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1. Introduction

Recently, Zeitlin [12] proved the generalized formula

LO(y) J -0

where s well s in wht follows, for the ske of brevity,

h(VV) V(x)[V(y)/Y(x)]- V(y),
nd if

(1.2) E[z] :-o z"/n , G[z] :-o g, z", g, O,

then R (x) is defined by the generating function

(1.3) ElM ()t]GIQ (x)t] 7-0 (t"/n )R. ()

and explicitly,

[X ln--kP(1.4) R.(x) (n V(n kp) )[Q(z)][M
provided M (x) 0 nd Q (x) 0 re real functions, nd p 1, 2, 3, ....
When M (x) x, p 2 nd Q (x) (x 1 ), (1.1) reduces to the result

(2.9) derived erlier by Chudhufi [4, p. 553]. On the other hnd, choice of
x for M (x), where a is free prmeter, sets (1.1) as the speciM cse X 0
of our recent formul (2.9) in [11, p. 455].

It my be of interest to extend (1.1) nd certain other results in [11] nd
[12] to the following form:

TEoaE 1. Let E[z] and G[z] be defined as in (1.2), and

(.5) [M()][()] : ("/(x + ).) (z),

where M (x ) O, Q (x ) 0 are real functions, and m, p are positive integers.
Th

(1.6)

[AI,(MQ)Jl’-’T’,,,’) (y)
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and

(1.7) (y)-..] k--o mk ]

[5,/(MQ)]

For ), 0, (1.6) reduces to Zeitlin’s result (1.1) when m 1, and it gives
us his more general formula (6.2) in [12] in the special case ), 0. Also when
m 1, a choice of x" for M (x) will set (1.6) and (1.7) equivalent, respec-
tively, to the formulas (2.9) and (2.10) in [11, p. 455].

2. Proof of Theorem

Setting [Q(y)]l/z in (1.5), we have

E(M x) [Q(y ]"/z")G[Q(x Q(y z]

which, on interchanging x and y, gives us

E(M(y) [Q(x)]mz)G[Q x)Q(y)z]

[Q(Y)]"/I,
.-0 (x + T): (x)m,

[Q(x)]
--o (k + 1),,

(x)(y)z".

From (2.1) and (2.2) it follows that

E([M(x)[Q(y)]"/ M(y)[Q(x)]’n/’]z)
[Q(x)]" )
(x +

nd on equating coefficients of z" from both sides we obtain the desired result
(1.6). A reversM of the order of summation in (1.6) will then yield the
formula (1.7).

3. Generatin9 fnctions for T)(x)
In our generating function (1.5) if we replace by tz/, multiply both sides

by z"-E[-z], und tuke their Luplace transforms, using the elementary integrM

z-E[ z]dz F( )v-, Re Re> 0, > 0,
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we shall obtain

THEOREM 2. If) (X) are generated by (1.5), then for arbitrary

[1 M(x)t’]-"H Q(x)
1 M(x)t"i.]

(3.1)
F(. if- n/m) t,@)(x)

provided
H (z) :-.o F O’ "+- np/m)gn z (g, O)

A special form of Theorem 2 appears in Example 21, p. 186 in [10], with
M (x) x, Q (x) x 1, m 1, p 2, which, in turn, extends Theorem
46, p. 134 of [10].

For m 1, (3.1) assumes the form

(3.2)

where

(3.3)

[1- M(x)t]-’J (Q(x) [1- M(x)tl)
0 (x + ) (x),

J (z) :0 () gn z (g 0)

I1 (X q- 1), gk[Q(x)]k[M(x)],_,.R)(x)
(n kp)I

Indeed from (3.3) weIt is not difficult to give a direct proof of (3.2).
notice that, for arbitrary ,,
.=0 (X 1).

tR)(x)
[nl]

(). t%[Q(x)] [M(x)P--o o (n kp)

() t%[Q(x)] ( + p). [M(x)t]

[1 M(z)]-’ . ()" [()]
1 M()

and (a.2) follows immediagely.
he role of heorem 2 lies in ghe faeg ghag, if G[e] is a specified hypergeo-
Ig may be of ingeresg go noe ghag in a subsequeng paper (Yokohama Magh. J., ol.

17 (1969), pp. 6-71) ghe aughor gave
or ogher generaliagions, including ghose ghag would involve polynomial sysgems in
several complex ariables, one may refer go his forgheoming apers (Proe. Nag. ead.
Sei. U.S.A., vol. 67 (1970), pp. 1079-1080; J. Magh. Anal. Appl., ol. 84 (1971); ege.).
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metric function, it gives for )(x) a class ( being arbitrary) of generating
functions involving a hypergeometric function of superior order. For instance,
on comparing the ultraspherical generating function

(3.4) E[xt] oFI[- a + 1; 1/4 (x 1)t2] =0 (t’/(2a + 1),)C+1/ (x)

with (1.5), we get M (x) x, Q (x)
g 1In (a + 1 ),, and) (x) C:+1/ (x), and our theorem yields

(3.5)
(1 xt)-F - - (x 1)

(1 xt)
a-bl;

a formulu due to Brafman [1, p. 945].

x)t,

Similarly as an immediate consequence of Theorem 2, we can derive the
divergent generating function for generalized tIermite polynomials of Gould
and Hopper [6, p. 58] in the form

(3.6)

-bl +r--1

(1 xt)-rFo r r rt
1 x .h

and since

(3.7) g,,(2x,--1) H,,(x),

(3.6) reduces to Brafman’s formula [1, p. 948]

(3.8)

.-o -. g(x, h)t,

(1- 2xt)-Fo - 4t
(1 2xt)

-, ---n.
()’ H,(x)t’*

for Hermite polynomials. Another interesting specialization of (3.6) will
yield a class of generating functions for certain polynomials, analogous to the
Hermite polynomials, introduced by Carlitz [3].

In general, if we give G[z] the hypergeometric form

O/p; ZIG[z] oF, f, "",
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and for the sake of simplicity, let m 1, so that (1.5) becomes

Ia, "’’, a;Q(x)t,l= [M(x)t]’(3.9) E[M(x)t] pF
1, "", ,-o n

then Theorem 2 gives us

(3.10) [1 M(x)t]

v+l v+p--1
o+F P P

,a, ,a; pt

1,
1-- M(x)t

Q(x)

(v), [M(x)t]

for arbitrary parameter v, and p 1, 2, 3,
Known special cases of (3.10) include Chaundy’s result (25), p. 62 in [5],

where M (x) 1, Q(x) -x, p 1, and the relatively recent formula (55),
p. 187 in [2], whereM (x) 1, Q (x) (-p)-x, which, in turn, reduces to the
equation (24), p. 947 of [1] when p 2.
Next we consider the double series

EEi (x + i)kO

(x) ,’ t,

,+k(x)
=0 (X + 1)

*’() 2] (- ) .
The inner series on the right is a binomial when X 0, and we thus have

E[M(x) (t + z)’]G[Q(x) (t + z)]

[M(x)] [Q(x)],g,, vm + np

(m + np)! [M(x)#]"t"-[Q(x)]"g.
(m+ np- k)E . ,-o

nd, therefore, on equating coefficients of z/lc , we obtain

TOM 3.
O, 1,

Yf n(X) are generated by (1.5) with X O, then for
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(3.11)

t ,+(x)=
n-0 ,-q/] (np k)

(np) [Q(x)]%,

np 1 np- 2 np + m
-----’ m ’’"’ m

F, M(x)t

[np--.-t--1,np-k,-[-2 np-k-t-m
m m

4. Recurrence relations for I,) (x)
If we set

F (x, t) E[M (x)t’]G[Q (x)t]

and take first partial derivatives, we obtain

(4.1) OF/Ox t"M’ (x )F (x, t) + tQ (x)E[M (x )t’lG’[Q (x )t1
and

(4.2) OF/Ot =mt’-lM (x )F (x, t) + pt-iQ (x )ElM (x )t’]G’[Q (x )t],
whence it follows that

(4.3) pQ (x)OF/Ox tQ’ (x)OF/Ot t’[pQ (x)M’ (x) mQ’ (x)M (x)]F (x, t).
Since

G’[z] -okg z-,
therefore on equating coefficients of in (4.1), (4.2), and (4.3), we have the
following result:

TEOtEM 4. If) (X) is defined by (1.5), then for n >- m,

(4.4)

(4.5)

(4.6)

The last result readily yields

0 i,) (x)pQ(x) - (h -- 1) 0-
t" (n + m)-’-(x)(4.7) Q’(x)

-o (h + 11,
,+(x)

+ [p()’() m’()M()]. (x + )



pQ(x) ,ffi-" (-x n),
(_) nt)(x)(4.8) Q’(x)

(-k n)

+ t[pQ(x)M’(x) mQ(x)M(x)] t’() (x),
where N m.
The special cases m 1, k 0 of these results appear in [12, p. 1060].

For m p 1, 0, (4.5) and (4.6) reduce to relations satisfied by Appell
polynomials, with M (x) x, Q (x) 1, while (4.4), (4.5), and (4.6) cor-
respond to known formulas for the polynomials generated by E[t]G[xt] (cf.
[10, p. 132]) if we set M (x) 1, Q (x) x.

5. orthr
Since

E[t]E[M(x)t]G[Q (x ]

from (1.5) nd (1.6) it follows that

V()T’’ + ( ),.
LJ =o mn mk) (n k)!

(5.2)

.[1 + M(x)][Q(y)]’"- [1 + M(y)][Q(x)]"-[Q(x)W

{ x + m (m
"-0Em mi/ ( ). (u);

and since

E[M x)t]G[Q x ]
(5.3)

,=o (k + 1), ,=o (k + 1),_ ’-*

our formula (1.6) gives us

kO

(5.4)
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In view of these relations it seems worthwhile to prove the following general
result on lines parallel to those of Theorem 1.

THEOREM 5. Let E[z] and G[z] be defined by (1.2), and let

(5.5) E[M (x )t + N (x )t]G[Q (x )t] 7--o (t’/ (X + 1 ),)S (x ),

where M (x), N (x), and Q(x) 0 are real functions, and l, m, p are positive
integers.

Then

(5.6)
..] ,_o mk -b

[A/(MQ)] [A,/v(NQ)] .(x)*-’,-,-y(Y)"
j

6. The basic analogue

Following Jackson [9] and Hahn [8] let the basic binomial [a -t- b], abbreviate
the n-rank product

so that since
(a + b)(a + qb)(a W q:b) (a W q’-lb),

bj -I- -t-
q

[a W b], a [a b],-l(a q-lb);

it follows that
[a-4-b]0 1

and

[a - b]_, 1/(a + bq-) (a + bq-) q(I/2)’("+l)b-’/[1 - aq/b].

Also let [7, p. 6]

[al (1- q")(1- q"-l)... (1- q"-+)=[1- q"-+]
L.l (1- q)(1 q) (1 q) [1 q]

and denoting the q-exponential function by

(6.1) eq[z] lim_., 1/[1 z] -":=0z"/[1 q],,

we have
eq[z]/e[] ’-,o [z i’ll/J1 q].

The method of proof of Theorem 1 can now be invoked to establish the
following q-analogue of Theorem 5 of the preceding section.

THEORE 6. With eq[z] defined by (6.1) and G[z] by (1.2), let

(6.2) eq[Mq (x)t"]eq[Nq (x)t]G[Q (x)t] :-0 (t/[1 _x+ .q() (x)
where Mq (x and Nq (x depend, in general, on both the base q and the argu-
ment x, q] < 1, Q (x ) 0 is a real function, and l, m, p are posisive integers.
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Then

(6.3)
.q()(x) LQ(Y) .] ,o m + l;

.[1 q]+.

[1 q] [1 q]i
q’n--iY)"

For Nq (x) -. 0 the last theorem will provide us with a basic analogue of
Theorem 1. On the other hand, if Mq (x), Nq (x), and Sq(, (x) are replaced by
(1 q)M(x), (1 q)N(x) and (1 q)"S (x) respectively, its limiting
case when q - 1 gives us Theorem 5.

It may be of interest to remark that the analysis of 3 and 4 when applied
to the generating function (5.5) and its q-analogue (6.2) in a rather straight-
forward manner will lead us to the generalizations of Theorems 2, 3, and 4.

Acknowledgment. The author wishes to thank his colleague, Professor
Henry W. Gould for helpful discussions during the course of the present
investigation.
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