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Introduction

The orientability of a sphere bundle relative to a cohomology theory h is
essential to some of the basic results of algebraic topology which center around
the Thom isomorphism theorem [3], [8], [12]. In the case of integral cohomol-
ogy corresponding results caa be obtained in the non-orientable case by
introducing local coefficients. The purpose of this paper is to give an anal-
ogous construction for an arbitrary cohomology theory.
Let (* be the category of finite CW-pairs and let ( (B (0)) be the category

of triples (X, A, f) with (X, A e (* and f X --, B (0). We will construct,
for a spectrum 1, a cohomology theory H ’) on (*(B (0)) which is an
extension of the cohomology theory on (* determined by 1. The essential
property of this extension is that if 5 (Y, X, r) is an (n 1 )-sphere bundle
with classifying map f:X -- B (0) then (5, f) has a Thorn class. This
allows us to establish a Thom isomorphism theorem for arbitrary sphere
bundles.

MacAlpine [9] has recently introduced twisted cohomology groups asso-
ciated with a spectrum " and bundle . By virtue of the Thorn isomorphism
theorem we can exhibit the relation between his groups and ours (see (12.9)).
There is also some overlap between our work and recent work of Israel Ber-
stein on the Thom isomorphism.
A Thom class u for (5, f) relative to " determines an Euler class 9C in the

usual way. Many of the properties of the integral Euler class carry over
here and, in particular, a necessary condition that J admit a cross-section is
that 9C 0. On the other hand, if 1 is the sphere spectrum $ and X is
(2n 2)-connected, this is also a sufficient condition (Theorem (13.23)).
An application of this fact to immersions of manifolds in Euclidean space is
given in Section 14. Further applications are given in [13].

1. Preliminaries
The unit interval will be denoted by I. The space of maps X --* B with the

compact open topology will be denoted by i) (X, B) and

9(g) 91 (X, B) -- (X, S’)

(respectively, i) (g) :1 (X’, B) -- (X, B)) will denote the map induced
by g B -- B’ (respectively, g X -- X’).

Recall that the reduced join of pointed spaces F and F’, with base-points
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x0 and x respectively, is the pointed space

F A F’ F X F’/F X {x’0} t {x0} X F’

with base-point [x0, x]. We have a canonical mapping

’" (F) A 2 12’+ (F A F’(.) (F’)

by ’[a, r](t..., t+.) [a(tl... t), r(t+l.., t+.)].
The boundary operator in the homotopy sequence of the path space fibra-

tion

e(F) P (f) --q F,
where q (a) a (0), produces an identification

(1.2) 0" n (F) n--1 (’ (F)),

Explicitly, 0[] [] where

(t t_)(t=) (t t_, t=).

We have a pairing

(1.3) A .(F) (R) t(F’) .+t(F A F’)

defined by letting []f [’] be the class of

I" X I X F’ FFX FA
where is the projection mp. Now consider the diagram

n>l.

(1.5) LEMMA. The above diagram is commutative.

The proof is left to the reader.
We will take S" to be the one-point compactification of Rn.

infinity will be denoted by z and is to be the base-point.
correspondence

(1.6) 9(X A S, Y) -- 9(X, 2(Y))

The point at
We have a natural
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by f -* ] where

/(x, tl"’" t)

=f(x, tan (r/2(2tl 1)), ..., tan (r/2(2t 1))) if 0 < t < 1,

z0 otherwise.

In general, this is a continuous, one-one, and onto mapping and if X is com-
pact, it is a homeomorphism. These facts are easily deduced from [4].
We have an identification,,. S’ A S--,S’(1’.7)

by
,.,,[x,y] (x,y), x z,y z,,

yn+m X Zn or y Zm

and the following diagrams are commutative’

(1.8)

(1.9)

SAS ’’’ S+

S AS . S+

where a[x, y] [y, x] and C,,,,,, is the extension of

C* "R+ R+m

defined by

2. Cohomology theories

For a space B, let (P (B) (respectively, (P* (B)) be the category of objects
(X, A, f) such that (X, A) is a CW-pair (respectively, (X, A is a finite
CW-pair) and f e 91Z (X, B). A mapping

g: (X, A,f) (X’, A’,f’)

in either category is to be an ordinary map g (X, A --. (X’, A’) such that
f fPg. Let ( denote the category of abelian groups.
A cohomology theory h on (P (B) consists of a sequence of contravariant func-

tors h"’(P (B) -- ( and natural transformations

d" h"o T -- h"+,
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where T 5) (B) --. (B) is defined by (X, A, f) (A, q, fl_) and T (g)
They are to have the following properties.

(2.1) For (X X I, A X I, F) e 5)(B

h’(io) h’(X I,A I,F)---h(X,A, fo)

is an isomorphism, where i0 (X, A) -+ (X X I, A X I) is defined by
io (x (x, O) anglo Fio

(2.2) For (X, A, f) e 5)(B), the sequence

h (i)d’-
h (X, A, f) (J ) h (X, f) h’(A, fla)

is exact, where i A -- X andf X ---. (X, A are inclusions.

(2.3) If X A1 u As where A1 and As are subcomplexes of X, then for
B),

h" (i) h (X, As, f) --. h (A1, A1 n A., fta,)
is an isomorphism, where i (A1, A1 n As) --. (X, As) is the inclusion.

A cohomology theory on 5)* (B) is defined analogously.

Example. When B consists of a single point we may identify 5) (B) with the
category of CW-pairs. Having done this, axiom (2.1) is easily seen to be
equivalent to the homotopy axiom so that a cohomology theory on 5)(B) is
just a generalized cohomology theory as in [12].

Remark. Hereafter we will revert to the usual convention and write g*
instead of h" (g) for a mapping g e 5 (B).

Notice that (2.1) implies that i is also an isomorphism, for we have a com-
mutative diagram

(2.4)

h’(X X I,A X I,F)

h*(X X I, A X I, F-)

a h’(X, A, f)

where a: X X I-- X X I is the involution (x, t)--. (x, 1 t).
Now for F X X I --. B, a homotopy from f0 to f,, define

(2.5)

by F ....-1
70 71

properties.

F h’* (X, A, f) h’ (X, A, fo)

The isomorphism F has the following easily established
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(2.6) The assignments f ----> h" (X, A, f), f e 9(X, B), and F F,
F e 92 (X, B)Z, define a local system of abelian groups on 9T (X, B).

(2.7) Commutativity holds in the diagram

d"h’(A, a) .> h"+(Z, A, )

l(F,)
d" F

h"(A,) h"+(X, A, fo).

(2.8) For g (X’, A’) (X, A ), commutativity holds in the diagram

h"(X, A, ) g h"(X’, A’, g)
X 1)),

h"(X. A. fo) h"(Z A’.
Finally, suppose that a homotopy G (X’, A’) X I (X, A) from g0 to

g and a map f X B are given. We have the following "homotopy prop-
erty".

(2.9) Commutativity holds in the diagram

h"(X’, A’, fgl)

h"(X’, A’, fgo).

Let h and ] be cohomology theories on B and respectively. A homo-
morphism r h ----) covering r B i is to be a collection of homomorphisms

(2.10) , h"(X,A,f)-->h"(X,A, rf), (X,A,f) e(P(B), -- < n < oo,

satisfying the obvious commutativity relations. In the case where r is an in-
clusion and each k in (2.10) is an isomorphism, we will call/ an extension of h.

3. The spectral sequence of a fibration
In [1] we described the spectral sequence associated with a fibration Y--.X

and map f X --. B. Here, we wish to outline a more general version of this
spectral sequence.

Suppose now that r Y --. X is locally trivial, X is a polyhedron and for
each pair (K, L) of subcomplexes ofX the pair (-1 (K),- (L)) is a CW-pair.
For x e X let F (x) r- (x).
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Fix a map g Y -- B. We will describe how the collection of groups
h (F (x), g), x e X, form a local system over X. Let I --. X be a path from
x0 to xl. By the covering homotopy property, construct

S() F(xo) I---, Y

such that S (a)o F (Xo) --. F (Xo) is the identity and rS () (y, t) (t),
y e F (Xo), 0 1. We then have S () F (Xo) F (x). Define

(3.1) h (F (x), g) h (F (Xo), g)

to be the composition

(3.2) h (F (x), g) h (F (Xo), S () g) (S ()g) h (F (Xo), g).

It is easy to establish the following.

Xz(3.3) LEMMA. The assignment of h (F (x g) to x X and to is a
local system on X.

Denote this local system by [h (F, g)].
Let X be the p-skeleton of X and let Y -(X). Piecing together the

exact sequences

d h(Y, y, g) h(Y, y_,g) 3 h"(Y, Y_, g)

leads to an exact couple with

(3.4) Ef’ h+(Y, Y-,, e), D’ h+(Y, Y-, ).

A natural identification

(3.5) E’ H (X; [h (F, g)])

is constructed just as in the speciM cse treated in [1] where we had assumed
that g factored through X. That is, g f for some map f X B. The
required modifications will be left to the reader. (They amount essentially to
replacing fr by g everywhere that it appears in [1, Section 4].
Now we have filtration

(3.6) h,(y, g) jo, j,,-

where
J’- Image (h" (Y, Y, g) h" (Y, g)).

Setting E’’- J"-/J+"-- we have

(3.7) TEOnEM. Suppose that either (a) X is finitely coconnected or (b) Y
and F (x), x X, are finitely coconnected. Then

(1) For each pair (p, q) there is an integer r(p, q) such that ’q E’q

(2) The filtration (3.6) is finite.
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See Theorem (4.14) of [1].
Now, suppose that h and ) are cohomology theories on ((B) and ((/)

respectively and h -- ) is a homomorphism covering r B --,/.

(3.8) THEOREm. If h (X, f) h (X, rf is an isomorphism when X is a
point, < n W then

) h’ (X, A, f ---- (Z, A, rf
is an isomorphism for all (X, A, f) e 5 (B ).

When B and/ are points, this is a theorem of Dold [3]. The spectral se-
quence argument in the general case is exactly the same.

4. Sectioned fibrations

Let denote the category with objects 8 (E, B, p, 4) where E, B are
spaces, p E -- B, A B -- E are maps and pA 1. A mapping

(4.1) (. r) (E, B, p, 4) ----> (E’, B’, p’, /’)

in 5 consists of ), E - E’ and r B ---, B’ such that p’k rp and
When B B’ and r is the identity we will abbreviate (, r) to
The loop space of 8 (E, B, p, 4) in 5 is

(4.2) 12(S; A) (2(E; 4), B, 2(p),

where

2(8; A) { I ---, E a(I) c p-l(b), some be B, a(0) a(1) 4(b)},

and 2(p)(a) a(I), e(a)(b)(t) a(b), 0 _< _< 1.
Given 8 (E, B, p, 4), 8’ (E’, B’, p’, A’) in 5 we have their product

(4.3) 8 X 8’ (E XE’,B X B’,p X p’,A X4’)

and their reduced join

(4.4) 8 8’ (EE’,B X B’,pp’,4,A’)

where E E’ is the quotient of E E’ obtained by identifying

p (b) X (b’) u/(b) X (b’)

with a point for each pair (b, b’) e B X B’, and

p p’[e, e’] (p(e), p’(e’)), A A’(b, b’) [A(b), A’(b’)].

In the case where B B’ we have the internal product

(4.5) 8 @ 8’ (E E’,B,p p’,4 4’)

and the internal reduced join

(4.6) 8 " ’ (E’ E’, B, p - p’, 4" A’
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where

’ (e, e’) ’ n (e) ’ (e’)l

and E " E’ is obtained from E $ E by identifng
--1p (b) XA’(b) uA(b) Xp’-(b

th point, b B.
We he mpping

+ +(E E’(4.7) ’" (E) (E’) )

and when B B a mapping.. + E(4.8) ’" () (’) ( )

defined by thee
"[, ] (t t,+) [ (t, t,), (t,+ t+)].

Notice that in each case the pair (’ 1 is a mapping in 5.
We will say that (E, B, p, A) in 5 is a sectionedfibrati if p E B is a

fibre map in the sense of Serre. The follong fact is easily established.

(4.9) The op space (g; h) of a sectied fibration is a sectied fibra-
tion.

Given (X, A, ]) & (B) and g (E, B, p, h) 5, let

(4.10) 2(Z,A,f;g) {g’ZElpg =f and gta hfa],

with the compact open topology, and let

(4.1) L(X, A,I; ) o(Z(Z, A,y;

We regard 2 (X, A, f; g) as a pointed space th base-pot hr. Notice that
by the exponential law we have an identification

(4.2) (z, A, ; e (s; a) e (e (Z, A, ; s) )

by p(g)(t)(x) g(x)(t), x X, 0 1.
so, for (X, A, f) e (B), (X, A’, f’) &(B’) and (E, B, p, h),

’ (E’, B’, p’, A’) in we have a mappg
(4.13) ff’(X,A,g)2(X,A’,f,g’)2(X, AoA’,fXf’,gg’)

by lettin if[g, g’] be the composition

X gXg

where is the projection map.
One more remark. In the sequel we usually abbreate (g; h) to

fl(g) and fl(E; h) to fl(E).
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5. Spectra
Recall from [12] that a spectrum F (here to be called a point spectrum) is a

collection of pointed spaces F and connecting maps F - 2(F+),
<: k <: . The n-th homotopy group of F is defined to be

(5.1) v, (F) DIR LIM ,+ (F),

the direct limit taken via

Example. The sphere spectrum S is defined as follows.
S, k _> 0, and 2- (S), k < 0. The connecting maps are

and the identity - (s) -, (-(+’)(s)), < o.

The k-th space is

Here . corresponds to ’. S/ S --. S+ under the correspondence (1.6).
A B-spectrum E is a collection of sectioned fibrations

8 (E, B, p, )
and maps

(5.2) e (E, B, p, ) --. (2 (F+), B, 2 (p+), 2 (A+)), < k < .
Of course when B is a point we have a natural identification between B-spectra
and point spectra.
Suppose E and I’ are B and B spectra respectively and r B --, B is a map.

A mapping X F --, F covering r is a collection of maps X E --, E,
< k < , such that

(5.3) (x, ) (, , w, ) - (, ’, v, )
is a mapping and the diagram

is homotopy commutative by a homotopy which is fibre and cross-section pre-
seing.
The construction of a cohomology theory h( E) on (B) from a B-

spectrum E is carried out as follows. Given (X, A, f) e (B) form the pot
spectrum 2 (X, A, f; E) whose k-th space is 2 (X, A, L 8) and whose connect-
g maps are
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Then let

(5.5) h’*(Z,A,f;) r_,((X,A,f;l)).

For u map g (X, A, f) (X’, A’, f’) in ((B), the collection of maps
(g) 2 (X’, A’, f’, ) -- (X, A, f, ), < k < , constitute a map of

spectra
(g) 2(Z’, A’,f’; F,) (Z, A,f F,).

Let

(5.6) h’(g, ) (g) h"(Z’, A’,f’; ) -- h"(X, A,f; ).

The boundary operator

(5.7) d(x,A,f; :h"(A,f; )--.h+(x,A,f; ), (X,A,f) e((B),

is defined to be the direct limit of the homomorphisms

(- 1 ) 0 r( (A, f, +) --. r_ (2 (Z, A, f, +)

where 0 is the boundary operator in the homotopy sequence of the fibration

Z (X, A, f, &,+) (j)
Z (X, f, ,+) ..2 (i) . $3 (A, f, S,+,),

nd

A i ,X J (X,A)

are the inclusions. That the collection of functors h( E) and natural
transformations d define a cohomology theory on (P (B) is established in [1].
As expected, a mapping E --. E’ covering r B --. B determines a homo-

morphism of cohomology theories

(5.8) X :h( ;E)--.h(;S)

covering r.

The loop spectrum (E) of E is the spectrum whose k-th space is f (8+) and
whose connecting maps are f (e+x). The maps

e 8 -+ (8+)

define mp of spectr e -+ 2 () nd it is clear from the definitions that

(5.9) e :h( ;E)-h(;f())

is an equivalence.

6. Pairings of spectra
Whitehead [12] has defined the notion of a pairing of point spectra and has

shown how such a pairing yields a pairing of the associated cohomology the-
ories. The purpose of this section is to describe the generalization of these
ideas to B-spectra.
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For us, a pairing (yl, y.) -- F3 of point spectra is to consist of maps

(6.1) v,.t F A F --* F’,+t, < s, < +
having the following property. Consider the diagram

(6.2)

We are to have

(6.3) 1)[(v,+.)’( A 1)] [,+t,
in the group [F F, (F,++)].

(6.4) Example. The tural pairing (, S) is defined by letting

x] . F F,+, 0, be the mapping which corresponds to

F, e, a(es+l) at-1 (es+t--1) a (F,+t),

under the correspondence (1.6). For < 0, X. is to be the constant map.
The natural pa#ing X (S, ) is defined by letting X. be (-1)’ times
the composition

SA F, S X’FA
where a[y, x] Ix, y].

Given a pairing (, Y) Y, let

(6.5) ,,. +(F) +(F) ,+,++ (FL)
be the composition

.+ (F) +(FI) A (F A F) (FL,++k+ ’ ,+++ ).

Using the eommutativity of the diagram (1.4) we see that the homomorphisms
(-- 1 )%.. commute with the direct limit maps and so define a pairing

(6.6) n () e (’) .+ ().
Now suppose that Bqspeetra
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and a map

are given.

such that

B B B

A -pairing (E1, E2) --, Ii; is a collection of maps

(/,,,, ) (E A E, B X B, p A p2, Zl. A z12)
(6.7)

(E,+, B, p,+, ,+)
is a mapping in , and in the diagram

1,0

(6.8)

0,1

we have

(6.9) ( 1)*[U (,,+,)u’ (el A 1)] )0, (1 A e)]
in the group

(6.10) Example. From (E, E) E we have an induced pairing
,’ (fl (E), fl (E)) + fl (E’) defined by lettg

I,
be be eompoBiio

X1,1 2

A straightforward calculation shows that ’ satisfies (6.9). Fuhermore,
the diagram

is commutative.
Now suppose that cohomology theories h on (B), i 1, 2, 3, and
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B B BX --* are given. A #-pairing hi @ h he consists of homo-
morphisms

(6.12) v h(Z, Al,f) (R) h(Z, A,f) -- h+’(X, A112 A., (fl X f2). ),

(X, A1, f) e ((B1), (X, A, f2) e (P(B2), having the following properties.
(as usual, denote y (u (R) v) by u u v.

(6.13) If g X --, X’ is such that

g (X, A, f) -. (X’, A, f) and g (X, A2, f) -- (X’, A., f)
are maps in d (B1) and 5 (B) respectively and

u h (X’, A’,,f; ), (Z’, A ,f;
then

in hi+ (X,

For the next two properties let (X, A, fl) e ((B1) and (X, A, h) (P(B) be
given and let i A --, X denote the inclusion.

(614). If u e h-1 (A, fl and v e h (X, fi then

d(u u i*(v)) d(u) u

in h+t (X, A, (f, X f) ).

(6.15) If u h[ (X, f) and v h-1 (A, f) then

d(i*(u) u v) (-1)u d(v)
in h+ (X, A, (f X fi) ).

These are the analogue of the axioms given by Steenrod [11] for a pairing of
two ordinary cohomology theories to third.
Suppose that M X )< I --. B1, N X )< I -- B are homotopies. We then

have a homotopy

X X I M X N B B B
and a diagram

h(X, A, M) @ h2(X, A2, N) h+*(X, A u A2, (U X N))

(6.16) Ma(R) N [(M X

h(Z,
(6.17) LEMMA. The above diagram is commutative.

This is immediate from (6.13) and the definition of the operator
We will now describe howa repairing (Ex, E) -- E of spectra determines

a -pairing
ha:h( ;E) (R)h( ;E)h( ;E)
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of cohomology theories. For (X, A1, fl) e 5 (B1) and (X. A., fs) e ( (Bs) let

2^(rts,) 2(X, Al,fl, ,) / 2(X, As,f.,
(6.18) -- 2(X, A1 u As, (fl fs), ,+)
be the composition

2(X. A1, fl, 1) A 2(X, A2, f., ,) b 2(X, A1 tJ A2,fl X f2, 1 A )

where is given in (4.13).

(6.19) LEMMA. The collection of maps 2^ (.) is a pairing of point spectra"

2^() (2(X, Al,fl ;El),2(X, As,fs ;Es))-2 (X, AluAs,(fl Xfs);Es).
This is a straightforward calculation (compare [12, Lemma (6.4)]). Now

we may define

(6.20)
---> h’+’(X, A1 u As, (fl f.);

to be

2^ (7), - (2 (X, A1, fi E) ) (R) -_, (2 (X, A., fs Es)
--* r-(8+o (2 (X, A1 u As) (fl X fs); E)

as in (6.6).

(6.21) THEOREM. The collection of pairings in (6.20) defines a -pairing
of cohomology theories

va:h(;) (R)h( ;E)-* (;E).
The proof is straightforward and will be omitted (compare [12] ).

7. Construction of
We will use Milnor’s construction [10] of a universal principal G-bundle

(E(G), B(G), r(G)) for a countable CW-group G. Recall that E(G)
(J:-0 E (G) where E (G) is the (n 1)-fold join of G with itself. There is
the natural action of G on the right of E (G) and B (G) is the orbit space. We
have G E (G) as the first factor in the infinite join.

Let denote the n-dimensional orthogonal group. The usual inclusion
i. --. (%+1 induces inclusions

E(i) E(O,,) -, E(O+I) and B(i,) B(O,)

In this way we regard E (O.) and B (O) as subspaces of E (0+1) and B (0,+1)
respectively. Let X. 0" X 0 --, 0+ denote the usual inclusion and let
A" e Os+s be defined by the formula

(7.1)
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Next, define B e 0n by setting B 1 and B" A A-1, n > 0.
We will construct X...-equivariant maps

(7.2) v E(0) E(0,)--, E(0)

having the following properties.

(7.3) , E(o,) {1}-- E(0,)is given byv,(x, 1) x.S.
(7.4) Commutativity holds in the diagram

Let o E (0o) X E (0o) --, E (0o) be the projection onto the first factor and
assume now that , has been constructed. Let M* denote the orbit of
E(0,) X E(0,)in E(0.+I) X E(0.+).

Let M (E(+) X ,+) M* and define

xB++,.+ (1, S), x
(7.5)

(x, x2)A’X+I,.+I(S1, $2), x E (V.), S V.+, i 1, 2.

Using the relations

(a) AX,+I.+ (S, 1 ,+.+ (S, i)A, 0 j n W 1, S e V+l,
(b) A’X+I.+I(S, T)

we see that ,+1 is well defined and is X,+l.+requivariant. Now apply The-
orem 7.1 of [6] to find a ,+.,+-equivariant extension

.+ E (o.+1) X E (o.+) E (v.+).
Properties (7.3) and (7.4) are easily checked.

Let B (0) 0:-o B (O,) and take 1 e eo E (Co) B (Vo) as the be-pot
boofB(0). Let

(7.6)

be the orbit map of ,. From property (7.5) we have a commutative dia-
gram
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Thus we may define

(7.8) B(0) B(O) B(O)
to be the direcg limig of the . Property (7.4) implies tha

(7.9) B(0) X {b0}--. B(0)
is given by (b, b0) b.

Remark. Note that the mpping is classifying mp for Whitney sum.
From this fct it follows that endows B (0) with an H-spce structure which
is the cnonicl one. That is, the natural mpping/0(X) --. IX, B(0)],
X, (*, is an isomorphism.

8. Construction of H( F)
The usual left action of 0, on R" extends to an action of 0 on S by setting

Wz z,, W 0. Now let F {F, e} be a point spectrum and let 0" act
on F f S" by W[x, y] [x, Wy], W 0. Form the sectioned fibration

(8.1) ’ (F’, B (O.), p’, h’ )

where F E(0.) X (F_, A S’)/O,, the action of 0, defined by

W. [e, Ix, y]] [eW-, W[x, y]], W O,

and p[e, [x, y]] [e], h[e] [e, [x,_, z,]], where x,_. is the base-point of
F_.
The mapping

1,0

F_, A S e_, A 1 S" x(F,+_,,) A (F,+_,, A
is equivariant so that we may define

(8.2) e’ F’ --, 2 (F’+)

to be

E(e,,) x (F_, A
[1, x,,,:’(,,_,, A )] E(e,,) X 2(F_,,,+, A S")/O,,,

We now have a B (O)-spectrum

(8.3) Y" {Z (Fi’, B(O.), p, a); e}.

Next, we define a mapping of spectra

(s.4) -, ("+’)
covering the inclusion B (i,) B ().) --* B (%+) as follows. Let, " _, (’+)
correspond to .. S" A S -- S"+ under the correspondence (1.6). There is



EXTENSIONS OF COHOMOLOGY THEORIES 567

the inherited action of 9+ on f (S+) and. is i-equivarient. Consequently,

xO,
F_. A S". 1 &,.,,., F_. A (S"+) f(F_. A S"+)

is i.-equivariant. Let

(8.5) Ft --, (Ft )

be the composition

f [E (i,) (1/ ,.,)]
f (f+) (- 1) (F+

It is easily checked that’0" is a mapping of spectra.
Now for (X, A, f) e @* (B(0)) let n(X) be the smallest integer n such that

f(X) B(V,) and let

(8.6) H (X, A, f; F) DIR LIM,>,x h (X, A, f; Y")

be the direct limit taken via the homomorphisms

h’ (X, A, f; F") O h
,
(X, A,f; t2 (F"+X)),, h (Z, A, f; F’*+x).

(See (5.9).)

For g (X, A, f) --* (X’, A’, f’) in (* (B (0)) let

(8.7) H(g; F) H’(X’, A’,f’; F) H’(X, A,f; F)

be the direct limit of the

h* (g; F") h* (X’, A’, f’; Y") -- h* (Z, A, f; F"), n _> max (n (Z), n(X’)).
The boundary operator

(8.8) d H(A,fta ;F)---H’+(X,A,f;F), (X,A,f), (*(B(O)),

is defined to be the direct limit of the maps

d h(A, fla ;") --, h+(X, A,f; "), n >_ n(X).

(8.9) THEOREM. The collection of functors H( and natural transfor-
mations d, -- < k < , constitute a cohomology theory on 5)* (B (0)).

This is easily established. Now suppose that F -- G is a map of point
spectra. Define

(8.i0) X" F" --. G"
to be the collection F --* G’ where

),t[e, [x, y]] [e[),_, (x), y]] e, E (0,), y, F_,, y e S".
The induced homomorphisms X h ( F") --. h ( G") commute with the
direct maps and so define

(8.11) X :H( ;F)--.H(;G).
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Evidently, the assignments F -- H ;F) and h -- define a covarian
functor from the category of point spectra to the category of cohomology the-
ories on * (B ()).

9. The associated -pairing
Suppose that F F, c}, G G,} and D {D, } are point spectra

with F and G countable CW-complexes, < k < . We will associate
with each pairing n (F, G) D a u-pairing

(9.1) ’H( ;F)@H( ;G)H(;D)

where B (0) X B (0) B (O) is the mapping (7.9).
Consider the mapping

(9.2) " (F,_ S) X (G_ S) (F,_, G_) (S S)

by a ([x, y], [w, y’]) [[x, w], [y, y’]]. Since F,_, and G_. are countable CW-
complexes both

(F_,S) X (G_S’) and (F,_G_) (SS)

inherit a CW-structure. Now we may check that a is continuous by checking
that its restriction to each cell is continuous.
We hve the product action of 0 X 0 on S" S" and .. S" S" S"

in (1.7) is .-equivafiant. The composition

(E(O) X (F,_ A

where a’ (e, Ix, y], e’, [w, y’]) (e, e’, [x, w], [y, y’]), is continuous since a in
(9.2) is continuous and is X.-equivariant. Let

(9.3) ,,, "F X G D,+

denote the orbit mapping. This in turn yields

(9.4) ,, F, G D.+
and we have a mapping of sectioned fibrations

(9.5)

Now define

(9.6)

to be the composition

2n

2 (D,,+,+,) --:,, a (D,,+,+.).
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By a direct calculation we have

(9.7) LEMMA. The collection of mappings , constitute a ,-pairing
(", G’) - (G’).

Now the composition

h(;F’) @ h( h( )

is a y,-pairing of cohomology theories

(9.8)

By a tedious but entirely straightforward calculation we see that the pair-
ings 1 a commute with the direct limit maps. Now let $ in (9.1)
be the direct limit of these pairings

10. The equivalence
Let F {F; e} be a point spectrum and form the specturm F A S whose

k-th space is Fk-1 A S and whose connecting maps

are the composition
1,0

F_ A S (F) A fl (F A ).

Define F --, (F A S) by lting b

F fl (F A (F A S),
where r corresponds to the identity mapping 1 F A S --*F A S. We have

(10.1) O# (Y) -. (e(" A S)).
(10.2) LEMMX. Ou is an isomorphism.

Proof. Define e^ FA S --* la’ by letting e Fk_ A S- --* F correspond
k--1to (--1) e. We have u homotopy commutative diagram of spectra

F FA

Since e and e are isomorphisms, so is 0.
Now, for (X, A., f) (P* (B (0,)), consider

(10.3) 0; h (X, A, f; F") --+ h (X, A, f; f(F"+))
as in Section 8.

(10.4) LEMMA. O is an isomorphism.
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Proofi The preceding lemma implies that

o h (X,/; ) -, h (X, f; (+)
is n isomorphism when X is point. Now pply Theorem (3.8).

Let (P* denote the ctegory of finite CW-pirs. The spectrum F determines
cohomology theory j ( ) on (P* s in [12]. We hve

(10.5) if(X, A; ) r_,(X, A, )),
where 9 (X, A, F) is the spectrum whose k-th space is 9 (X, A, F,) and whose
connecting maps are

(10.6) I}E (X, A, F, ) 9E() 9E (X, A, t2 (F,+ P := t2 (1) (X, A, F,+ ) ).

The spectrum Y also determines a cohomology theoryH F) on (P* (B (0) )
as in Section 8, and we have an embedding

io (P* --* (P*(B(O))

by (X, A) --, (X, A, o), o the constant mpping of X to b0. Le ( ;F)
denote the cohomology theory on (P* induced by i0 from H ( F). We will
define i1 equiwlence

(10.7) :j(;F) /7(;F).
Recall that F E (0o) (F/X S) B (00) X F so that

(B (Oo) X F,, B (Oo), p, A)
where p, is projection onto the first fctor nd h (b) (b, x,), b B (0o). We
hve homeomorphism of function spces

(10.8)

by (g) (x) (b0, g (x)), x X. The collection of these ; is a map of point
spectra

(10.9) " 9(X, A, F) --, (X, A, o ;F)
which yields an isomorphism

(lO.lO) j (x, A;I) -. h" (X, A, o 1).
Now define

(lO.11) j’(x, A; ) --, H’(X, A, o 1)

to be the composition

if(X, A; . h"(X, A, o ;F) -- H"(X, A, o ;F),

the latter being inclusion into the direct limit which by (10.4) is an iso-
morphism. Now let in (10.7) be the collection {}.
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Note. Hereafter, when we speak of a point spectrum F, it will be under-
stood that each F is a countable CW-complex. This is not a severe restric-
tion for, by a theorem of E. H. Brown [2], every cohomology theory on P*
with countable coefficient group is equivalent to one of the form j F)
where F is a spectrum of this type.

1. Commutativity
A point spectrum F is a ring spectrum if there is a map S -. F and a pair-

ing y (F, F) --. F such that the diagrams

(11.1)

S’AF .A1 F,/ F 1A F, AF

.) F,+ (F,++z)

are commutative, < s, < . Here a[x, x] Ix’, x] and k (F, S) F,
k (S, F) F are the natural pairings. The commutatity of the second
diagram implies that the induced paig

(11.2) y :j(;) @j( ;F)j(;F)

is commutative in the graded sense. That is,

uuv= (-1)’*vuu, uej’(X,A;F), vej*(X,A;F).

The puose of this section is to discuss the commutativity properties of the
induced -paifing

(11.3) ,:U(;F) @H( ;F)H(;F).

Firse we define an involution

(11.4) T:H( ;F)H(;F),

(a natural transformation such that T 1) as follows. Let

T F F
be the orbit map of

E(e.) X (F_.AS’)- 1. X (1Ar’))E(o.) X (F_.A

where r" S Sn is he compacificaion of he involuion R R by
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y -- --y. The collection of maps T is a map of spectra

(11.5) T" F" --. F’.
We calculate directly that the transformations

(11.6) (-1)T" h( ;F")--*h( ;F)
commute with the direct limit maps. Let T in (11.4) be the direct limit of the
collection (-1)nT}. Since (Tn) 1 we have T 1.

(11.7) PROPOSITION. Let u H,(X, A, f; F). Then T(u) u modulo
2-torsion.

(a)
gram

The proof is broken up into several steps.
The proposition is true when f o. We have a commutative dia-

hm(X,A,o;F) T h F0(X,A,/0;

H(X, A, o; F) ,/(X, A, o; )
where the vertical maps are inclusion into the direct .limit and by (10.4) are
isomorphisms. Since T is the identity map, so is T.

(b) The proposition is true whenfis homotopic to o. LetM" X X I B (0)
be such that Mo o andM fi Since T is natural we have a commutative
diagram

T(X, A,/; F) (X, A, f; F)

T(X, A, 0; ) (X, A, 0; Y)

From part (a) we haveM T (u) TM (u). Since M, is an isomohism we
have T (u) u.

(c) If the proposition is true for any two of (X, A, f), (X, f) and (A, f) th
it is true for the third. We have the exact sequence

H_(A,f;F) d H 3
).....)

To be specific, suppose it is true for (X, f) and (A, f). Let u eH(X, A, f; F).
We have

j* (T (u) u) T (j* (u)) j* (u) 0 modulo 2-torsion.

Hence, there is an integer q such that

j*(2q(T(u) u)) O.

Let v H-1 (A, f; F) be such that d (v) 2q (T (u) u). Then

d T (v v Td (v d (v 2q+l(u- T(u)).
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There is an integer r such that 2 (T (v) v) 0. Then

0 d(2r(T(v) v)) 2r++l(u- T(u)).

Therefore T (u) u modulo 2-torsion.
(d) The proposition is true when A is empty. Proceed by induction. Let

X have dimension s and let g F --. X be a characteristic map for an s-cell of X
and let X1 be the closure of X g (F). We may assume by induction that
the proposition is true for (X, f). By excision and part (b), the proposition
is true for (X, Xi, f). Now apply part (c).

(e The proposition is true for arbitrary (X, A, f) e 5)* (B (0)). Apply part
(c).

(11.8) LEMMA. For

(X, A, f) e B (t%), u e h (X, A, f; Y") h (X, A, f; "and v

we have
u u v (- 1)+v u T (u) (- 1)"+T (v) u u

in h"+’ (X, A, (f X 1); f(F")).
Proof. From (11.1) there is a homotopy

(ii.9) 0_<r_<l,

such that

Now define

(11.10) C" S"/S"--,S’, 0_< r_< 1,

by C[z,, z] z,, and

C,.[y, y] ((1 r)y -t- ry, -ry W (1 r)y’), y, y’ R".

It is easily checked that

(11.11) X., (W, W)C C,. (W, W), W 0,.

Consider a point [q, q’] in the internal reduced join F’ , F’. Since p’ (q)
p (q’) we can write

q [e, x, y], q’ [e, x’, y’]

where e e E (9), x F_ x’ F_, y, y’ S. Now define

" Orl(ii.i2) K "F A F (F++),
by K,[q, q’] (t) [ (e, e), M[x, x’] (t), C,[y, y’]]. Using (11.11) we see that
the definition of K is independent of the choice of e in the representation of q
and q’. Thus K is well defined. We have

’+ n’.[q, q’],
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and
K[q, q’] (- 1)-"-[ (e, e)’[e.+_ ,_.._[x’, xl,,,,,[y’, -ylll

8i+k Yk,iL T1 (q)].
Therefore the diagram

Re F$ v’ e(F++)

(11.13) F; F2 1)

is homogopy eommuaie by a fibre and eross-seeion preserving homoopy
(see ( a)).
Now leg

(x, , ) *((o) , _.+( (x, , I; ) ),
and

rom he homoopy eommuaiiy of (11.18) we deduce

(- 1 )%" (),( N v
(11.14)

(- 1 )’+ (- 1 )’ (), (v N f; ()) ).

h (X, A f; )h (X, A f; ) and v represents v eIf represents e

aboe equation yields

(11.1) u v (- 1)’+v u T; ().
o show ha u v (-1)’+T(v) u , replace in (11.10) by where

] and

c[, ’1 ((1 r) r’, r + (1 r)’), , ’,and proceed in he same manner.
Passing o he direeg limi we have, by ghe reeeding lemma,

(11.16) o. For

(x, ,) (o),
we have

uuv (-1)uT(u) (-1)’T(v)uu.
Combining this th (11.7) yields

(11.17) COROLLARY. For

H (X, A, f; F)H(X,A f;F), ve(X,A,/)B(v) u
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we have
uuv (--1)vuu modulo 2-torsion.

12. Thom classes
Let (Y, X, r) be an (n 1)-sphere bundle with structural group

The suspension of 5 is the n-sphere bundle 2 (J) (2 (Y), X, 2 (r)) where
(Y) Y X I/(), the relation defined by

(y,t) (y’,t) ifr(y) r(y’) and 0or1.

We have 2 (r)[y, t] r(y). There are two cross-sections

i’:X-- 2(Y) by i’(x) [r-l(x), i], i 0, 1.

We will denote i’1 (X) by X+ and i’0 (X) by X-. We will also identify Y with
Y X {1/2} c 2(Y). The Thom space of is the pair (2(Y), X+).
For x e X, let ix (S, zn) --. (2 (r)-(x), ’ (x)) be an identification. Let

F be a ring spectrum with map S --. F and pairing (F, F) --. F. For
f: X --. B (0) consider the sequence

,$

(12.1) Hn((Y), Z+, f(r); F H Hn(,z.;)- (,z;S).
A Thom class for the pair (J, f) relative to 1 is an element

(12.2) u eHn((Y), X+, fZ(r); )

with the property that for each x e X there is a geaerator

such that i* (x) a (v0). It is clear that the existence of a Thorn class for f
depends only on the homotopy class of f.

(12.3) THEOREm. Iff X --* B (O is homotopic to a classifying map for
then there exists a Thom class for (, f).

Proof. We may assume that f(X) B (0,,). Further, it is sufficient to
prove the theorem when " S since, if u is a Thorn class for S then a (u)
will be a Thorn class for .

Let 0" act on Z (S-) by W[x, t] [Wx, t], W O,. Recall the action of
0" on S" described in Section 8. Evidently, we can construct an eqvariant
homeomorphism

q ( (’-), + (’, z).
Here + denotes the point S"- X {1}. Now
(12.4) ] Y E (V,) X S’-/O,
be a bune map coveting f and let be the composition

(Y). (])-, (E(V,) X

E(o.) X (S"-)lo.
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For S we have the sectioned fibration $; as in (8.1). Here

$ (E(0n) (S A S’)/O,, B(0), p,,

Thus,

(12.5) ]e (2 (Y), Z+, f (r), ).

Now let u be the image of []] under the composition

0(( (Y), Z+,f(r); $)) h"((Y), Z+, (r); S")

H"((Y), Z+,f(r); S),

each map being inclusion into the direct limit. A representative of i (u) is

which, being a homeomorphism, represents a generator of

It follows that u is a Thom class for (J, f) relative to S.
Let D be an F-module. That is, there is a pairing 0 (F, D) --. D such that

the diagram

(12.6)

is homotopy commutative, - < s, . For example, every spectrum
D with the natural pairing ks" (S, D) -- D is an S-module.
Now suppose that (J, f) has a Thom class u relative to F. For X1 c X let

Y1 r- (X) and for g’X --> B (9) define

(12.7) " H(X,X,g;D) ---.H’*+(Z(Y),X+o(Y),(fX g)2(r);D)

by
u

(12.8) THEOREM (Thom isomorphism theorem).
isomorphism.

The mapping is an

Proof. The method of proof is the same as that of (11.7).
(a) The theorem is true when f g o. Since the transformation in
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(10.7) preserves pairings we have a commutative diagram

j(X, X D) j"+((Y), X+ u 2(Y); D)

H(X,X 0; D) . H+ Y+,,) (2(Y) o 2(Y) g0; D)

where ’ (v) ff- (u) (r)* (v). Now Dold [3] has established a Thorn
isomorphism theorem for cohomology theories on (P*. Clearly ff- (u) is a
Thom class in Dold’s sense so that if’ is an isomorphism. Therefore , is an
isomorphism.

(b) The theorem is true when f and g are homotopic to g0. Let

M, N" X I-- B(0)

be such that Mo bo, M1 f and No bo, N1 g. We have

2(Y) X 1 M2(Y) I x X I B(o).

Let u’ (M (2(r)) 1))(u). By (6.17) we have a commutative diagram

H(X,X,f; D) " H’*+(,(Y),X+uY,(Y),(f )< g)2(r);D)

IF, i(MX N)(2(r) X
H(X, X g0;D) O, H+( X+ 2(Y),g0;2(Y) u D).

Clearly, u’ is a Thom class for (ad, b0). Now apply part (a).
(c) /f the theorem is true for any two of (X, XI, g), (X, g) and (X, g)

then it is true for the third.
We have a commutative diagram

d

where

d

H’(Z(Y), X+ j(t); D)u’ i*(u)

and r denotes the map (f X g)2 (r). Now use the "Five Lemma."
Steps (d) and (e) are precisely the same as in (11.7). This completes the

proof.
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(12.9) Remark. MacAlpine [9] has defined, for an (n 1)-sphere bundle
ad (Y, X, r) and point spectrum D, the k-th cohomology groupj (X; D (qJ)
of X with coefficients in D twisted by ad to be

j* (X; D (a3 j"+* ( (r), X+; D ).

Now let J* be an inverse for J. That is, J o J* is trivial. Let

f, f* :X B(O)

be classifying maps for a5, J* respectively. Then t (f X f*) is homotopic to
b-0. LetM’X X I--B(0) be such that M0 0andM1 u(fXf*).
Let u be a Thorn class for (qg, f) relative to S. We have identifications

H(X,f*; D) "; H"+((y),x+,(f X f*)(r);D)

’- j.+ X+..,M(Z(r) X 1), H,+((y), Z+, o ;D) ((f) ;D).

Thus, MacAlpine’s group j (X; D (!4)) is our group H (X, f*; D), where f*
is a classifying map for an inverse

13. Euler classes
Suppose that the pair (J, f) has a Thorn class

u, H" (E (r), X+, f (r); Y).

The cross-section ’0"X -* (Y) yields

(13.1) 0"" H"( (Y), X+, j (r); F) --* H"(X,f; Y).
The element if (u) will be called an Eur class for (qd, f) relative to
F. For example, if qd is orientable in the ordinary sense (i.e., wt 0),
f b0 and F K(Z), then if is the usual integral Euler class. A number of
properties of the integral Euler class hold true in general and the proofs are
essentially the same. We will now list them.

(13.2) For r* H" (X, f; F) H" (Y, rf; F) we have r* (if) O.

(13.3) @,(if) u u ueH"((Y), X, t(.f X/); F).

(13.4) If n is odd then 9C 0 modulo 2-torsion.

(13.5) Suppose (, g) 1 -- is a bundle map of (n 1 )-sphere bundles
and if is an Euler class for (. f). Then g* (if) is an Euler class for [, fg).

(13.6) Suppose , are (nx 1) and (n 1)-sphere bundles over X
respectively. Let if.x, if be Euler classes for (, fl) and (ad., h) respectively.
Then

is an Eur class for (x * o., (fx X fi ) ).
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Here 1 o. denotes the hitney join of 1 and .
The proof of (13.2) and of (13.5) is left to the reader. For the proof of

(13.3) we must show that

(13.7) u u u u u (r) * (u).

Consider the inclusions

(13.8) (2 (r), X+) ( (r), 2:+ (r)) (_ (Y), Y) 2_ (r),

where 2+ (Y) and 2_ (Y) are the images of Y X [1/2, 1] and Y X [0, 1/2] in 2 (Y)
respectively. Evidently

:Y,(r) * H’(Y,_(Y),fY,(r); ) ---, H"(Y,_(Y),JT,(r); )
$ .$--1is the identity. Let (u). We have

u 2(r) *’0"(/) uj*2(r) *’()
u 2(r) *’0*j* ()

uj* (a) =aua.
$ .$--IApplying l. to this equation yields (13.7).

By (11.17) we have

(13.9) u u u (-1)’u u u modulo 2-torsion.

Thus, if n is odd, 2 (u u u) and hence u u u is zero modulo 2-torsion. This
together with (13.3) yields (13.4).
We will now outline a proof of (13.6). The Whitney join

J1 o (Y1 o Y., X, rl o r.)

of J (Y1, X, r) and nj (Y, X, r.) is defined as follows. Let Y o

be the quotient of (Y (D Y) X I after the identifications

(y, y, 0) (y, y, 0) and (y, y, 1) (y;, y., 1).

The map r o r is given by r o r.[y, y., t] r (yl) r(y). A bundle
equivalence

(13.10) ,)," 2(Y o y) --. 2 (Y) A (Y)

is defined by

7[y, y, t, X] [y, 2t, y., ),], 0 _< _< 1/2

[y,),,y,2),(1 t)], 1/2_< t_< 1.
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Consider the diagram

(13.11)

where j is inclusion, is projection, and is the diagonal map.

(13.12) u, eS’*’(Y,(Y), X+, f (r,); F)

be a Thorn class for J such that 9 0" (u), i 1, 2, and let

(13.13) u *o*-j*(ul X Us)

Let

It is easy to check that u is a Thom class for

Now, by he eommuttity of (18.11)

(13.14)

wch shows that 1 U 2 is an Euler class for

(1 o, if, x f) ).

Suppose (, f) has a Thorn class u relative to F and D is an F-mode.
Given g X B (), let r (f X g) (r) and consider the exact sequence

d H(_(y), ...(13.15) ... r,;D)H(_(y) ;D)H(Y,;D).
We have identifications

(13.16)

and

(13.17)

H(X, (f X g); D)..Z!r)**.. H(Y,_(Y), r; D),

H-n(X,g;D)--H(Y,(Y),X+, r;D) (ili2)$--1, Hk (2_ (y), Y, r;D)
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(see (13.8)). Substituting in (13.15) yields the exact Gysin sequence

(13.18) H-’(X, g; D) H(X, (f X g); D)

---r H(Y, (f X g)r; D)
and we check that

H-"(X, D),(13.19) I,(v) 9C tJ v, v e g;

where 9C is the Euler class associated with u.

(13.20) L.t. If one Euler class relative to is zero then every Euler
class relative to is zero.

Proof. Since is a multiplication map for the canonical group structure
on IX, B(9)], every map f"X --. B() is homotopic to one of the
form (f X g). If 9C 0, the map in the Gysin sequence is zero. There-
fore

r* S’*(X,f’; ) ---+ H’(Y,f’r) )

is injective for every map f. Then by (13.2) every Euler class
9:’ e H" (X, f’; F) must be zero. This completes the proof.
A necessary condition that the bundle 5 admit a cross-section is that every

Euler class 9: relative to F be zero. This is a consequence of (13.2).

In a moment we will need the following well known fact.

(13.21) LEMMA. Suppose (Y, X, r) is a fibre space with fibre F,
i 1, 2, and , f)’ --+ is a map such that ]" (F) -- (F.) is an
isomorphism, ] < m. Let Z e 5)* and g Z ---+ X be given with Z q-coconnected.
Then

] L (Z, g; ) L (Z, fg; )

is one-one if q < m - 1 and onto if q <_ m 1.

(13.22) LEMMA. Let (Y, X, r) be an (n 1)-sphere bundle and sup-
pose X is (2n 2)-coconnected. If i’0, X -- 2 (Y) are homotopic as cross-
sections of (r), then admits a cross-section.

Proof. Let

h(2:(Y)) {" I (Y) I(I) Z(r)-’(x),
some x e X, and a(i) i’(x), i 0, 1}

and let " h (2 (Y)) --* X be given by () r (0). Then A (2 (J))
(h (2(Y)), X, ) is a fibre space and we have a map

(X, 1)" (Y, X, r) --, (A((Y)), X, )

by X (y) (t) [y, t], 0 _< _< 1. The fibre - (X) is the space A (S") of paths
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on S" from the south to the north pole and it is well known that

is an isomorphism, k < 2n 3. Now let F X I --, 2 (Y) be a homotopy
such thatF0 i%,F1 handZ(r)F 1,0 t_< 1. Then

/0"X--A(Z(Y)) by t(x)(t) F(x, t)

is a cross-section to . By the previous lemma, there exists a cross-section to r.

(13.23) THEOREM. Let (Y, X, r) be an (n 1)-sphere bundle and
suppose X is (2n 2)-coconnected. Let 9 be an Euler class for (., f) relative
to the sphere spectrum S. Then admits a cross-section if and only if 9 O.

Proof. Suppose that 9 0. By Lemma (13.2) we may assume that
f" X --, B (0=) is a classifying map for and 9 0" (u), where u is the Thorn
class constructed in the proof of Theorem (12.3). This class u is represented
by a map ]: 2 (Y) -, E(O=) X S’*/O, such that the diagrams

Z(Y) ]. E(O,) X S"/e, Z(Y) ] - E(V.) X
X f B(O,) X f

are commutative. Now E (u) is the image of [0] under

(x, ]; h’(X,]; S,) H’(X, 1; S),
each map being incIusion into the direct limit. The first map is one-one and
onto by (13.21) and the fact that X is (2n 2)-coconnected. The second is
an isomohism by (10.4). Therefore, since E 0, we have

0] [5 []] e L (X, f; $).
In other words, for

] L(X, 1, ()) L(X,L $))
we have [0] []. By (13.21), ] is one-one. Consequently 0 and ,
are homotopic as cross-sections to Z (r). Now apply the preceding lemma.

14. Equivariant maps
Let A be a fixed point free cellular involution on the CW-complex Y and let

f:Y/A --, B(O) be a classifying map for the 0-sphere bundle

J (Y T/A, r)
where r Y -- Y/A is the quotient map. Let c H (Y/A, f; S) be an Euler
class for (4, f). Define f’: Y/A -- B(O) inductively by f f and
f /(f X f-), n > 1. Next, define

(14.1) c" e H" (Y/A, f; S)
bye-- candc" cuc"-.n> 1.
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Let fl denote the involution on Y X S"- given by

(y, z) --, (A (y), -z)

and form the (n 1)-sphere bundle qJ^ (Y X S"-/A, Y/A, ) where
[y, z] [y]. There exists an equiwriant map Y
admits a cross-section. Now, aJ^ may be identified with the n-fold Whitney
join of qJ with itself. Therefore c is an Euler class for (J^, f"). By Theorem
(13.23 ) we have

(14.2) THEOREM. Suppose Y is (2n 2)-coconnected. There is an equi-
variant map Y ----> S"- if and only if c O.

Now let G be a finite group of odd order which is free and cellular on the
finite CW-complex Z. Let r Z --> Z/G be the quotient map.

(14.3) LEMMA. For f Z/G ---. B (e) and a spectrum D,

r* H (Z/G, f; D) --, H (Z, fr; D)

is injective modulo the class of odd torsion groups,

This is well known for ordinary cohomology. The spectral sequence rgu-
merit in the general cse is exactly the sme (see [7, section 10.8] ).
Now suppose G is group of odd order which ets on the closed n-dimen-

sional C-mnifold M, the ction being free nd C
C-strueture such that the quotient mp r :M --, M/G is n immersion.

(14.4) THEOREM. Assume 2k > n - 1. Then M/G immerses in R"+ if
and only if M immerses in R"+.

Proof. If there is n immersion :M/G ----> R"+, the composition
r M --* R+ is n immersion of M in R+. On the other hnd suppose M
immerses in R+. Let N M/G nd let T (M) nd T(N) denote the
tngent sphere bundles of M nd N respectively. Eeh hs n involution A
defined by sending unit vector v to -v. According to theorem of Hirseh
nd Hefliger [5], it is sufficient to show that there is n equivrint mp
T(N) -, S+- We hve commutative diagram

T(M) X S"+- [T() X 1] T(N) X .+-1

T(M)/A [T(r)] T(N)/A.
Let f" T (N)/A --, B (O) be a classifying map for the O-sphere bundle
T (N) --, T (N)/A and let

c"+ H"+ (T (N)/A f+;S)

be as described above. By (9.5), IT(v)] * (c"+) is an Euler class for the
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sphere bundle

(T(M) X S+-

fl T(M)/A, "
and map f’+[T()]. Since M immerses in R+, IT(v)] * (c+) 0.
The action of G on M lifts to an action of G on T (M) by setting g.v

T (g) (v), v e T (M), g e G. Since g. (-v) (g.v), T (M)/A inherits an
action of G by g. Iv] [g.v] and we can exhibit an identification between
T (M)/A/G and T (M/G)/A T (N)/A. Then by the previous lemma

[T(v)] *:H’+(T(N)/A, f+; S) -- H’+’(T(M)/A, f+[T(v)]; S)

is injective modulo odd torsion. Thus, c"+ 0 modulo odd torsion. How-
ever, by (13.4), c and hence c"+ is zero modulo 2-torsion. We must conclude
that c+ 0. Now apply (14.2).
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