F) S Ha (X5 F) s

To be specific, suppose it is true for (X, f) and (4,f). LetueH. (X, A,f;F).
We have

J*(Tw) —u) = TGE*w)) — 7*@w) = 0 modulo 2-torsion.
Hence, there is an integer ¢ such that
J¥@(T () — u)) = 0.
Let v e H" (4, f; F) be such that d(») = 2%(T'(u) — ). Then
d(T@) —v) = Td@) — d@®) = 27 (u — T (u)).
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There is an integer r such that 2" (T (») — ») = 0. Then
0=d@(Tw) —v)) =2 w — Tw)).

Therefore T'(4) = w modulo 2-torsion.

(d) The proposition is true when A is empty. Proceed by induction. Let
X have dimension s and let ¢ : I’ — X be a characteristic map for an s-cell of X
and let X; be the closure of X — ¢(I°). We may assume by induction that
the proposition is true for (X, f). By excision and part (b), the proposition
is true for (X, X1, f). Now apply part (c).

(e) The proposition is true for arbitrary (X, A,f) e ®*(B(0)). Apply part
(e).

(11.8) LEmMa. For
(X’ A»f) € B(en), U e ha(Xy A’ f; Fn) and ve ht(X) A,f; Fn)

we have
wuv = (=1 uTiw) = (—1)"™Ti0w) v u

in B (X, A, u(E X £); QE™)).
Proof. From (11.1) there is a homotopy
(11.9) M, :F,_n A\ Fren— Q(Fj541-20), 0<r<1,
such that
Mo = €irhtn Njnjon and M1 = (=1)"" ;1 o0 Mo jn o

Now define

(11.10) Cr: 8" A S — 8™ 0<r<i,
by Crl2n, 22] = 22, and

Cly, 1 = (A =)y +ry, —ry + @ = 1)y’), Y, ¥ e R
It is easily checked that
(11.11) M (W, WHYC, = C,- (W, W), Weo0,.

Consider a point [g, ¢'] in the internal reduced join F; A Fi. Since p} (¢) =
pr (¢') we can write
q = [61 T, y]7 q, = [e’ x,’ y’]

where e e E(0,), T € Fin, 2 € Frn,y,y' ¢S". Now define
(11.12) K.:F} AF; - Q(Fih), 0<r<1
by K.q, ¢'1¢) = [va(e, €), M.z, 2] (¢), Cly, ¥']]. Using (11.11) we see that
the definition of K, is independent of the choice of ¢ in the representation of ¢
and ¢’. Thus K, is well defined. We have

Ko[q, q/] = [V” (6, 6)7 nl'o[€j+k—2n ni—n'k—n[wy 56’], g.ﬂm[ ) y’]]]

2
= &in mjxle, 41,
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and
Kilg, ¢1 = (=1)7"""u(e, €)% [esst-n Memn,inld’s @inaly’s =]l
= (=1 i, TF ()],
Therefore the diagram
F} A Fi ——i;‘f———y Q(Fius)
o
F: A F}

(11.13) (—=1)%*

1A T

Fr AF} — " Q(Fiti)
is homotopy commutative by a fibre and cross-section preserving homotopy
(see (96)).
Now let

X, 4, ) e®*(B(0.)), uems1i (£(X, 4, f; 5;"))7
and
vIEW—Hk(£(X: A’f; 8:1?))

From the homotopy commutativity of (11.13) we deduce that
—1)98% (50 % (y ® v
(11'14) ( ( Jk) ( 1 1) sttn sk ~m n
= (=1 ((=1)"L @) (1 ® Ti(w))).

If w; represents u e h° (X, A, f; F,) and v, represents v ¢ A (X, A4, f; F"), the
above equation yields

(11.15) uuv = (—1)"™u Th@).

To show that w uv = (—1)"*™T% () u u, replace C, in (11.10) by C; where
Chl2n , 24] = 22, and

Cly, vl = (A =y —r/sry+ L —1)y),  y, ¥R,

and proceed in the same manner.
Passing to the direct limit we have, by the preceding lemma,

(11.16) TaEorREM. For

(X’A’f)EB(e): ueHs(X’A’f}F)a DeH‘(X,A,f;F),
we have
wuv = (=1)"uT@) = (=1)"T®) uw

Combining this with (11.7) yields
(11.17) CororLrARY. For
(X,4,1)eB(0), wueH'(X,A,f;F), veH (X, A, f; F),
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we have
uuv = (—1)wuu modulo 2-torsion.

12. Thom classes

Lety = (Y, X, r) be an (n — 1)-sphere bundle with structural group 0, .
The suspension of Y is the n-sphere bundle Z(y) = (Z(Y), X, Z(r)) where
2(Y) =Y X I/(~), the relation ~ defined by

y,t) ~ @,t) ifr@y) =r@%) and ¢ =0o0rl.
We have Z(r)[y, {] = r(y). There are two cross-sections
X o2(Y) by i) = @), 4, t=0,L

We will denote {1 (X) by X+ and ¢ (X) by X~. We will also identify ¥ with
Y X {4} < 2(Y). The Thom space of Y is the pair (Z(Y), X.).

For z e X, let & : (S, 2.) = ()" (@), £1(x)) be an identification. Let
F be a ring spectrum with map «» : 8 — F and pairing  : (F, F) — F. For
f: X — B(0) consider the sequence

(12.1) H"CE), X*, f2(r); F —2 H"(S", 20 ; F) «2%— H"(S", 20 ; S).
A Thom class for the pair (Y, f) relative to F is an element
(12.2) ue H'EY), X*,fZ(r); F)

with the property that for each z ¢ X there is a generator
voe H"(S", 2, ; S)

such that 75 () = wg(®). It is clear that the existence of a Thom class for f
depends only on the homotopy class of f.

(12.3) TaeorEM. Iff: X — B(0) is homotopic to a classifying map for Y
then there exists a Thom class for (%Y, f).

Proof. We may assume that f(X) < B(0,). Further, it is sufficient to
prove the theorem when F = S since, if u is a Thom class for S then wg(u)
will be a Thom class for F.

Let 0, act on =(S™) by Wiz, t] = [Wz, t], W e 0,. Recall the action of
0, on 8" described in Section 8. Evidently, we can construct an equivariant
homeomorphism

g: @), +)— (8" z).
Here + denotes the point 8" X {1}. Now let
(12.4) J:Y > E@©,) X 8"/0,
be a bundle map covering f and let / be the composition

2¥) 2D, 3@ (0.) X §*6n)
= B(0.) X 25" 1) /0. -1 X4, B(0,) X 8*/6,.
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For S we have the sectioned fibration 87 as in (8.1). Here

$n = (E(0:) X (8° A 8")/0.,B(0,), pn, A7)
= (E(0,) X Sn/en ) B(on)) p: ’ AZ)*
Thus,
(12.5) Jee (), X%, 12(), 82).

Now let u be the image of [f] under the composition
T (EE(Y), X5, f2(r); 83)) = A" (Y), XV, f2(r); $")
—H"(Z(Y), X\, f2(r); S),

each map being inclusion into the direct limit. A representative of s (u) is

8" 2 (@) —f-> @) (@) = 8,
which, being a homeomorphism, represents a generator of
mo (M (S™, 2, ; 8)).

It follows that « is a Thom class for (Y, f) relative to S.
Let D be an F-module. That is, there is a pairing 8 : (F, D) — D such that
the diagram

S* A\ D,
Ne.:
N
(12.6) ws A1 Da,t
%
/
/ Ns,t
F, N\ D,

is homotopy commutative, —® < s, < «. For example, every spectrum
D with the natural pairing \*: (S, D) — D is an S-module.

Now suppose that (Y, f) has a Thom class u relative to F. For X; C X let
Yy = 7 (X1) and for g : X — B(0) define

(12.7) @, H*(X, X1, ¢;D) » H"™(@(Y), X" u Z(Y1), u(f X 9)2(r); D)

by
®,(v) = uuZ@)*@).
(12.8) TurorEM (Thom isomorphism theorem). The mapping &, is an
isomorphism.

Proof. The method of proof is the same as that of (11.7).
(a) The theorem 1is true when f = g = by. Since the transformation ¥ in
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(10.7) preserves pairings we have a commutative diagram

(X, X3 D) — &, H(3(Y), X u 2(¥1); D)

w I
H*(X, X3, bo; D) —2% s H™*(3(Y), Y* u 2(Y3) bo; D)

where & (v) = ¢ (u) u Z(r)*(»). Now Dold [3] has established a Thom
isomorphism theorem for cohomology theories on ®*, Clearly ¢ (u) is a
Thom class in Dold’s sense so that &’ is an isomorphism. Therefore &, is an
isomorphism.

(b) The theorem is true when f and g are homotopic to dy. Let

M,N:X X I—B()
be such that M, = by, My = fand Ny = by, N1 = g. We have
(YY) X1

TY)XI X X I —— B(0).
Letw' = M (Z(r)) X 1))#(u). By (6.17) we have a commutative diagram
H*(X, X1, f; D) —— H"™™*(2(Y), X*u 2(Y1), u(f X ¢)2(r); D)
Fy j;«M X N)(2(r) X 1)

Hk(X, X1 50; D) ——@i—) Hn+k(2( Y): X+U 2( Yl)) 50; D)°

Clearly, «' is a Thom class for (Y, by). Now apply part (a).

(¢) If the theorem s true for any two of (X, X1, g), (X, ¢) and (X1, ¢)
then 1t s true for the third.
We have a commutative diagram

o
4, B (3(Y), X u B(Yh), 1) L HM(3(Y), X, 7; D)
\@u 3,
ok
% BN, XS J H*X,f; D)

oK
U, BT, X, D) -4

By
oK
—' . HX,f;D) _d__,
where

W = 1*@) e H"(Z (Y1), X7, Z(); D)

and = denotes the map u(f X ¢)Z(r). Now use the “Five Lemama.”

Steps (d) and (e) are precisely the same asin (11.7). This completes the
proof.
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(12.9) Remark. MacAlpine [9] has defined, for an (n — 1)-sphere bundle
9y = (Y, X, r) and point spectrum D, the k-th cohomology group ;* (X; D (¥))
of X with coefficients in D twisted by Y to be

F&X; D)) = @), X;D).
Now let Y* be an inverse for Y. That is, Y o Y* is trivial. Let
[ f*: X — B(0)

be classifying maps for Y, Y* respectively. Then u(f X f*) is homotopic to
bo. Let M : X X I — B(0) be such that My = b, and My = u(f X f*).
Let 4 be a Thom class for (Y, f) relative to 8. We have identifications

H' (X, f* D) —> H"™™(Z(Y), X+,u(fo*)2(r),D)

M(2(r) X 1)g s H™*(2(Y), X*, by; D) —— j™*(2(Y), X*; D).

Thus, MacAlpine’s group j*(X; D (Y)) is our group H*(X, f*; D), where f*
is a classifying map for an inverse Y* of %.

13. Euler classes
Suppose that the pair (Y, f) has a Thom class

ueH"(2(Y), XV, fZ(r); F).
The cross-section ¢ : X — Z(Y) yields
(13.1) 6 H'E(Y), X, f2(r); F) - H'(X, f; F).

The element ¢ = {3 () will be called an Euler class for (Y, f) relative to
F. For example, if Y is orientable in the ordinary sense (i.e., w3 = 0),
f =Dboand F = K(Z), then & is the usual integral Euler class. A number of
properties of the integral Euler class hold true in general and the proofs are
essentially the same. We will now list them.

(183.2) Forr*: H*(X, f; F) — H" (Y, rf; F) we have r*(X) = 0.
(133) &,(X) =uwvueH"CX), X, u(f X f); F).

(13.4) Ifn s odd then X = 0 modulo 2-torsion.

(13.5) Suppose (§, g) : Y1 — Yz 78 a bundle map of (n — 1)-sphere bundles
and X s an Euler class for (M2, f). Then g*(X) is an Euler class for [V, fg).

(13.6) Suppose Y1, Yz are (ny — 1) and (me — 1)-sphere bundles over X
respectively. Let X1, Xz be Euler classes for (Y1, fi) and (Yz, f2) respectively.
Then

€U X e H™(X, u(fi X f2); F)

s an Euler class for (Yoo Yz, u(fi X f2)).
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Here Yy o Y, denotes the Whitney join of Yy and Ys.
The proof of (13.2) and of (13.5) is left to the reader. For the proof of
(13.3) we must show that

(13.7) uuu =uuZ)*e@).

Consider the inclusions

138) @(r), X)L, @), 25 @) <2 @), V) <Lz (1),

where =" (Y) and Z_(Y) are the images of ¥ X [4,1]and ¥ X [0, 3] in Z(Y)
respectively. Evidently

Z(r) ¥ tH - (Y), f2(r); F) > H*(2-(Y), f2(r); F)
is the identity. Let 4 = 43 41 (u). We have
BUZE) " @) = aujtE@E) ¥ @)
=2uz@)*i* @)
=qduj*@)=4dud.

Applying 4172 to this equation yields (13.7).
By (11.17) we have

(13.9) uvu = (—1)"uuu modulo 2-torsion.

Thus, if n is odd, 2(» u u) and hence % U u is zero modulo 2-torsion. This
together with (13.3) yields (13.4).
We will now outline a proof of (13.6). The Whitney join

YoYs = (Y10Y,, X, r1013)

of Y = (Y1, X,r)and Yo = (Y2, X, r2) is defined as follows. Let Yi0Y,
be the quotient of (Y1 @ Y:) X I after the identifications

(yl) y2’0) ~ (yl, yé,O) and (yl’y2’ 1) ~ (y{;y% 1).

The map riore is given by riorfyr, ¥2, t] = n(y1) = 72(y2). A bundle
equivalence

(13.10) v:2(Y10Y,) = (Y1) A =(T3)
is defined by
Ylyr, v, & N = [11, 2N, 42, N, 0<t<4%
=, Ny, 200 =¢)], $<t<1L
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Consider the diagram
(2(Y1) X Z(Y2),2(Y1) X XTu Xt X 2(Yh))
@_I}Q j
ym, (2(Yy) ® (Y1), 2(Y1) @ XTu X" @ (Y2))
(1311) X ry w

la

(2(Yy) A X(Yy), X" A XT)
XXX I

Y

.

(2(Y1 0 Y2), X+)
where j is inclusion, w is projection, and § is the diagonal map. Let
(13.12) wie H (Z(Y:), X¥, f2(r:); F)
be a Thom class for Y; such that ¢; = ¢§ (u:), ¢ = 1, 2, and let
(13.13) u = y*&* *(ur X us)
e H'"™ (2 (Y10 V), XY, Z(riom)u(fi X f2); F)

It is easy to check that u is a Thom class for

Y10Ye, u(fi X f2)).
Now, by the commutativity of (13.11)
(13.14) Co () = 8% (0 (wm) X £7 (we)) = X1 U Xz,

which shows that X; u X; is an Euler class for

YroY2, u(fi X f2)).

Suppose (Y, f) has a Thom class u relative to F and D is an F-module.

Giveng: X — B(0),let r = u(f >§ g)=(r) and consiqker the exact sequence
13.15) --- S H(E_@), Y, D) B - @), D) S B (¥, D) -

We have identifications

(13.16) H'X, u(f X ¢); D)—Z—Q—)L H*(Z_(Y), 7; D),
and

) *—1

(1817) H""(X, ;D)5 H*(2(V), X%, ;D) %), g (s_(y), 7, r; D)
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(see (13.8)). Substituting in (13.15) yields the exact Gysin sequence
(1318) --- - H*"(X, g; D) > H*(X, u(f X ¢); D)

3k
L BN (Y, w(f X g)r; D) L -

and we check that
(13.19) YY) =X uv, ve H (X, g; D),
where X is the Euler class associated with w.

(13.20) LemmA. If one Euler class relative to F is zero then every Euler
class relative to F 1is zero.

Proof. Since u is a multiplication map for the canonical group structure
on [X, B(0)], every map f': X — B(0) is homotopic to one of the
form u(f X g). If X = 0, the map ¥ in the Gysin sequence is zero. There-
fore

r*: H"(X,f'; F) - H*(Y, f'r)F)

is injective for every map Jf’. Then by (13.2) every Euler class
x’ e H* (X, f’; F) must be zero. This completes the proof.

A necessary condition that the bundle Y admit a cross-section is that every
Euler class X relative to F be zero. This is a consequence of (13.2).

In a moment we will need the following well known fact.

(13.21) Lemma. Suppose Y; = (Y, X:, r;) 18 a fibre space with fibre F;,
i=1,2and (,f): Y — Ys is a map such that fg : m(F1) — m (F2) is an
isomorphism, k < m. Let Z ¢ ®* and g : Z — X be given with Z g-coconnected.
Then

f# : L(Z7 g; (yl) - L(Z7 fg; ‘Hz)
s ome-ome if ¢ < m + 1 and onto if ¢ < m + 1.

(13.22) LEmma. Lety = (Y, X, r) be an (n — 1)-sphere bundle and sup-
pose X is (2n — 2)-coconnected. If ¢o, 51 X — Z(Y') are homotopic as cross-
sections of =(r), then Y admaits a cross-section.

Proof. Let
AC®Y)) = {o:I - Z(¥)|e() C Z(r)” (),
somezeX,ando(?) = {i(x), 7 = 0, 1}

and let #: A(Z(Y)) — X be given by #(¢) = r0(0). Then A(Z(Y)) =
AE (X)), X, ) is a fibre space and we have a map

a1 (Y, X, ) > AEX)), X, 1)
by Nw) () = [y,4,0 < ¢ < 1. The fibre # (X) is the space A (S™) of paths
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on S” from the south to the north pole and it is well known that
M (8PN = m(AS™))
is an isomorphism, k < 2n — 3. Nowlet F : X X I — Z(Y') be a homotopy
such that Fo = ¢, Fi = Hand Z2()F, = 1,0 <t < 1. Then
P:X—>AC®X)) by F)@) = F(z, t)
is a cross-section to #. By the previous lemma, there exists a cross-section to r.

(13.23) TuEorREM. Let Yy = (Y, X, r) be an (n — 1)-sphere bundle and
suppose X is (2n — 2)-coconnected. Let X be an Euler class for (%, f) relative
to the sphere spectrum S. Then Y admits a cross-section if and only if % = 0.

Proof. Suppose that X = 0. By Lemma (13.2) we may assume that
f:X — B(0,) is a classifying map for Y and & = {5 (u), where u is the Thom
class constructed in the proof of Theorem (12.3). This class u is represented
by amap f:Z(Y) = E(0,) X 8"/0, such that the diagrams

2(v) L Ble) x 876, (%) s B(e,) x 5770,
EOT [a [z
x -1 Bee,) x -1, Be,)
are commutative. Now X = {o () is the image of [f¢o] under
m (L (X, f; 82)) = b" (X, f; S») —» H* (X, f; 8),

each map being inclusion into the direct limit. The first map is one-one and
onto by (13.21) and the fact that X is (2n — 2)-coconnected. The second is
an isomorphism by (10.4). Therefore, since X = 0, we have

[fed = B2 ] = fe] e L(X, f; 87).

In other words, for
f4:L(X, 1, 2(Y)) = L(X, f, 82))
we have fy[to) = fylti]. By (13.21), fx is one-one. Consequently ¢, and {;
are homotopic as cross-sections to =(r). Now apply the preceding lemma.
14. Equivariant maps

Let A be a fixed point free cellular involution on the CW-complex Y and let
f:Y/A — B(0) be a classifying map for the O-sphere bundle

Y= (Y1, T/4,r)

where 7 : Y — Y/A is the quotient map. Let ce H' (Y/A, f; S) be an Euler
class for (y, f). Define f*: Y/A — B(0) inductively by f* = f and
ff=u(f X ), n > 1. Next, define

(14.1) & e HY(Y/A, 5 S)
byc =candc® =cuc.n > 1.
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Let A denote the involution on ¥ X 8" given by

(ya z) - (A (y)7 —z)

and form the (n — 1)-sphere bundle Yy* = (¥ X 8"'/A, Y/A, #) where
#y, 2] = [y]l. There exists an equivariant map ¥ — 8" if and only if y*
admits a cross-section. Now, Y”* may be identified with the n-fold Whitney
join of ¢y with itself. Therefore ¢* is an Euler class for (Y*,f"). By Theorem
(13.23) we have

(14.2) TueorEMm. Suppose Y is (2n — 2)-coconnected. There is an equi-
variant map ¥ — S 4f and only if ¢" = 0.

Now let @ be a finite group of odd order which is free and cellular on the
finite CW-complex Z. Let 7w :Z — Z/@G be the quotient map.

(14.3) Lemma. For f:Z/G — B(0) and a spectrum D,
=*: H*(Z/G, f; D) — H"(Z, fr; D)
18 tnjective modulo the class of odd torsion groups, — o < k < .

This is well known for ordinary cohomology. The spectral sequence argu-
ment in the general case is exactly the same (see [7, section 10.8]).

Now suppose G is a group of odd order which acts on the closed n-dimen-
sional C*-manifold M, the action being free and C*. Then M /G inherits a
C”-structure such that the quotient map = : M — M /G is an immersion.

(14.4) TueorEM. Assume 2k > n + 1. Then M /G immerses in R™* 4f
and only if M immerses in R™*.

Proof. If there is an immersion ¢ : M/G — R™™, the composition
er : M — R™* is an immersion of M in R™**, On the other hand suppose M
immerses in R""*. Let N = M/G and let T(M) and T(N) denote the
tangent sphere bundles of M/ and N respectively. Each has an involution 4
defined by sending a unit vector v to —v. According to a theorem of Hirsch
and Haefliger [5], it is sufficient to show that there is an equivariant map
T(N) — 8"*" We have a commutative diagram

T(M) X 8" [T(x) X 1] , T(V) X gt

yi yi
1,« 1;«
T(M)/A [T ()] T(N)/A.

Let f:T(N)/A — B(0) be a classifying map for the 0-sphere bundle
T(N)— T(N)/A and let

e HH (T (N)/A, ™5 8)
be as described above. By (9.5), [T (x)] * (¢"**) is an Euler class for the
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sphere bundle

and map /[T (r)]. Since M immerses in R"™ [T(m)]™* (™) = 0.
The action of G on M lifts to an action of G on T (M) by setting g-v =
T()@), veT (M), geG. Since g:-(—v) = —(g-v), T(M)/A inherits an
action of G by ¢-[v] = [g-v] and we can exhibit an identification between
TM)/A/G and T(M/G)/A = T(N)/A. Then by the previous lemma

[T @)™« B (T (N)/A, ™5 8) — H™(T(M)/A, T (x)]; 8)

is injective modulo odd torsion. Thus, ¢*™ = 0 modulo odd torsion. How-
ever, by (13.4), ¢ and hence ¢"** is zero modulo 2-torsion. We must conclude
that ¢*™ = 0. Now apply (14.2).
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