EMbedding connected sums of tori in codimension one

BY
Douglas R. Anderson ${ }^{1}$

The problem of classifying embeddings of a torus $S^{p} \times S^{q}$ in S^{p+q+1} has been settled in the differentiable and piecewise linear ($P L$) categories by Kosinski [6], Wall [7], and Goldstein [1]. It is the object of this paper to extend these results in the $P L$ category to locally unknotted embeddings of connected sums of tori in a sphere of codimension one. Before stating the main result we make the

Definition. Let M and V be $P L$ manifolds and let $f, g: M \rightarrow V$ be locally unknotted $P L$ embeddings. Then f is pseudo-isotopic to g, written $f \sim g$, if there is a $P L$ homeomorphism $H i V \times I \rightarrow V \times I$ with $H(x, 0)=(x, 0)$ and $H(x, 1)=(h(x), 1)$ such that $h f(M)=g(M) . \quad$ Clearly \sim is an equivalence relation. The equivalence class of the locally unknotted embedding $f: M \rightarrow V$ is called the pseudo-isotopy class of f and the set of all pseudo-isotopy classes is denoted by Pseudo-Iso (M, V).

The main result of this paper is
Main Theorem. Let $n \geq 5$ and let

$$
M^{n}=\left(\#_{i=1}^{r_{1}} S_{i}^{p_{1}} \times S_{i}^{q_{2}}\right) \#\left(\#_{i=1}^{r_{2}} S_{i}^{p_{2}} \times S_{i}^{q_{2}}\right) \# \cdots \#^{\left(\#_{i=1}^{r_{s}} S_{i}^{p_{s}} \times S_{i}^{q_{e}}\right)}
$$

where $2 \leq p_{1}<p_{2}<\cdots<p_{s} \leq q_{s}<\cdots<q_{2}<q_{1} ; p_{j}+q_{j}=n, j=1, \cdots, s$ and \# denotes the connected sum. Then \mid Pseudo-Iso $\left(M^{n}, S^{n+1}\right) \mid$

$$
\begin{array}{ll}
=\left\{\frac{1}{2}\left(r_{1}+1\right)\left(r_{2}+1\right) \cdots\left(r_{s}+1\right)\right\} & \\
\text { if } n \text { is odd or if } n \text { is even and } p_{s} \neq n / 2 \\
=\left\{\frac{1}{2}\left(r_{1}+1\right)\left(r_{2}+1\right) \cdots\left(r_{s-1}+1\right)\right\} & \text { if } n \text { is even and } p_{s}=n / 2
\end{array}
$$

where absolute value denotes cardinality and $\{x\}$ is the least integer $\geq x$.
As special cases we have the following corollaries:
Corollary 1. Let $n=p+q \geq 5$ with $p, q \geq 2$. If n is odd or n is even and $p \neq n / 2$, then there are $(r+1) / 2$ pseudo-isotopy classes of embeddings of $\#_{i=1}^{r} S_{i}^{p} \times S_{i}^{g}$ in S^{p+q+1}.

Corollary 2. Let $n=2 p$ with $p \geq 3$. Then any two embeddings of $\#_{i=1}^{r} S_{i}^{p} \times S_{i}^{p}$ in $S^{2 p+1}$ are pseudo-isotopic.

It is interesting to note that although there are embeddings

$$
f: S^{p} \rightarrow S^{p+q+1}, \quad g: S^{q} \rightarrow S^{p+q+1}-f\left(S^{p}\right)
$$

whose images are linked, when it comes to embeddings of $\mathbb{\#}_{i=1}^{r} S_{i}^{p} \times S_{i}^{q}$ in

[^0]S^{p+q+1} such linking phenomena do not occur. Indeed it is this observation that leads to Lemma 3.1 which is essential to the proof of the Main Theorem.

This paper proceeds as follows: In §1, we sketch the proof of the Main Theorem stating the theorems used in its proof; the proofs of these theorems are then given in $\S 2$ and §3. Throughout this paper we work in the $P L$ category.

1. A sketch of the proof of the main theorem

Let M^{n} be a simply connected manifold and $f: M^{n} \rightarrow S^{n+1}$ be a locally unknotted embedding. By Alexander duality $S^{n+1}-f(M)$ has two components whose closures we denote throughout the remainder of this paper by A and B. Since f is locally unknotted, A and B are $P L$ manifolds and $\partial A=f(M)=\partial B$.

Let $H_{i}(X)$ denote the homology of X with integer coefficients.
Lemma 1.1. Let $f: M^{n} \rightarrow S^{n+1}$ be a locally unknotted embedding, Then
(i) The inclusions $f(M) \subset A$ and $f(M) \subset B$ induce isomorphisms

$$
H_{i}(f(M)) \rightarrow H_{i}(A) \oplus H_{i}(B) \quad \text { for } 0<i<n
$$

(ii) $H_{i}(A)=H_{i}(B)=0$ for $i=n, n+1$.
(iii) If M is $(p-1)$ connected, $p \geq 2$, then so are A and B.

Proof. (i) and (ii) follow from the Mayer-Victoris sequence of the proper $\operatorname{triad}\left(S^{n+1} ; A, B\right)$ by observing that M must be orientable and that the boundary homomorphism $H_{n+1}\left(S^{n+1}\right) \rightarrow H_{n}\left(M^{n}\right)$ is an isomorphism. To see (iii), notice first that M is simply connected; hence, by the Van Kampen Theorem so are A and B. The result then follows from (i) and the Hurewicz isomorphism.

For the remainder of this section we specialize and let

$$
M^{n}=\left(\#_{i=1}^{r_{1}} S_{i}^{p_{1}} \times S_{1}^{q_{1}}\right) \# \cdots \#\left(\#_{i=1}^{r_{s}} S_{i}^{p_{s}} \# A_{i}^{q_{\theta}}\right)
$$

where $p_{j}, q_{j} j=1, \cdots, s$ are arbitrary, but fixed, integers satisfying $2 \leq p_{1}<p_{2}<\cdots<p_{s} \leq q_{s}<\cdots<q_{2}<q_{1}$, and $p_{j}+q_{j}=n \geq 5 j=1, \cdots$, s. Then M is simply connected and

$$
\begin{aligned}
H_{i}(M) & =Z & & \text { if } i=0, n \\
& =Z+\cdots+Z\left(r_{j} \text { times }\right) & & \text { if } i=p_{j}, q_{j}, j=1, \cdots, s \\
& =0 & & \text { otherwise }
\end{aligned}
$$

Thus by 1.1,

$$
\begin{align*}
H_{i}(A) & =Z & & \text { if } i=0 \\
& =Z+\cdots+Z\left(u_{j} \text { times }\right) & & \text { if } i=p_{j}, j=1, \cdots, s \tag{*}\\
& =Z+\cdots+Z\left(v_{j} \text { times }\right) & & \text { if } i=q_{j}, j=1, \cdots, s \\
& =0 & & \text { otherwise }
\end{align*}
$$

where $0 \leq u_{j} \leq r_{j}$ and $0 \leq v_{j} \leq r_{j}, j=1, \cdots, s$. It then follows from Alex-
ander duality that $u_{j}+v_{j}=r_{j}, j=1, \cdots, s$; and from 1.1 that

$$
\begin{aligned}
H_{i}(B) & =Z & & \text { if } i=0 \\
& =Z+\cdots+Z\left(v_{j} \text { times }\right) & & \text { if } i=p_{j}, j=1, \cdots, s \\
& =Z+\cdots+Z\left(u_{j} \text { times }\right) & & \text { if } 1=q_{j}, j=1, \cdots, s \\
& =0 & & \text { otherwise }
\end{aligned}
$$

Let $0 \leq u_{j} \leq r_{j}$ and $0 \leq v_{j} \leq r_{j}, j=1, \cdots, s$ and construct a polyhderon

$$
X\left(u_{1}, \cdots, u_{s}, v_{1} \cdots, v_{s}\right)
$$

as follows: Let $S_{1}^{p_{1}}, \cdots, S_{u_{1}}^{p_{1}}, S_{1}^{p_{2}}, \cdots, S_{u_{s}}^{p_{s}}, S_{1}^{q_{s}}, \cdots, S_{v_{s}}^{q_{s}}, S_{1}^{q_{s}-1}, \cdots, S_{v_{1}}^{q_{1}}$ be spheres of the indicated dimensions with base points $b_{1}, \cdots, b_{u_{1}}, b_{u_{1}+1}, \cdots$, $b_{u_{1}+\cdots+u_{s}}, b_{u_{1}+\cdots+u_{s}+1}, b_{u_{1}+\cdots+u_{s}+v_{s}}, b_{u_{1}+\cdots+u_{s}+v_{s}+1}, \cdots, b_{u_{1}+\cdots+u_{s}+v_{s}+\cdots+v_{1}}$ respectively and let I be the closed interval

$$
\left[1, u_{1}+\cdots+u_{s}+v_{s}+\cdots+v_{1}\right]
$$

Then $X\left(u_{1}, \cdots, u_{s}, v_{1}, \cdots, v_{s}\right)$ is obtained from the disjoint union of the spheres and the interval by identifying the base point b_{i} with the point $i_{\epsilon} I, i=1, \cdots, u_{1}+\cdots+u_{s}+v_{s}+\cdots+v_{1}$. Thus

$$
X\left(u_{1}, \cdots, u_{s}, v_{1}, \cdots, v_{s}\right)
$$

has the homotopy type of the one point union of u_{j} spheres of dimension p_{j} and v_{j} spheres of dimension $q_{j}, j=1, \cdots, s$. In the sequel we shall often identify the spheres $S_{1}^{p_{1}}$, or $S_{1}^{p_{2}}$ and the interval [1, 2] with their images in $X\left(u_{1}, \cdots, u_{s}, v_{1}, \cdots, v_{s}\right)$. We shall also suppress the arguments u_{1}, \cdots, $u_{s}, v_{1}, \cdots, v_{s}$ and simply write X when no confusion can arise.

The first step in the proof of the Main Theorem is
Theorem 1.2. (i) Let $h: M^{n} \rightarrow S^{n+1}$ be a locally unknotted embedding and suppose the homology of A is as in (*). Then there is an embedding

$$
f: X\left(u_{1}, \cdots, u_{s}, v_{1}, \cdots, v_{s}\right) \rightarrow S^{n+1}
$$

such that A is a regular neighborhood of $f(X)$.
(ii) Conversely iff: $X\left(u_{1}, \cdots, u_{s}, v_{1}, \cdots, v_{s}\right) \rightarrow S^{n+1}$ is an embedding and N is a regular neighborhood of $f(X)$, then

$$
\begin{aligned}
& \text { দ... } 4\left(\natural_{i=1}^{\nu_{1}} S_{i}^{q_{1}} \times B_{i}^{p_{1}+1}\right)
\end{aligned}
$$

where \ddagger denotes boundary connected sum and the B_{i} are balls of the indicated dimensions. Hence $\partial N=M$.

The proof of Theorem 1.2 is given in $\S 2$.
The next step in the proof is
Theorem 1.3. Let $f, g: X\left(u_{1}, \cdots, u_{s}, v_{1}, \cdots, v_{s}\right) \rightarrow S^{n+1}$ be embeddings
and let P and Q be regular neighborhoods of $f(X)$ and $g(X)$ respectively. Then there is a homeomorphism $h: S^{n+1} \rightarrow S^{n+1}$ of degree 1 such that $h(P)=Q$.

The proof of Theorem 1.3 is given in $\S 3$.
The final important step in the proof of the Main Theorem is
Theorem 1.4. Let

$$
f: X\left(u_{1}, \cdots, u_{s}, v_{1}, \cdots, v_{s}\right) \rightarrow S^{n+1}
$$

and

$$
g: X^{\prime}\left(u_{1}^{\prime}, \cdots, u_{\mathrm{s}}^{\prime}, v_{1}^{\prime}, \cdots, v_{\mathrm{s}}^{\prime}\right) \rightarrow S^{n+1}
$$

be embeddings and let P and Q be regular neighborhoods of $f(X)$ and $g\left(X^{\prime}\right)$ respectively. In order that there be a homeomorphism $h: S^{n+1} \rightarrow S^{n+1}$ of degree 1 such that $h(\partial P)=\partial Q$ it is necessary and sufficient that $u_{j}+v_{j}=u_{j}^{\prime}+v_{j}^{\prime}$, $j=1, \cdots, s$ and that one of the following be true:
(i) If n is odd, $u_{j}=u_{j}^{\prime}$ and $v_{j}=v_{j}^{\prime}, j=1, \cdots, s$; or $u_{j}=v_{j}^{\prime}$ and $v_{j}=u_{j}^{\prime}$, $j=1, \cdots, s$.
(ii) If n is even and $p_{s} \neq n / 2, u_{j}=u_{j}^{\prime}$ and $v_{j}=v_{j}^{\prime}, j=1, \cdots, s$; or $u_{j}=v_{j}^{\prime}$ and $v_{j}=u_{j}^{\prime}, j=1, \cdots, s$.
(iii) If n is even and $p_{s}=n / 2, u_{j}=u_{j}^{\prime}$ and $v_{j}=v_{j}^{\prime}, j=1, \cdots, s-1$; or $u_{j}=v_{j}^{\prime}$ and $v_{j}=u_{j}^{\prime} j=1, \cdots, s-1$.

Proof. We prove only case (i) since the proofs of (ii) and (iii) are similar.
Suppose there is a homeomorphism $h: S^{n+1} \rightarrow S^{n+1}$ of degree 1 such that $h(\partial P)=\partial Q$. Then ∂P and ∂Q have isomorphic homology and since, by 1.2, $H_{p_{j}}(\partial P)$ is free abelian of rank $u_{j}+v_{j}$ while $H_{p_{j}}(\partial Q)$ is free abelian of rank $u_{j}^{\prime}+v_{j}^{\prime}, u_{j}+v_{j}=u_{j}^{\prime}+v_{j}^{\prime}, j=1, \cdots, s$. Also since h is a homeomorphism and ∂P and ∂Q separate S^{n+1} into two components, either $h(P)=Q$ or $h(P)=$ $S^{n+1}-Q^{\circ}$. If $h(P)=Q$, a simple argument using the homology of P and Q shows that $u_{j}=u_{j}^{\prime}$ and $v_{j}=v_{j}^{\prime}, j=1, \cdots, s$. If $h(P)=S^{n+1}-Q^{\circ}$, an equally simple argument using, the homology of P and $S^{n+1}-Q^{\circ}$, and 1.1 shows that $u_{i}=v_{i}^{\prime}$ and $v_{i}=u_{i}^{\prime}, i=1, \cdots, s$.

Suppose now that (i) holds. Then if $u_{j}=u_{j}^{\prime}$ and $v_{j}=v_{j}^{\prime}, j=1, \cdots, s$, X and X^{\prime} are homeomorphic and there is a homeomorphism $h: S^{n+1} \rightarrow S^{n+1}$ of degree 1 with $h(\partial P)=\partial Q$ by 1.3. Suppose $u_{j}=v_{j}^{\prime}$ and $v_{j}=u_{j}^{\prime}, j=1, \cdots, s$. Then by 1.1, $H_{p_{j}}\left(S^{n+1}-Q^{\circ}\right)$ and $H_{q_{j}}\left(S^{n+1}-Q^{\circ}\right)$ are free abelian of ranks u_{j} and v_{j}, respectively, $j=1, \cdots, s$; for $H_{p_{j}}(\partial Q)$ and $H_{q_{j}}(\partial Q)$ are abelian of rank $u_{j}^{\prime}+v_{j}^{\prime}$ by 1.2 and $H_{p_{j}}(Q)$ and $H_{q_{j}}(Q)$ are free abelian of ranks u_{j}^{\prime} and v_{j}^{\prime} respectively. Hence by 1.2 there is an embedding

$$
g^{\prime}=X\left(u_{1}, \cdots, u_{s}, v_{1}, \cdots, v_{s}\right) \rightarrow S^{n+1}
$$

such that $S^{n+1}-Q^{\circ}$ is a regular neighborhood of $g^{\prime}(X)$. Another application of 1.3 gives the homeomorphism h.

We are now ready to give the
Proof of the Main Theorem. Since any homeomorphism $h: S^{n+1} \rightarrow S^{n+1}$ of
degree 1 is ambient isotopic to the identity, Theorems 1.2-1.4 establish a one to one correspondence between elements of Pseudo-Iso (M^{n}, S^{n+1}) and sequences of integers $u_{1}, \cdots, u_{s}, v_{1}, \cdots, v_{s}, 0 \leq u_{j} \leq r_{j}, 0 \leq v_{j} \leq r_{j}$, $j=1, \cdots, s$ satisfying only the relations $u_{j}+v_{j}=r_{j}, j=1, \cdots, s$, and (i), (ii), or (iii) of 1.4. A simple calculation completes the proof.

2. Proof of Theorem 1.2

Throughout this section let $X=X\left(u_{1}, \cdots, u_{s}, v_{1}, \cdots, v_{s}\right), X_{1}=S^{p_{1}} \subset X$ if $u_{1} \geq 1$ and $X_{1}=S_{1}^{p_{2}} \subset X$ if $u_{1}=0, X_{2}=X-\left(X_{1} \cup[1,2]\right)$. The proof of Theorem 1.2 requires some lemmas to which we now turn.

Lemma 2.1. Let $f: X \rightarrow S^{n+1}$ be an embedding and let N be a regular neighborhood of $f(X)$ in S^{n+1}. Then there exists regular neighborhoods N_{i} of $f\left(X_{i}\right)$ in N, $i=1,2$, and a ball $B^{n+1} \subset N$ such that
(i) $N_{1} \cap N_{2}=\emptyset$,
(ii) $N_{i} \cap B$ is a face of B in $\partial N_{i}, i=1,2$,
(iii) $N=N_{1} \cup B \cup N_{2}$.

Proof. By the uniqueness of regular neighborhoods it suffices to prove the lemma in one case. Therefore let ($J ; K, K_{1}, K_{2}, L$) be a triangulation of $\left(S^{n+1} ; f(X), f\left(X_{1}\right), f\left(X_{2}\right), f[1,2]\right)$ with K, K_{1}, K_{2} and L full in J and let

$$
\begin{gathered}
N=\bigcup_{v \in K^{\prime}} \text { st }\left(v, J^{\prime \prime}\right), \\
N_{i}=\bigcup_{v \in K_{i}^{\prime}} \text { st }\left(v, J^{\prime \prime}\right), \quad i=1,2, \\
B=\bigcup_{v \in L^{\prime}-(f(1) \cup f(2))} \text { st }\left(v, J^{\prime \prime}\right)
\end{gathered}
$$

where the single (double) prime denotes a first (second) derived complex and st $\left(v, J^{\prime \prime}\right)$ is the closed star of the vertex v in $J^{\prime \prime}$. Then N, N_{1}, and N_{2} are regular neighborhoods of $f(X), f\left(X_{1}\right)$, and $f\left(X_{2}\right)$ respectively, and $N_{1} \cap N_{2}=\emptyset$. But also B is a regular neighborhood of the complex L_{1} obtained from L^{\prime} by deleting $f(1), f(2)$, and the open 1 -simplices σ_{1}, σ_{2} containing these points. Thus, since L_{1} is either a point or homeomorphic to a closed interval, L_{1} is collapsible and B is a ball.

Now $N_{1} \cap B=\mathrm{U}\left(\right.$ st $\left.\left(v, J^{\prime \prime}\right) \cap \mathrm{st}\left(w, J^{\prime \prime}\right)\right)$ where the union runs over all vertices $v \in K_{1}^{\prime}$ and $w \in L^{\prime}-(f(1) \cup f(2))$. Since $v, w \in J^{\prime}$, st $\left(v, J^{\prime \prime}\right) \cap$ st $\left(w, J^{\prime \prime}\right)$ $\neq \emptyset$ if and only if v and w span a 1 -simplex of J^{\prime}. But if $v=\hat{\sigma}$ and $w=\hat{\tau}$ where $\sigma, \tau \in J$ and $\hat{\sigma}(\hat{\tau})$ is the point of $\sigma^{\circ}\left(\tau^{\circ}\right)$ at which $\sigma(\tau)$ is starred in forming J^{\prime}, then v and w span a 1 -simplex of J^{\prime} if and only if $\tau<\sigma$ or $\sigma<\tau$ where $<$ means "is a face of".

Suppose $\tau<\sigma$. Then since a point of τ°, namely $w=\hat{\tau}$, is in $L^{\prime}-\left(f(1) \cup f(2), \tau \in L\right.$. Similarly $\sigma \in K_{1}$. Thus $\tau \in K_{1} \cap L$ and since $K_{1} \cap L=f(1), \tau=f(1)$. Hence $w=\hat{\tau}=f(1) \notin L^{\prime}-(f(1) \cup f(2))$ which is a contradiction. Thus $\sigma<\tau$.

By an argument similar to the one above $\sigma=f(1)$. Therefore since $\sigma<\tau \epsilon L$ and since L is a triangulation of $f([1,2]), \tau$ is a 1 -simplex of J.

Finally since $f:[1,2] \rightarrow S^{n+1}$ is an embedding there is a unique 1 -simplex τ of L with $f(1)<\tau$. Thus

$$
B \cap N_{1}=s t\left(f(1), J^{\prime \prime}\right) \cap \mathrm{st}\left(\hat{\tau}, J^{\prime \prime}\right)
$$

which is just the cell B^{n} dual to the 1 -simplex of J^{\prime} spanned by $f(1)$ and $\hat{\tau}$. Since it is clear that $B^{n} \subset \partial B$ and $B^{n} \subset \partial N_{1}$, (ii) holds for $N_{1} \cap B$. Similarly (ii) holds for $N_{2} \cap B$. Since (iii) follows from the construction of N, N_{1}, N_{2}, and B, the proof of the lemma is complete.

Corollary 2.2. Let $f: X \rightarrow S^{n+1}$ be an embedding and let N be a regular neighborhood of $f(X)$ in S^{n+1}. Then

$$
\begin{aligned}
N=\left(\vdash_{i=1}^{u_{1}} S_{i}^{p_{1}} \times B^{q_{1}+1}\right) \text { q } & \cdots \nmid\left(\natural_{i=1}^{u_{s}} S_{i}^{p_{s}} \times B^{q_{s}+1}\right) \\
& \text { q }\left(\natural_{i=1}^{v_{s}} S_{i}^{q_{s}} \times B^{p_{s}+1}\right) \natural \cdots \nvdash\left(\vdash_{i=1}^{v_{1}} S_{i}^{q_{1}} \times B^{p_{1}+1}\right) .
\end{aligned}
$$

Proof. The proof is by induction on $r=u_{1}+\cdots+u_{s}+v_{s}+\cdots+v_{1}$. If $r=1$, since $p, q \geq 2$ the corollary follows from Zeeman's unknotting theorem [8].

Suppose the corollary is true (for) $(r-1)$. In the lemma then $N_{1}=S_{1}^{p_{1}} \times B^{q_{1}+1}\left(\right.$ or $S_{1}^{p_{2}} \times B^{q_{2}+1}$ if $\left.u_{1}=0\right)$ by [8] and

$$
\begin{aligned}
N_{2}=\left(\vdash_{i=2}^{u_{1}} S_{i}^{p_{1}} \times B^{q_{1}+1}\right) \natural & \cdots\left(\vdash_{i=1}^{u_{s}} S_{i}^{p_{s}} \times B^{q_{s}+1}\right) \\
& \text { দ }\left(\varphi_{i=1}^{v_{s}} S_{i}^{q_{s}} \times B^{p_{s}+1}\right) \text { দ } \cdots\left(\vdash_{i=1}^{v_{1}} S_{i}^{q_{1}} \times B^{p_{1}+1}\right) .
\end{aligned}
$$

The corollary then follows from 2.1 and the definition of the boundary connected sum.

Lemma 2.3. Let M^{n} be an orientable manifold and $B_{i} \subset M^{\circ}, i=1,2$, be n-balls. Let $P \subset M-\left(B_{1} \cup B_{2}\right)$ be a polyhderon which does not disconnect M. If $h: B_{1} \rightarrow B_{2}$ is a homeomorphism of degree 1 , then there is a homeomorphism $k: M \rightarrow M$ isotopic to 1_{M} extending h such that $k \mid P=1_{P}$ where $1_{M}, 1_{P}$ denote the identity maps of M and P.

Proof. This is Theorem 3 of [2].
Lemma 2.4. Let M^{n} be an orientable manifold and let $B_{i} \subset \partial M, i=1,2$, be $(n-1)$ balls with $B_{1} \cap B_{2}=\emptyset$. If $h: M \rightarrow M$ is a homeomorphism of degree 1 , then there is a homeomorphism k of M isotopic to h such that $k \mid B_{i}=1_{B_{i}}$, $i=1,2$.

Proof. By 2.3 since $h^{-1} \mid h\left(B_{1}\right): h\left(B_{1}\right) \rightarrow B_{1}$ is of degree 1 , there is a homeomorphism $k_{1}: \partial M \rightarrow \partial M$ isotopic to $1_{\partial M}$ with $k_{1}\left|h\left(B_{1}\right)=h^{-1}\right| h\left(B_{1}\right)$. Let

$$
K: \partial M \times[0,1] \rightarrow \partial M \times[0,1]
$$

be an isotopy between k_{1} and $1_{\partial M}$ and extend k_{1} to a homeomorphism $k_{1}^{\prime}: M \rightarrow M$ by setting $k_{1}^{\prime}=K$ on a collar around ∂M and $k_{1}^{\prime}=$ identity outside the collar. Clearly k_{1}^{\prime} is isotopic to 1_{M}.

By a second application of 2.3, there is a homeomorphism $k_{2}: \partial M \rightarrow \partial M$ isotopic to $1_{\partial M}$ such that $k_{2}\left|k_{1} h\left(B_{2}\right)=\left(k_{1} h\right)^{-1}\right| B_{2}$ and $k_{2} \mid B_{1}=1_{B_{1}}$. Extend k_{2} to a homeomorphism $k_{2}^{\prime}: M \rightarrow M$ isotopic to 1_{M} as above. Letting $k=k_{2}^{\prime} k_{1}^{\prime} h$ completes the proof.

Lemma 2.5. Let $V=\natural_{i=1}^{r} S^{q} \times B^{p}$ where $p \geq 3$ and $q \geq 2$. Then any automorphism $\sigma: H_{q}(V) \rightarrow H_{q}(V)$ can be realized by a homeomorphism $h: V \rightarrow V$.

Proof. Let $e_{1}, \cdots, e_{r} \in H_{q}(V)$ be the system of generators corresponding to the zero sections $S_{i}^{q} \times 0 \subset S_{i}^{q} \times B_{i}^{p} \subset V, i=1, \cdots, r$, and let R, S, and $T_{i}, i=1, \cdots, r-1$, be the automorphisms of $H_{q}(V)$ satisfying $R\left(e_{1}\right)=$ $-e_{1}, R\left(e_{j}\right)=e_{j}, j \neq 1 ; S\left(e_{1}\right)=e_{1}+e_{2}, S\left(e_{j}\right)=e_{j}, j \neq 1$; and $T_{i}\left(e_{i}\right)=e_{i+1}$, $T_{i}\left(e_{i+1}\right)=e_{i}, T_{i}\left(e_{j}\right)=e_{j}, j \neq 1, i+1$. We prove the lemma first for σ equal R, S, or T_{i}. To simplify the proof in these cases, we assume without loss of generality that in $V,\left(S_{i}^{q} \times B_{i}^{p}\right) \cap\left(S_{j}^{q} \times B_{j}^{p}\right)=C_{i, j}$ is a $(p+q-1)$ ball in $\partial\left(S_{i}^{q} \times B_{i}^{p}\right) \cap \partial\left(S_{j}^{q} \times B_{j}^{p}\right)$ if $j=i-1$ or $i+1$, and is empty if $j \neq i-1, i, i+1$.

Suppose that $\sigma=R$. Let $f: S_{1}^{q} \rightarrow S_{1}^{q}$ and $g: B_{1}^{p} \rightarrow B_{1}^{p}$ be homeomorphisms of degree -1 . Then $f \times g: S_{1}^{q} \times B_{1}^{p} \rightarrow S_{1}^{q} \times B_{1}^{p}$ has degree 1 and by the proof of 2.4 , there is a homeomorphism $k: S_{1}^{q} \times B_{1}^{p} \rightarrow S_{1}^{q} \times B_{1}^{p}$ such that $k \mid C_{1,2}=1_{c_{1,2}}$. Then k extends to a homeomorphism $h: V \rightarrow V$ by setting h equal to the identity outside $S_{1}^{q} \times B_{1}^{p}$. Clearly h realizes R.

Suppose that $\sigma=S$ and that $V=S_{1}^{q} \times B_{1}^{p}$ \& $S_{2}^{q} \times B_{2}^{p}$. Let $a:[1,2] \rightarrow V$ be an embedding such that $a([1,2]) \cap\left(S_{i}^{q} \times 0\right)=a(i), i=1,2$; and let

$$
K=S_{1}^{q} \times 0 \cup S_{2}^{q} \times 0 \cup a([1,2])
$$

Let $N \subset V^{\circ}$ be a regular neighborhood of K. Then by the proof of 2.1, $N=N_{1}$ บ D u N_{2} where $N_{i}=S_{i}^{q} \times B^{p}$ is a regular neighborhood of $S_{i}^{q} \times 0$ in $V, i=1,2 ; N_{1} \cap N_{2}=\emptyset ; D$ is a $(p+q)$ ball; and $D \cap N_{1}$ is a face of D in $\partial N_{i}, i=1,2$.

Let $B^{p}=E_{1}^{p}$ ч E_{2}^{p} where $E_{i}^{p} i=1,2$ are balls such that $E_{1}^{p} \cap E_{2}^{p}$ is a common face. Then there is a homoemorphism $f: S^{q} \times B^{p} \rightarrow S_{2}^{q} \times B_{2}^{p}$ such that $C_{1,2} \subset f\left(S^{q} \times E_{1}^{p}\right)$ and such that $f\left(S^{q} \times 0\right)$ represents e_{2}. Then

$$
\left(S_{1}^{q} \times B_{1}^{p}\right) \cup f\left(S^{q} \times E_{1}^{p}\right)=V^{\prime}
$$

is homeomorphic to V. Thus by Irwin's Theorem [5], there is an embedding $g_{1}: S^{q} \rightarrow V$ with $g_{1}\left(S^{q}\right) \subset V^{\circ \prime}$ which represents $e_{1}+e_{2}$. Let M_{1} be a regular neighborhood of $g_{1}\left(S^{q}\right)$ in $V^{\circ \prime}$. Then since V^{\prime} embeds in S^{p+q} (i.e., in codimension 0), M_{1} is also a regular neighborhood of $g_{1}\left(S^{q}\right)$ in S^{p+q}. Since $p \geq 3$, [8, Theorem 2] implies that M_{1} is homeomorphic to $S^{q} \times B^{p}$. Let $h_{1}: N_{1} \rightarrow M_{1}$ be a homeomorphism of degree 1 such that $h_{1} \mid S_{1}^{q} \times 0=g_{1}$.

Now let $g_{2}: S^{q} \quad V$ be the composite

$$
S^{q}=S^{q} \times 0 \subset S^{q} \times E_{2} \xrightarrow{h} V
$$

By an argument similar to the one above there is a homeomorphism $h_{2}: N_{2} \rightarrow M_{2}$ of degree 1 such that $h_{2} \mid S_{2}^{q} \times 0=g_{2}$ where $M_{2} \subset V^{\circ}$ is a regular neighborhood of $g_{2}\left(S^{q}\right)$ not meeting M_{1}.

Let $x_{i} \in\left(N_{i} \cap D\right)^{\circ} i=1,2$ and let

$$
b:[1,2] \rightarrow \overline{V-\left(M_{1} \cup M_{2}\right)}=W
$$

be an embedding such that $b(i)=h_{i}\left(x_{i}\right) i=1,2$. Let D^{\prime} be a regular neighborhood of $b([1,2])$ in W which meets ∂W regularly. Then D^{\prime} is a $(p+q)$ ball and it follows from regular neighborhood theory (see, for example [3, Lemma 2.19]) that we can assume that $D^{\prime} \cap \partial M_{i}=h_{i}\left(N_{i} \cap D\right) i=1,2$. Now since $h_{i} \mid N_{i} \cap D$ is of degree 1 , it is easy to see that these maps can be extended to a homeomorphism $h_{3}: D \rightarrow D^{\prime}$.

Let $h_{4}: N_{1}$ บ D ч $N_{2} \rightarrow M_{1}$ ч D^{\prime} u M_{2} be the homeomorphism obtained by patching h_{1}, h_{2}, and h_{3} together. Then h_{4} has degree 1. Finally since

$$
\overline{V-\left(N_{1} \cup D \cup N_{2}\right)} \quad \text { and } \overline{V-\left(M_{1} \cup D^{\prime} \cup M_{2}\right)}
$$

are both homeomorphic to $\partial V \times[0,1]$ by the H-cobordism theorem, h_{4} can be extended to a homeomorphism $h: V \rightarrow V$ of degree 1 .

If $V=\natural_{i=1}^{r} S_{i}^{q} \times B_{i}^{p}$ with $r \geq 2$, we can use the proof of 2.4 to assume that the homeomorphism h constructed above leaves $C_{2,3}$ pointwise fixed. Then h can be extended to a homeomorphism of V by setting $h(x)=x$ if

$$
x \notin\left(S_{1}^{q} \times B_{1}^{p}\right) \cup\left(S_{2}^{q} \times B_{2}^{p}\right)
$$

It follows from the construction that h realizes S.
Suppose $\sigma=T_{i}$ and let $V^{\prime}=S_{i}^{q} \times B_{i}^{p} \ddagger S_{i+1}^{q} \times B_{i+1}^{p} \subset V$. Then there is obviously a homeomorphism $k: V^{\prime} \rightarrow V^{\prime}$ of degree 1 that interchanges $S_{i}^{q} \times B_{i}^{p}$ and $S_{i+1}^{q} \times B_{i+1}^{p}$. By 2.4, there is such a homeomorphism with

$$
k \mid C_{i-1,1} \cup C_{i, i+1}
$$

the identity. Extend k to a homeomorphism $h: V \rightarrow V$ by setting $h(x)=x$ if $x \in V-V^{\prime}$ and $h \mid V^{\prime}=k$. Then h realizes T_{i}.

The lemma now follows by noting that R, S, and $T_{i} i=1, \cdots, r-1$ generate Aut $\left(H_{q}(V)\right)$.

Corollary 2.6. Any system of generators $g_{1}, \cdots, g_{r} \in H_{q}(V)$ can be represented by embeddings $f_{i}: S^{q} \rightarrow V$ with mutually disjoint images, $i=1, \cdots, r$.

Remark. It is easy to see that each g_{i} can be represented by an embedded q-sphere. It is the mutual disjointness which requires some effort to prove.

Proof of 2.6. Let $e_{1}, \cdots, e_{r} \epsilon H_{q}(V)$ be the set of generators described above and let σ be the automorphism of $H_{q}(V)$ that sends e_{i} to $g_{i}, i=1, \cdots, r$. Then σ can be realized by a homeomorphism h of V. Therefore since the $e_{i} i=1, \cdots, r$ can be represented by mutually disjoint embedded q-spheres, so can the $g_{i}, i=1, \cdots, r$.

We are now ready for the
Proof of Theorem 1.2. The key step in the proof is to show that if $e_{1}, \cdots, e_{r} \in \widetilde{H}_{*}(A)$ generate $\widetilde{H}_{*}(A)$, where $r=u_{1}+\cdots+u_{s}+v_{1}+\cdots+v_{s}$ and $\tilde{H}_{*}(A)$ denotes the reduced homology of A, then these generators can be represented by mutually disjoint spheres embedded in A°. (Note that since $\tilde{H}_{*}(A)$ is of rank r this is a minimal system of generators.) In proving this key step we distinguish between the generators of dimension $\leq p_{s}$ and the generators of dimension $>p_{s}$.

Let $e_{1}, \cdots, e_{t} \in \tilde{H}_{*}(A)$ be the generators of $\tilde{H}_{*}(A)$ of dimension $\leq p_{s}$. Thus $t=u_{1}+\cdots+u_{s}$ if $p_{s} \neq q_{s}$, and $t=u_{1}+\cdots+u_{s}+v_{s}$ if $p_{s}=q_{s}$. Since $\tilde{H}_{*}(M)$ maps onto $\tilde{H}_{*}(A)$ and since every class in $\tilde{H}_{*}(M)$ is spherical, every class in $\widetilde{H}_{*}(A)$ is spherical. Thus there are maps $f_{i}: S_{i}^{p_{j}} \rightarrow A$, $i=1, \cdots, u_{j} ; j=1, \cdots, s$ (or if $p_{s}=q_{s}, i=1, \cdots, u_{s}+v_{s}$ for $j=s$) representing the generators $e_{1} \cdots, e_{t}$. By Irwin's results [5], we may assume that the f_{i} are embeddings. Since $\operatorname{dim} A \geq 2 p_{s}+1$, these embeddings can be made mutually disjoint by general position arguments.

Suppose now that $f_{i}: S_{i} \rightarrow A^{\circ} i=1, \cdots, t$ are embeddings with mutually disjoint images representing the generators $e_{1}, \cdots, e_{t} \in \tilde{H}_{*}(A)$ of dimension less than m where $m \geq p_{s}$ and that N_{1}, \cdots, N_{t} are mutually disjoint regular neighborhoods of the images. Let $e_{t+1}, \cdots, e_{t+w} \in H_{m}(A)$ be the generators of dimension m. (Note that $w=v_{j}$ if $m=q_{j}$).

If some care is exercised in forming the connected sum, it is clear that the embeddings $S_{i}^{q_{j}}=x_{i} \times S_{i}^{q_{j}} \subset S_{i}^{p_{j}} \times S_{i}^{q_{j}}$ where $x_{i} \in S_{i}^{p_{j}}$ yield embeddings $S_{i}^{q_{j}} \rightarrow M^{n}, i=1, \cdots, r_{j}$, representing a system of generators of $H_{q_{j}}(M)$ which are mutually disjoint. Use a collar of M in

$$
A-\left(N_{\mathbf{i}}^{\circ} \cup \cdots \cup N_{t}^{\circ}\right)=A^{\prime}
$$

to obtain embeddings $g_{i}: S^{q_{j}} \rightarrow A^{\circ \prime}$ with mutually disjoint images, $i=1, \cdots, r_{j}$. Now let $y_{i} \in g_{i}\left(S^{q_{j}}\right), i=1, \cdots, r_{j}$, be any point and let $a_{i}:[i, i+1] \rightarrow A^{\circ}, i=1, \cdots, r_{j}-1$, be an embedding such that

$$
a_{i}([i, i+1]) \cap g_{k}\left(S^{q_{j}}\right)=y_{i}
$$

if $k=i, y_{i+1}$ if $k=i+1$, and is empty otherwise. Since $\operatorname{dim} A \geq 6$, it is possible to select the embeddings a_{i} such that $a_{i}([i, i+1]) \cap a_{k}([k, k+1])$ is y_{i} if $k=i-1$, is y_{i+1} if $k=i+1$, and is empty if $k \neq i-1, i, i+1$. Thus the embeddings $g_{i}, i=1, \cdots, r_{j}$, and $a_{i}, i=1, \cdots, r_{j}-1$, fit together to give an embedding $g: X\left(r_{j}\right) \rightarrow A^{\prime}$.

Let N be a regular neighborhood of $g\left(X\left(r_{j}\right)\right)$ in $A^{\circ \prime}$. Then N is also a regular neighborhood of $g\left(X\left(r_{j}\right)\right)$ in S^{n+1}. Hence by 2.2,

$$
N=\mathfrak{q}_{i=1}^{r} S_{i}^{q_{j}} \times B^{p_{j}+1}
$$

Since the inclusion $M \subset A$ induces an epimorphism $H_{q_{j}}(M) \rightarrow H_{q_{j}}(A)$, it follows from the construction of N, that $H_{q_{j}}(N) \rightarrow H_{q_{j}}(A)$ is also an epimorphism. Now let $e_{1}^{\prime}, \cdots, e_{r_{j}}^{\prime} \in H_{q_{j}}(N)$ be a set of generators such that e_{i}^{\prime} projects to $e_{t+i} \in H_{q_{j}}(A)$ for $i=1, \cdots, v_{j}$ and to 0 otherwise. But 2.6 shows
that $e_{i}^{\prime}, \cdots, e_{r_{j}}^{\prime}$ can be represented by mutually disjoint embedded q_{j} spheres in N. Hence, there are embeddings $f_{i}: S_{i}^{q_{j}} \rightarrow A^{\circ}, i=t+1, \cdots, t+v_{j}$ representing $e_{t+1}, \cdots, e_{t+v_{j}}$ whose images are mutually disjoint and do not meet any of the other embedded spheres $f_{i}\left(S_{i}\right), i=1, \cdots, t$.

By induction, therefore, there are embeddings $f_{i}: S_{i} \rightarrow A^{\circ}$ representing e_{i}, $i=1, \cdots, r$, with mutually disjoint images. The embedding

$$
f: X\left(u_{1}, \cdots, u_{s}, v_{1} \cdots, v_{s}\right) \rightarrow A^{\circ}
$$

is obtained from the f_{i} by an argument similar to the one used above to construct the embedding $g: X\left(r_{j}\right) \rightarrow A^{\circ \prime}$. Note that it follows from the construction of f that $f_{*}: H_{*}(X) \rightarrow H_{*}(A)$ is an isomorphism.

Now let N be a regular neighborhood of $f(X)$ in A°. Then $\pi_{1}(\partial N)=0$ by 2.2 . Since $\pi_{1}(A)$ and $\pi_{1}(N)$ also vanish, it follows from Van Kampen's Theorem that $\pi_{1}\left(A-N^{\circ}\right)=0$. But also $H_{i}\left(A-N^{\circ}, \partial N\right)=H_{i}(A, N)=0$ for all i since f_{*} is an isomorphism. Hence the inclusion $\partial N \subset A-N^{\circ}$ is a homotopy equivalence. Since $\pi_{1}(M)=0$ and $H_{i}\left(A-N^{\circ}, M\right)=0$ by Lefschetz duality, the inclusion $M \subset A-N^{\circ}$ is also a homotopy equivalence. Hence by the H-Cobordism Theorem, $A-N^{\circ} \approx \partial N \times I$ and A is a regular neighborhood of $f(X)$. Thus (i) holds. Since (ii) follows from 2.2, the proof is complete.

3. Proof of Theorem 1.2

Before turning to the proof of Theorem 1.3, we fix our notation and prove two lemmas. In this section $X=X\left(u_{1} \cdots, u_{s}, v_{1}, \cdots, v_{s}\right)$ and if $u_{1} \geq 1$, $X_{1}=S_{1}^{p_{1}} \subset X$ and $X_{2}=X-\left(X_{1} \cup[1,2)\right)$.

Lemma 3.1. Let $u_{1} \geq 1$. Let $f: X \rightarrow S^{n+1}$ be an embedding and let $N\left(N_{2}\right)$ be a regular neighborhood of $f(X)$ in $S^{n+1}\left(f\left(X_{2}\right)\right.$ in $\left.N^{\circ}\right)$. Then there is an embedding $f^{\prime}: X \rightarrow N$ and a ball $B^{n+1} \subset S^{n+1}$ such that
(i) $\quad N$ is a regular neighborhood of $f^{\prime}(X)$ in S^{n+1}; and
(ii) $f\left(X_{1}\right) \subset B$ and $B \cap N_{2}=\emptyset$.

Proof. Since N (respectively N_{2}) collapses to X (respectively X_{2}) and $u_{1} \geq 1$, the exact sequence of the pair (N, N_{2}) shows that $H_{i}\left(N, N_{2}\right)=Z$ if $i=p_{1}$ and 0 if $i \neq p_{1}$. By Theorem 1.1, $H_{p_{1}-1}\left(\partial N_{2}\right)=0$. Thus in the commutative diagram

$$
\begin{aligned}
& H_{p_{1}}\left(\partial N_{2}\right) \xrightarrow{i_{3^{*}}} H_{p_{1}}\left(S^{n+1}-N_{2}^{\circ}\right)
\end{aligned}
$$

the top two rows are exact. Note that $k_{3^{*}}$ is an isomorphism by excision and that $k_{1^{*}}$ and $i_{3^{*}}$ are epimorphisms by Lemma 2.1. A diagram chase then shows that there is a class $x \in H_{p_{1}}\left(N-N_{2}^{\circ}\right)$ such that $k_{4^{*}} x=0$ and $j_{1^{*}} k_{2^{*}} x$ is a generator of $H_{p_{1}}\left(N, N_{2}\right)$. Hence by the exactness of the top row, $H_{p_{1}}(N)$ is generated by the image of $i_{1^{*}}$ and $k_{2^{*}} x$.

The embedding $f^{\prime}: X \rightarrow N$ is now obtained by noticing that since $N-N_{2}^{\circ}$ is ($p_{1}-1$)-connected, x is spherical and can be represented by an embedding $g: S^{p_{1}} \rightarrow\left(N-N_{2}^{\circ}\right)^{\circ}$; by setting $f^{\prime}\left|S_{1}^{p_{1}}=g, f^{\prime}\right| X_{2}=f \mid X_{2}$; and by extending f^{\prime} over the interval [1, 2] $\subset X$ as in the proof of 1.2 . Then clearly $f_{*}^{\prime}: H_{i}(X) \rightarrow H_{i}(N)$ is an isomorphism if $i \neq p_{1}$ and has image generated by the image of $i_{1^{*}}$ and $k_{2^{*}} x$. Thus $f_{*}^{\prime}: H_{p_{1}}(X) \rightarrow H_{p_{1}}(N)$ is an epimorphism. Since both of these groups are free abelian on u_{1} generators, this implies that f_{*}^{\prime} is an isomorphism in dimension p_{1} also. Then (i) follows from the H-Cobordism Theorem.

To prove (ii), we notice first that $S^{n+1}-N_{2}^{\circ}$ is $\left(p_{1}-1\right)$-connected. Thus since $k_{4^{*}} x=0$, the composite embedding

$$
g: S^{p_{1}} \rightarrow N-N_{2}^{\circ} \subset S^{n+1}-N_{2}^{\circ}
$$

is null homotopic. Since $q_{1} \geq 2$, the codimension of this embedding is ≥ 3 ($n=p_{1}+q_{1}$). The proof of the engulfing theorem [3, Theorem 7.4, p. 163] then shows that there is a ball $B^{n+1} \subset S^{n+1}-N_{2}^{\circ}$ such that

$$
f^{\prime}\left(X_{1}\right)=g\left(S^{p_{1}}\right) \subset B^{n+1}
$$

proving (ii).
Lemma 3.2. Let $u_{1} \geq 1, n \geq 5$ and let $f, g: X \rightarrow S^{n+1}$ be embeddings such that $f\left|X_{i}=g\right| X_{i}, i=1,2$; and let P, Q be regular neighborhoods of $f(X)$ and $g(X)$ respectively. Then there is a homeomorphism $h: S^{n+1} \rightarrow S^{n+1}$ of degree 1 such that $h(P)=Q$.

Proof. By altering the embeddings $f \mid[1,2]$ and $g \mid[1,2]$ if necessary, we may assume that $f([1,2]) \cap g([1,2])$ consists of the two points $f(1)=g(1)$ and $f(2)=g(2)$. (Since S^{n+1}, P, and Q have dimension ≥ 6, it is always possible to alter f and g in this way.) Hence $f \mid[1,2]$ and $g \mid[1,2]$ combine to give an embedding $e: S^{1} \rightarrow S^{n+1}$. Let $H: S^{1} \times I \rightarrow S^{n+1}$ be an embedding with $H \mid S^{1} \times 0=e$ and

$$
H\left(S^{1} \times 1\right) \subset S^{n+1}-\left(f\left(X_{1}\right) \cup f\left(X_{2}\right)\right)
$$

(Clearly such an embedding H exists.) Then since $S^{n+1}-\left(f\left(X_{1}\right)\right.$ ч $\left.f\left(x_{2}\right)\right)$ is simply connected, $H \mid S^{1} \times 1$ extends to a map

$$
H^{1}: B^{2} \rightarrow S^{n+1}-\left(f\left(X_{1}\right) \text { u } F\left(X_{2}\right)\right)
$$

Again since $n+1 \geq 6$, we may assume that H^{1} is an embedding and that

$$
H\left(S^{1} \times I\right) \cap H^{1}\left(B^{2}\right)=H\left(S^{1} \times 1\right)
$$

Thus H and H^{1} fit together to give an embedding $G: B^{2} \rightarrow S^{n+1}$ with

$$
G\left(\partial B^{2}\right)=f([1,2]) \cup g([1,2])
$$

Let B^{n+1} be a regular neighborhood of $G\left(B^{2}\right)$ relative to $f\left(X_{1}\right)$ u $f\left(X_{2}\right)$. Then B^{n+1} is a ball [4, Lemma 1]; and

$$
f \mid[1,2]:[1,2] \rightarrow B^{n+1} \quad \text { and } g \mid[1,2]:[1,2] \rightarrow B^{n+1}
$$

are proper embeddings. By the unknotting of balls in balls [8], then, there is a homeomorphism $h_{1}: B^{n+1} \rightarrow B^{n+1}$ of degree 1 such that

$$
h_{1} f([1,2])=g([1,2]) \quad \text { and } \quad h_{1} \mid \partial B^{n+1}=\text { identity } .
$$

Extend h_{1} to a homeomorphism of S^{n+1} by setting $h_{1}=$ identity outside B^{n+1}. Clearly h_{1} has degree 1. Then since $f\left(X_{i}\right) \cap B^{n+1}=f(i)$ and $g\left|X_{i}=f\right| X_{i}$. $i=1,2, h_{1} f(X)=g(X)$. Thus $h_{1}(P)$ is a regular neighborhood of $g(X)$. By the uniqueness of regular neighborhoods, then, there is a homeomorphism $h_{2}: S^{n+1} \rightarrow S^{n+1}$ of degree 1 with $h_{2}\left(h_{1}(P)\right)=Q$. Letting $h=h_{2} h_{1}$ completes the proof.

We turn now to the
Proof of Theorem 1.3. The proof is by induction on the number

$$
r\left(=u_{1}+\cdots+u_{s}+v_{1}+\cdots+v_{s}\right)
$$

of spheres in $X\left(u_{1}, \cdots, u_{s}, v_{1}, \cdots, v_{s}\right)$. If $r=1$, the theorem follows from [8, Theorem 2] and the uniqueness of regular neighborhoods. Suppose the theorem is true for $(r-1)$ spheres and let X contain r spheres. There are now two cases.

Case I. $\quad X=X\left(u_{1}, \cdots, u_{s}, v_{1}, \cdots, v_{s}\right)$ with $u_{1} \geq 1$. In this case we assume without loss of generality that f and g satisfy (i) and (ii) of 3.1 and that as in $2.1, P=P_{1} \cup C \cup P_{2}, Q=Q_{1} \cup D \cup Q_{2}$ where $P_{1}\left(Q_{1}\right)$ is a regular neighborhood of $f\left(X_{1}\right)\left(g\left(X_{1}\right)\right) ; P_{2}\left(Q_{2}\right)$ is a regular neighborhood of $f\left(X_{2}\right)\left(g\left(X_{2}\right)\right) ; C$ and D are balls; and $P_{1} \cap P_{2}=\emptyset\left(Q_{1} \cap Q_{2}=\emptyset\right)$. Since P_{1} collapses to $f\left(X_{1}\right)$ and there is an $(n+1)$ ball B_{1} with $f\left(X_{1}\right) \subset B_{1}$ we may engulf P_{1} in B_{1} and assume by [3, Lemma 7.1] that $P_{1} \subset B_{1}$. Furthermore we may assume that $B_{1} \cap P_{2}=\emptyset$. Similarly we assume that there is an $(n+1)$ ball B_{2} with $Q_{1} \subset B_{2}$ and $B_{2} \cap Q_{2}=\emptyset$.

Now by 2.3, there is a homeomorphism $h_{1}: S^{n+1} \rightarrow S^{n+1}$ of degree 1 with $h_{1}\left(B_{1}\right)=B_{2}$. By the induction hypothesis there is a homeomorphism $h_{2}: S^{n+1} \rightarrow S^{n+1}$ of degree 1 with $h_{2} h_{1}\left(P_{2}\right)=Q_{2}$. We assert that h_{2} can be chosen such that $h_{2} \mid B_{2}=$ identity; for if $h_{2} \mid B_{2} \neq$ identity, then since Q_{2} does not disconnect S^{n+1} and $Q_{2} \subset S^{n+1}-\left(B_{2} \cup h_{2}\left(B_{2}\right)\right)$ by 2.3 there is a homeomorphism $k: S^{n+1} \rightarrow S^{n+1}$ of degree 1 such that $k \mid Q_{2}=$ identity and $k \mid h_{2}\left(B_{2}\right)=h_{2}^{-1}$. Thus

$$
k h_{2} h_{1}\left(P_{2}\right)=k\left(Q_{2}\right)=Q_{2} \quad \text { and } \quad k h_{2} \mid B_{2}=h_{2}^{-1} h_{2}=\text { identity } .
$$

Replacing h_{2} by $k h_{2}$ verifies the assertion. Similarly since $S^{n+1}-B_{2}^{\circ}$ is an $(n+1)$ ball, there is a homeomorphism $h_{3}: S^{n+1} \rightarrow S^{n+1}$ of degree 1 such that $h_{3} h_{1}\left(P_{1}\right)=Q_{1}$ and $h_{3} \mid S^{n+1}-B_{2}^{\circ}$ is the identity. Thus if $h^{\prime}=h_{3} h_{2} h_{1}$, $h^{\prime}\left(P_{1}\right)=Q_{1}$ and $h^{\prime}\left(P_{2}\right)=Q_{2}$.

Define an embedding $f^{\prime}: X \rightarrow h^{\prime}(P)$ by setting $f^{\prime}\left|X_{i}=g\right| X_{i}, i=1,2 ;$ and letting $f^{\prime} \mid[1,2]$ describe a path in $h^{\prime}(P)$ between $g(1)$ and $g(2)$ not meeting $g\left(X_{1}\right)$ บ $g\left(X_{2}\right)$. Since $h^{\prime}\left(P_{i}\right)=Q_{i}$ collapses to $g\left(X_{i}\right), i=1,2$, it is easy to check that $f^{\prime}: X \rightarrow h^{\prime}(P)$ is a homotopy equivalence and that $h^{\prime}(P)$ is therefore a regular neighborhood of $f^{\prime}(X)$. But then by 3.2 there is a homeomorphism $h_{4}: S^{n+1} \rightarrow S^{n+1}$ of degree 1 such that $h_{4} h^{\prime}(P)=Q$. Letting $h=h_{4} h^{\prime}$ completes the proof of Case I.

Case II. $X=X\left(u_{1}, \cdots, u_{s}, v_{1} \cdots, v_{s}\right)$ with $u_{1}=0$. Then since

$$
\partial P=\left(\#_{i=1}^{r_{1}} S_{i}^{p_{1}} \times S_{i}^{q_{1}}\right) \# \cdots \#\left(\#_{i=1}^{r_{e}} S_{i}^{p_{i}} \times S_{i}^{q_{e}}\right),
$$

it follows from 1.1 and 1.2 that there are embeddings

$$
f^{\prime}, g^{\prime}: X\left(u_{1}^{\prime}, \cdots, u_{s}^{\prime}, v_{1}^{\prime}, \cdots, v_{s}^{\prime}\right) \rightarrow S^{n+1}
$$

such that $S^{n+1}-P^{\circ}\left(S^{n+1}-Q^{\circ}\right)$ is a regular neighborhood of $f^{\prime}(X)\left(g^{\prime}(X)\right)$ where $u_{j}^{\prime}=r_{j}-u_{j}$ and $v_{j}^{\prime}=r_{j}-v_{j}, j=1, \cdots, s$. Therefore since $u_{1}^{\prime} \geq 1$ there is, by Case I, a homeomorphism $h: S^{n+1} \rightarrow S^{n+1}$ of degree 1 such that $h\left(S^{n+1}-P^{\circ}\right)=S^{n+1}-Q^{\circ}$. But then $h(P)=Q$ completing the proof of Case II and the theorem.

Bibliography

1. R. Z. Goldstein, Piecewise linear unknotting of $a S^{p} \times S^{q}$ in S^{p+q+1}, Mich. Math. J., vol. 14 (1967), pp. 405-415.
2. V. K. A. M. Gugenheim, Piecewise linear isotopy and embeddings of elements and spheres (I), Proc. London Math. Soc., vol. 3 (1953), pp. 29-53.
3. J. F. P. Hudson, Piecewise linear topology, Lecture Notes, University of Chicago, 1967.
4. J. F. P. Hudson and E. C. Zeeman, On regular neighborhoods, Proc. London Math. Soc. (3), vol. 14 (1964), pp. 719-745.
5. M. C. Irwin, Combinatorial embeddings of manifolds, Bull. Amer. Math. Soc., vol. 68 (1962), pp. 25-27.
6. A. Kosinski, "On Alexander's theorem and knotted spheres" in Topology of 3-manifolds and related topics, Prentice-Hall, Englewood Cliffs, N. J., 1962, pp. 55-57.
7. C. T. C. Wall, Unknotting tori in codimension one and spheres in codimension two, Proc. Cambridge Philos. Soc., vol. 61 (1965), pp. 659-664.
8. E. C. Zeeman, Unknotting combinatorial balls, Ann. of Math., vol. 78 (1963), pp. 501-526.

Northwestern University
Evanston, Illinois

[^0]: Received October 4, 1968.
 ${ }^{1}$ During the preparation of this paper the author was partially supported by a Na tional Science Foundation grant.

