ON ¢-GENERATING FUNCTIONS AND CERTAIN FORMULAS
OF DAVID ZHTLIN'

BY
H. M. SRIVASTAVA

1. Introduction
Recently, Zeitlin [12] proved the generalized formula
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where as well as in what follows, for the sake of brevity,
AUV) = U@VE)/VE)! — Ul),

and if

(1.2) Elf]l = Xiad'/nl, Gl = Xoeogn ", gn 0,
then R, (z) is defined by the generating function

(1.3) E[M @)G1Q (x)") = 2 =0 (t"/n )R ()

and explicitly,
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provided M (z) # 0 and @ (x) # O are real functions, and p = 1,2,3, --- .
When M (z) = z,p = 2and Q(z) = 1 (@® — 1), (1.1) reduces to the result
(2.9) derived earlier by Chaudhuri [4, p. 553]. On the other hand, a choice of
2% for M (x), where « is a free parameter, sets (1.1) as the special case A\ = 0
of our recent formula (2.9) in [11, p. 455].
It may be of interest to extend (1.1) and certain other results in [11] and
[12] to the following form:

TareoreM 1. Let E[2] and G[2] be defined as in (1.2), and let
(1.5) E[M (2)"|GIQ ()] = 2na0 (/N + 1)2)¥Y (2),

where M (z) 5 0, Q(x) #= 0 are real functions, and m, p are positive integers.
Then
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(B (M ™ ()
Received September 19, 1968.

1 Presented at the 654th meeting of the American Mathematical Society at Los
Angeles, California on March 23, 1968; cf. Notices Amer. Math. Soc., vol. 15 (1968),
p. 341, Abstract 654-17.
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and
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For A = 0, (1.6) reduces to Zeitlin’s result (1.1) when m = 1, and it gives
us his more general formula (6.2) in [12] in the special case A = 0. Also when

= 1, a choice of z* for M (z) will set (1.6) and (1.7) equivalent, respec-
tively, to the formulas (2.9) and (2.10) in [11, p. 455].

2. Proof of Theorem 1
Setting ¢ = [Q(y)]""z in (1.5), we have
E(M(2)[Q(y)]™72")GlQ(2) Q(y)2"]

(2.1) QU™ Loy
- nZ-O W+ l)n\Ijg\ @7,

which, on interchanging = and y, gives us
E(M()1Q(x)]""Z")G1Q(x)Q(y)2"]

(2:2) = [Q()]"” "
= ;0 m‘l’g)(y)z .

From (2.1) and (2.2) it follows that
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and on equating coefficients of 2" from both sides we obtain the desired result
(1.6). A reversal of the order of summation in (1.6) will then yield the
formula (1.7).

3. Generating functions for ¥ (z)

In our generating function (1.5) if we replace ¢ by z"'™, multiply both sides
by 2 'E[—2], and take their Laplace transforms, using the elementary integral

fo £ B =] dz = T(E)7™, Re (§) > 0, Re (n) >0,
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we shall obtain

TreorEM 2. If ¥ () are generated by (1.5), then for arbitrary v,

R IO e (1) A,
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A special form of Theorem 2 appears in Example 21, p. 186 in [10], with
M) =2,Q@) =2 —1,m = 1,p = 2, which, in turn, extends Theorem
46, p. 134 of [10].

Form = 1, (3.1) assumes the form?

= s (0 [y ])
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where
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and
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It is not difficult to give a direct proof of (3.2). Indeed from (3.3)we
notice that, for arbitrary »,
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and (3.2) follows immediately.
The role of Theorem 2 lies in the fact that, if G[z] is a specified hypergeo-

2 It may be of interest to note that in a subsequent paper (Yokohama Math. J., vol.
17 (1969), pp. 65-71) the author gave a generalization of the generating function (3.2).
For other generalizations, including those that would involve polynomial systems in
several complex variables, one may refer to his forthcoming papers (Proc. Nat. Acad.
Sci. U.S.A., vol. 67 (1970), pp. 1079-1080; J. Math. Anal. Appl., vol. 34 (1971); ete.).
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metric function, it gives for ¥ (z) a class (v being arbitrary) of generating
functions involving a hypergeometric function of superior order. For instance,
on comparing the ultraspherical generating function

(34) E[t]loFil—; « + 1; 3@ — 1)f] = 2520 "/ Qe + 1)) (2)

with (1.5), weget M (z) = 2, Q(x) = 2(@* — 1),m = 1,p = 2, A = 2a,
=1/ml(a+ 1),,and ¥ ) = €3 (z), and our theorem yields
1 1
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(3.5) | a4+ 1;
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= 2 Ga T D, Cor 5 (x)t,
a formula due to Brafman [1, p. 945].
Similarly as an immediate consequence of Theorem 2, we can derive the
divergent generating function for generalized Hermite polynomials of Gould
and Hopper [6, p. 58] in the form

v v—l—l’”v—l—r—l. -I
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and since
(3.7) g 2z, —1) = Ha(2),
(3.6) reduces to Brafman’s formula [1, p. 948]
1 1 1
s sv+5 2
- 27 2 2’ 4¢
(1 - zxt) oFo Z‘l-—__—w
(3.8) -

Z_:o (V)n H, ( ) rd
for Hermite polynomials. Another interesting specialization of (3.6) will
yield a class of generating functions for certain polynomials, analogous to the
Hermite polynomials, introduced by Carlitz [3].

In general, if we give ([z] the hypergeometric form

I PRI
Glel = "F’[Bl, Bz]
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and for the sake of simplicity, let m = 1, so that (1.5) becomes

(39) E[M(x)t],,F.,[gll,“”:;:;Q( )t,,] 3

_n _ (=1 _ (a—ptl) ceaif —p\?
-p+pF,[ p’ p P $o ’“"’( (Z)> Q(x)];
Bl"",ﬁa;

then Theorem 2 gives us
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for arbitrary parameter », and p = 1,2,3, -+

Known special cases of (3.10) include Chaundy’s result (25), p. 62 in [5],
where M () = 1,Q(z) = —z, p = 1, and the relatively recent formula (55),
p. 187 in [2], where M (z) = 1,Q (z) = (—p) "z, which, in turn, reduces to the
equation (24), p. 947 of [1] when p = 2.

Next we consider the double series

- o _ ) (= )\—n) z\*
kzo_'g(x+1)n‘1'%°(”) /:(x+1),.‘1'9( )Z k( t—>’

The inner series on the right is a binomial when A = 0, and we thus have

PR o~ (t+ 2)"
L S @) = Lt @)

k=0

= E[M(z)(t + 2)"GIQ(2) (t + 2)7]
i Z [M(x)] [Q( )] n w:zi;:.p (vm ']'(I;- np) tvm+’np—kzk

n=0 y=0

< - = n (vm + np) ! [M(2)¢")
;klnglzl k[Q(xM gnz(m+np k)‘ o1 ,

and, therefore, on equating coefficients of 2*/k !, we obtain

Treorem 3. If ¥.(x) are generated by (1.5) with N = 0, then for
k=012,---,
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© n © no—k
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4. Recurrence relations for v (2)
If we set
F(x,t) = E[M (x)"]G[Q (x)t"]
and take first partial derivatives, we obtain

4.1) AF Jox = "M’ (x)F (z, t) + Q' (x)E[M (2)i"1G'[Q (z)t7]
and
(4.2) OF/ot =mi™ M (x)F (z, t) + pt*"'Q (x)E[M (z)"|G'[Q (x )],
whence it follows that
(4.3) pQ(x)dF/3x — tQ' (x)oF /ot = {"[pQ (x)M' (x) — mQ’ (x)M (x)]F (x,1).
Since
Gle] = 2imokogi 2,
therefore on equating coefficients of " in (4.1), (4.2), and (4.3), we have the
following result:

TueoreM 4. If ¥ (x) is defined by (1.5), then for n = m,

= ¥P(@) = (=)™ (=X = n)n M (2) ¥ ()
(44) [n/2]

= I; kgk[Q(m)]k‘lQ/(x)O\ +1), [M(x)](’n—kp)lm

[(n — kp)/m]V’

V(@) ~ 2 (=)"(=N = ) M (2)¥ 20 (2)

(4.5) [n/p] .
- ,; PkgilQ(2)1* (A + 1), [M(2)]

[(n — kp)/m] !’

PQ @)3 (¥ (x))/9z — nQ (2)¥ (x)

= (=) (=) = n)nlpQ@)M (@) — mQ' ()M (@)} ().
The last result readily yields
W) 2 T 9
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=0+ Da + Dn
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and
@) 3 s L e
48) - Q@) Z —(——)—-—~ e ® ()

M)m
+ ¢ [pQ(w)M (z) — mQ' (z)M (2)] Z e (z),

where N = m.

The special cases m = 1, N = 0 of these results appear in [12, p. 1060].
Form =p =1, =0, (4.5) and (4.6) reduce to relations satisfied by Appell
polynomials, with M () = =z, @(x) = 1, while (4.4), (4.5), and (4.6) cor-
respond to known formulas for the polynomials generated by E[t]G[xt] (cf.
[10, p. 132]) if we set M (z) = 1, Q(x) = =z.

5. Further extensions
Since
E[ME[M (2)t"]G1Q(2)t]
(5.1) od & [n/m] A+ n\ (mk)! )
TENF 1),.[ ,; < mk ) T - V(o )]
from (1.5) and (1.6) it follows that
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(,)(::;)]""‘"J = ( N 4+ mn ) (mn — mk) !
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.[[1 + M@NQWI™? =1 + M (y)][Q(96)]"‘“’]”_'c
[Q()]m»
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In view of these relations it seems worthwhile to prove the following general
result on lines parallel to those of Theorem 1.
TrEOREM 5. Let E|2] and G[z] be defined by (1.2), and let
(6.5) E[M @)" 4+ N @)16Q@)f) = 2iee "/ (\ + 1))82 (@),

where M (z), N (z), and Q(x) # 0 are real functions, and 1, m, p are positive
integers.

Then
) B Q(x) nlp mk+lj<n A+ )
(5.6) Sw) = [Q_@] kiz0  \mk + lj) (mk + 1)1
' oMY Bus(NQY g s
k! ]! n—mk—1i\Y )+

6. The basic analogue

Following Jackson [9] and Hahn [8] let the basic binomial [a + b], abbreviate
the n-rank product

(@+b)(a+ gb)(a+ gb) - - (@+¢"), gl <1,
so that since

la + bl = d" [1 -+ %:L = [a + blia(a + ¢"7'b);

it follows that

@ + bl =1
and

[@a+blw=1/(@+bg) -+ (@+bg ™) = ¢***™Vp™/[1 + aq/bl..
Also let [7, p. 6]
[a] = 1—-gHA =g -1 =¢™ = ¢,

k -9 -¢@) - 0-¢  [T—gk ’
and denoting the g-exponential function by
(6.1) ellz] = limpaw 1/[1 — 2le = Dneo2”/[1 — glu,
we have

ed2l/els] = Z:ﬂ) 2 — ¢h/l1 — gl

The method of proof of Theorem 1 can now be invoked to establish the
following g-analogue of Theorem 5 of the preceding section.

THEOREM 6. With e,[z] defined by (6.1) and G[z] by (1.2), let
(6.2) €M, (@)t lelN, (@)1GIQ @)E] = 2oneo (/11 — ¢]a)Sem (),

where M, (x) and N,(x) depend, in general, on both the base q and the argu-
ment z, | q| < 1,Q(x) % 0 is a real function, and I, m, p are posisive integers.
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Wy Q)T M [ AN +n B ‘
520 = [ SIS A ] = da
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0 =g =g Senmeii¥):

For N,(z) — 0 the last theorem will provide us with a basic analogue of
Theorem 1. On the other hand, if M, (z), N, (z), and 8 () are replaced by
1 — ¢)M(&), @ — ¢)N(zx) and 1 — ¢)"SP (2) respectively, its limiting
case when ¢ — 1 gives us Theorem 5.

It may be of interest to remark that the analysis of §§3 and 4 when applied
to the generating function (5.5) and its g-analogue (6.2) in a rather straight-
forward manner will lead us to the generalizations of Theorems 2, 3, and 4.

Then

(6.3)
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Henry W. Gould for helpful discussions during the course of the present
investigation.
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