
EX-HOMOTOPY THEORY

BY

This is the first of a series of studies ef a generalization of ordinary homotopy
theory. The basic notion is simple enough and seems to have occurred more
or less simultaneously to others as well as myself. I understand that Heller
and Hodgkin, independently, have given applications to the Eilenberg-Moore
spectral sequence. Also McLendon [4] has announced a generalization of the
Adams spectral sequence on these lines. My own work is directed towards
applications of a different type. Some of these are contained in [], to which
the present note is closely related. Others will be given subsequently.

1. Basic notions

Let B be a space. By an ex-space (over B) we mean a triple (X, , p),
where X is a space and

B X P------B
are maps such that p 1. Normally it will be sufficient to denote the ex-
space by X. We refer to as the section, to p as the projection. Together
they constitute an ex-structure on the total space X over the base space B.
Notice that B can always be regarded as an ex-space over itself, with p 1 .
We refer to this as the trivial ex-space over the given base.
We describe an ex-space X as proper ifB is a closed subspace of X. When

this condition is satisfied we can embed B in X, by means of , so that p con-
stitutes a retraction. Instead of regarding B as a retract of X we regard X
as an "extract" of B. This change of view opens up the prospect of the fol-
lowing development.
We shall outline a theory which reduces to ordinary homotopy theory when

B is a point. The generalization proceeds on formal lines, for the most part;
whenever we meet a basepoint, in the ordinary theory, we replace it by B,
using the section and proiection in an appropriate way.

Starting from the given base space we have begun to construct a new
category out of the category of topological spaces. The obiects in the new
category are ex-spaces. We now define the morphisms. Let X (i 0, 1)
be an ex-space over B with section and proiection p. By an ex-map
f X0 --+ X1 we mean an ordinary map such that

(1.1) fo 1, pf po,
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as shown in the following diagram"

Xo

X
By ghe rivil e-map of X go X we mean o, which sagisfies (1.1) since
oe-- 1. Note ghat the eomposigion of any ex-map wigh a grivial ex-map, on
eigher side, is again a rivial ex-map. Thus ghe eagegory of ex-spaees and
ex-maps is a pointed eagegory. The equivalences in ghe category will be
called ex-homeomorphisms.
Let X be an ex-space with section a and projection p. We describe a

subspace X’ of X as admissible if it contains the image of . Under this
condition we can regard X’ as an ex-space, with section a’ obtained by re-
stricting the codomain of , and projection p’ obtained by restricting the
domain of p. We refer to this as the relative ex-strueture and to X’, with
this ex-structure, as a subspace of the ex-space X. Note that the inclusion
map X’ -+ X is an ex-map.

Let X" be the space obtained from X by identifying points of X’ which have
the same image under the projection. When X’ is admissible we can give X"
ex-structure so that the natural projection X -- X" is an ex-map. We denote
the ex-space thus obtained by X/X’ and refer to X" as the ex-space obtained
from X by collapsing X’. When X’ aB, in particular, we have X" X.

In our category products are defined as follows. Let X (i O, 1) be an
ex-space over B. The direct product Xo X X is the subspace of the ordinary
topological product consisting of pairs (x0, x) such that p0 x0 p x, with the
section a and projection p given by

ab (ob, b) (be B)

(o, ) oo x (, X,).

The inverse product, or wedge sum, Xo /X, can be defined as the subspace of
the direct product consisting of pairs (xo, x,) such that xo aop, x, or
x a po xo. Structural ex-maps

Xo -- Xo X --* X, Xo --* Xo V X -- Xare defined in the obvious way. The smash product Xo/ X is defined to be
the ex-space obtained from Xo X by collapsing Xo /X. Direct, inverse
and smash products of ex-maps are similarly defined.



326 I. M, JAMES

If X is an ex-space over B then the structural ex-maps constitute ex-
homeomorphisms X X B --+ X -- X /B. Moreover X/ B is ex-homeo-
morphic to B.

Pull-backs and push-outs are also defined in our category. Thus let
X, X (i 0, 1 be ex-spaces, over B, and letf X -+X be an ex-map. Then
the pull-back X’ of (f0, fl) is defined to be the subspace of the direct product
ex-space X0 X X1 consisting of pairs (x0, x) such that f0 x0 fl xl, where
x e X. The structural ex-maps of the direct product determine, by restric-
tion, ex-maps gi" X’ - Xi, with the appropriate formal properties to com-
plete the pull-back structure. Push-outs are similarly defined, using the
inverse rather than the direct product.
The basic procedure we have followed can be applied to any category (.

Having chosen an object B of e we define the corresponding ex-category es
of ex-objects and ex-morphisms. The ex-category is pointed, in any case.
If e admits pull-backs and direct products, or push-outs and inverse products,
then , does the same. If is a pointed category, moreover, then functors
from into are defined by taking the direct or inverse product with B.
Although these functors are not unimportant in the topological case, more
interesting functors into the category of ex-spaces can be defined as follows.
Let G be a compact Lie group with identity e, and let A be a completely

regular space. Suppose that G acts on A as a topological transformation
group. Then we describe A as a G-space. The image of x e A under g e G
will be denoted by g.x. We describe A as a pointed G-space if A is a pointed
space, in the ordinary sense, such that

(1.2) g. x0 x0 (g e G)

where x0 e A is the basepoint. For example the sphere S is a pointed 0 (n)-
space, provided the basepoint is taken to be one of the poles.
We adopt the basic terminology of G-spaces, as given in [5], with appropriate

modifications where the basepoint is concerned. Thus if A (i 0, 1) is a
pointed G-space then a pointed G-map f A0 --* A means an ordinary pointed
map such that

(1.3) f (g. x) go f (x) (g e G, x e Ao).

This condition is satisfied when f is constant. Hence the category of pointed
G-spaces and pointed G-maps is a pointed category. The direct or inverse
product of pointed G-spaces is defined in the obvious way.
Now let P be a principal G-bundle with base space B. Given a pointed

G-space A, consider the associated bundle E over B with A as fibre. Since
(1.2) is satisfied we have a canonical cross-section of E, defined as in (9.3) of
[7], and so E determines an ex-space P. (A) over B. Moreover let f A0 --* A
be a pointed G-map, where A (i 0, 1) is a pointed G-space. Let E denote
the associated bundle with fibre A. The bundle map E0 --* E associated
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with f respects the canonical cross-sections and hence determines an ex-map

P,(f) P,(Ao) ---, P,(A1).

Thus P, constitutes a functor from the category of pointed G-spaces to the
category of ex-spaces over B. Moreover P, respects the direct and inverse
products in the sense that the transform of the product is naturally ex-
homeomorphic to the product of the transforms.

2. Ex-homotopy
Let X, Y be ex-spaces, over B. By an ex-homotopy

f, .x-, Y

we mean an ordinary homotopy such that f is an ex-map for all values of t.
We write f0 --- fl, when such an ex-homotopy exists. This defines an equiva-
lence relation, on the set of ex-maps of X into Y, and we denote by r (X, Y)
the set of ex-homotopy classes thus obtained. The class of the trivial ex-
mup is denoted by O.
Let Z be an ex-space, over B. Composition on the left with an ex-map

g" Y --, Z determines a function

g," r(X, Y) -- ,r(X, Z),

while composition on the right with an ex-mapf" X- Y determines a function

f*" (z, z).(Y, Z) --* ,r

Both functions send 0 into 0.
Let E be an ex-space. We say that a sequence of ex-maps

X=- f-)Y g

is exact for ,r (E,) if we have image f, kernel g, in the induced sequence

,r(E, X) f*’, (E, Y)g--q* r(E, Z).

We say that the sequence of ex-maps is exact for r( E) if we have
image g* kernel f* in the induced sequence

f* *
,r(X, E), ,r(Y, E), g r(Z, E).

Similar definitions are made in the case of longer sequences of ex-maps.
Let r (i 0, 1) denote the structural ex-maps of the direct product of

ex-spaces X thus
7r0X0 XoXXX.

An ex-mp h X -- X0 X determines, and is determined by, its component
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ex-maps (r0 h, rl h), where rh :X -- X, and ex-homotopies behave in the
same way. Thus we obtain a natural equivalence. (x, Xo x x,) ,..., ,,-(x, x,,) x ,,-(x, x,).

Similarly in the case of the inverse product we obtain a natural equivalence

, (x0 v x,, x) , (x0, x) x (x,, x).

We say that an ex-map f’X --. Y is an ex-homotopy equivalence if there
exists an ex-map g Y --* X such that fg --- 1, gf

__
1. When such a pair of

ex-maps exists we say that X and Y have the same ex-homotopy type. If X
has the same ex-homotopy type as the base space B, we say that X is ex-con-
tractible. For example, take X to be the total space of a vector bundle over
B, with p the fibration and the zero cross-section. Then f, X --* X con-
stitutes an ex-homotopy where

/,() t (x, tr).

Since f0 is the trivial ex-map and fl is the identity this shows that X is exo
contractible.
By a formal modification of the proof of Lemma 3 of [6] we obtain

LEMMA (2.1). Let X be an ex-space with an admissible sub-space X’.
Suppose that the identity ex-map on X is ex-homotopic to an ex-map whose re-
striction to the ex-space X’ is trivial. Then the natural ex-map X ---+ X/X’
is an ex-homotopy equivalence.

In some cases the set r(X, Y) can be expressed in terms of ordinary
homotopy theory. For example, let C be a space with basepoint co and let
TC denote the ordinary topological product B C with ex-structure given by

p (b, c) b, b (b, c0),

where b B, c C. Let X be any proper ex-space, over B, and let B be em-
bedded in X through the section. Then there is a (1-1)-correspondence be-
tween ex-maps X -. TC and ordinary maps

(X, B) ---> (C, co).

Furthermore there is a (1-1)-correspondence between such maps and maps

(z, z0) - (c, e),

where Z denotes the space obtained from the space X by collapsing .the sub-
space B to the point z0. Similar remarks apply in the case of homotopies and
so r (X, TC) is equivalent to the set of homotopy classes of maps of Z into C
in the ordinary basepoint-preserving sense. Note that Z can be interpreted
as a Thom space whenX is the ex-space associated with a sphere-bundle over B.
As an example, with arbitrary C, take B S" and X TS. Then Z has

the homotopy type of S"+ V S and so r (TS, TC) is equivalent to the set

,.+ (c) . (c).
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A similar analysis can be made of the set r (B /C, Y), for any ex-space Y,
where B /C denotes the ordinary inverse product with the obvious ex-struc-
ture.

Let G be a compact Lie group. The notion of pointed G-homotopy between
pointed G-maps is defined in the obvious way. If P is a principal G-bundle
over B, as in 1, then the functor P. transforms pointed G-homotopies into
ex-homotopies. Hence P. transforms pointed G-homotopy equivalences into
ex-homotopy equivalences.

3. The suspension functor
Let X be a proper ex-space, over B. We embed B in X, by means of the

section , so that the projection p constitutes a retraction of X on B. By the
psuspension of X, in the ex-category, we mean the ex-space (SX, cr’, defined

as follows. Consider the ordinary cylinder X I, and write

(, t) p (X, I).

Then SX is obtained from X X I by identifying points of B X I u X
which have the same image under r. The section ’ is given by ’b (b, t),
for any t, and the projection p’ is induced by r. Note that SX is a proper
ex-space.

It is easy to check that SX is ex-homeomorphic to the smash product
X/ TS1, in the ex-category, where T is the functor defined at the end of 2.
Also the suspension of the wedge-sum is ex-h0meomorphic to the wedge-sum
of the suspensions.

Suspension of ex-maps and ex-homotopies is similarly defined. We de-
note by

," (x0, x -, (sx0, x
the function thus obtained.
Now form the wedge sum of SC with itself and consider the structural

ex-maps

SX Uo uSX V SX SX.

There is an ex-map m" SX ---. SX SX, defined by

re(x, t) Uo(X, 2t) (0 _< _< 1/2),

u(x, 2t--1) (1/2_< t_< 1).

Using the natural identification

r (SX / SX, Y) r (SX, Y) (SX, Y)

where Y is any ex-space, we can regard the induced functioa m* as a binary
operation on the set r(SX, Y). We call this operation track addition and

In 7 of [3] a suspension theorem, of the Freudenthal type, is proved for S, under
certain conditions.
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normally write
m* (ao a ao + a (a, , r (SX, Y )

without meaning to suggest that the operation is commutative. The formal
properties ofm are the same as in the ordinary theory. Thus the ex-homotopy-
assoeiativity property

(1Vm)m___ (mk/1)m

is established, by the same argument as in the ordinary case, and it follows
that track addition is associative. Similarly for the other properties, so that
we finally obtain

THeOReM (3.1). Under track addition the set r (SX, Y) forms a group. If
X has the same ex-homotopy type as SX’, for some ex-space X’, then the group
is abelian.

Note that if f Y --, Z is an ex-map then the induced function

f, r (SX, Y) -- r (SX, Z)

is u homomorphism of track groups.
If A is an ex-space over a point, i.e. a pointed space, then SA is the usual

(reduced) suspension. Suppose that A is a pointed G-space, where G is a
compact Lie group. Then SA is also a pointed G-space, with the action of
g e G on SA defined to be the suspension of the action of g on A. Let P be a
principal G-bundle over B, where B is regular and locally compact. I assert
that SP, (A) is naturally ex-homeomorphie to P, (SA). in other words, the
suspension functor commutes with P,, to within natural equivalence in
the category of ex-spaces. Some other propositions of this type occur in what
follows and can be proved in a similar way.
To prove the assertion consider the associated bundle E over B with fibre A.

As shown in (3.2) of [7], we can construct E as an identification space of a
disjoint union W of spaces

W (j) X V.XA (jeJ)

where J is an indexing set and {V} is a covering of the base space B. The
identifications are given in terms of the maps

g V n V-- G (i,j J).

If x e V n V. and y, z e A we identify (i, x, y) with (j, x, z) when go’ (x). y z.
Let E denote the bundle constructed by making corresponding identifications
in the disjoint union W’ of the spaces

Wi (j) X V X SA (j,J).

I have not been able to establish a "continuous functor" lemma, on the lines of (1.2)
of [1].



The product of the identity on (j) X Vj and the identification map

A I---SA

constitutes a map W. I -- W. We form the unionf of these product maps,
as shown in the following diagram, where p, p’ are the natural maps of the
bundle construction and g is induced by f:

WXI pX1 EXI

W’ -, E’.
P

Without change of notation, consider the ex-spaces of B determined by E, E’,
with their canonical cross-sections. The suspension is defined, as above,
through making identifications on E )< I. It is easy to check that g is con-
sistent with these identifications and induces a bijection h SE E’. More-
over, h is an ex-map, and has the relevant naturality properties. Up to this
stage the restriction on B is not required.

In the usual version of fibre bundle theory, as in [7], the co-ordinate neigh-
bourhoods are open sets of the base space. But it is also possible to develop
a theory where the co-ordinate neighbourhoods are compact subspaces whose
interiors form a covering. Every bundle in this theory is a bundle in the
usual sense, and the converse is true when the base space is regular and locally
compact. By hypothesis, B satisfies this condition and so we can take each
of the neighbourhoods V. to be compact. Then f, in our diagram, is an iden-
tificatio map, and it follows at once that h is a homeomorphism. Further-
more, h is an ex-homeomorphism since h is an ex-map. This proves our
assertion, since

E P. (A), E’ P. (SA).

4. Well-based ex-spaces
Given an ex-space (X, , p), over B, we construct an ex-space (J, e, ),

over B, as follows. We form from the union of X and the cylinder B X I
by identifying ,b e X with (b, 0) for all b e B. The section e is given by
eb (b, 1). Let r" . -- X be given on X by the identity and on B I
by ,r (b, t) b. Then re and we take # mr, so as to make r an ex-map.
Note that X is not an admissible subspace of .
We describe the ex-space X as well-based if the ex-map r" -- X is an

ex-homotopy equivalence. It is a simple exercise to prove

TItEOlE (4.1). For any ex-space X, the ex-space f is well-based.

Let f’X ----> Y be an ex-map, where X, Y are ex-spaces over B. Then
,r] fr, where 3*" -- l is the ex-map given by f on X, by the identity on
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B I. Similarly with ex-homotopies,, and so we obtain

THEOREM (4.2). If X is well-based and Y has the same ex-homotopy type
as X then Y is well-based.

Note that the well-based ex-spaces over a point are the well-pointed spaces
of ordinary homotopy theory.
One of the uses of the present construction is to facilitate comparisons be-

tween ex-spaces with the same total space and projection but with different
sections. We prove

THEORE (4.3). Let X be a space, let p X ---> B be a map, and let B -- Xbe a homotopy such that per, 1. Then (o and have the same ex-homotopy
type, where X, (X, , p).

COROLLARY (4.4). If Xo and X are well-based, in (4.3). then Xo and X
have the same ex-homotopy type.

Let h .0 --* be given by the identity on X and on B X I by

h(b,t) =ub (0_< t_< 1/2),
(b, 2t- 1) (1/2_<t_< 1).

Let k --+ 0 be similarly defined, using
_

instead of ,. Then h and k
are ex-maps and it is easy to check that kh and hk are ex-homotopic to the
identity ex-maps. This proves the theorem.

Let G be a compact Lie group and let A be a pointed G-space with base-
point x0 e A. Form fl from the union of A and x0 X I, as above, and extend
the action of G on A to an action of G on . so that points of x0 X I are left
fixed. The natural projection r" fl --, A is a pointed G-map. We say that
A is a well-pointed G-space if r is a pointed G-homotopy equivalence, Con-
sider the functor P. determined by a principal G-bundle P over B, where B is
regular and locally compact. Proceeding in much the same way as in the
case of the suspension functor we find that P.(.) is ex-homeomorphic to/,
where E P. (A), and that the ex-homeomorphism carries the transform
of r fl --, A into r /-. E. When A is well-pointed, as a G-space, the trans-
form of r is an ex-homotopy equivalence and so E is well-based, as an ex-space.

5. Ex-coflbrations
Let f X --* Y be an ex-map, where X, Y are ex-spaces over B. We say

that f is an ex-cofibration if f has the following ex-homotopy extension property.
Let Z be an ex-space, let h Y - Z be an ex-map, and let g, X -- Z be an
ex-homotopy such that go hf. Then there exists an ex-homotopy h Y --. Z
such that h0 h and g hf. When f has this property we define the ex-

cofibr of the ex-cofibration to be the push-out of f:X --> Y and p :X -- B.

This is the case, for example, if A is a differentiable G-space (i.e. a paracompact
differentiable manifold with G acting differentiably).
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An important special case is when Y contains an admissible subspace Y’
such that the inclusion Y’ c Y is an ex-cofibration. In that case we prefer
to say that the pair (Y, Y’) has the ex-homotopy extension property. A
necessary and sufficient condition for this property is for Y 0 u Y’ I to
be an ex-retract of Y X I. Note that Y/Y’ is the ex-cofibre in this case.
Just as in Theorem 2 of [6] we obtain

THEOREM (5.1). Suppose that Y’ is ex-contractible, and that (Y, Y’) has
the ex-homotopy extension property. Then the natural projection Y -- Y/YP is
an ex-homotopy equivalence.

In ordinary homotopy theory complexes play a special role, but it seems
doubtful whether there is a satisfactory generalisation to ex-homotopy theory.
We need a reasonably comprehensive class of ex-spaces with various desirable
properties. After some experiment I propose the following, which is adequate
for the type of application I have in mind.

Let A be a G-space, where G is a compact Lie group. We recall that a
subspace A’ of A is described as invariant if gA’ A’ for all g G. When
this condition is satisfied we regard A as a G-space with the induced action.
As in (1.6.1) of [5] we say that A is a G-ANR (absolute neighbourhood retract)
if, given a normal G-space Y and a G-map f of a closed invariant subspace F of
Y into A, there exists an extension of F to a G-map of an invariant neighbour-
hood of F. It has been shown (see p. 27 of [5] for references) that every com-
pact differentiable G-space is a G-ANR. Note that the (finite) product of
G-ANR’s is again a G-ANR.
Let A be a normal pointed G-space which is a G-ANR. Let A be a closed

invariant pointed subspace of A. Make A X I into a G-space, with action
given by

g. (x,t) (g.x,t) (geG, xeA, teI).

I assert that A X 0 u A’ X I is a G-retract of A X I. For since A X I is a
G-ANR there exists an invariant neighbourhood U of A 0 u A X I in
A X I, such that A X 0 u A I is a G-retract of U. Let V be an invariant
neighbourhood of A’ in A such that V X I U. By (1.1.7) of [5] there exists
aninvariant mapp:A--,Isuchthatp(x) 0ifxcVandp(x) 1if
x A. If f is a G-retraction of U on A X 0 u A’ X I then f’ is a G-retraction
of A X I, where

f’ (x, t) f (x, tp (x) (x e A, e I ).
This proves the assertion.
Now consider the ex-spaces E P, (A), E’ P, (A’), where P is a prin-

cipal G-bundle over B. Since A 0 u A’ I is a G-retract of A I it
follows that E )< 0 u E’ )< I is an ex-retract of E )< I, and so the pair (E, E’)
has the ex-homotopy extension property. Suppose, furthermore, that A is
G-contractible. Then E is ex-contractible and hence the natural projection of
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E onto E/E’ is an ex-homotopy equivalence, by (5.1). We shall use this in
the next section.

6. Spaces over B
By a space over B we mean an ordinary space X with a map p X --+ B.

Usually it is sufficient to denote the pair (X, p) by X alone. By a section of
(X, p) we mean a map a B --* X such that pa 1. An ex-space over B can
be regarded as a space over B with a section. Maps and homotopies over B
are defined in the obvious way.
The suspension (/X, p’) of a proper space (X, p) over B is defined as fol-

lows. The space X is formed from the union of X X I and B X by identi-
fying (x, t) with (px, t) for x e X, e . The map p’ is given by

p’ (, t) p ( X, I),
p (b, ) b (b, ).

We have p’at 1, where at B -- SX is defined by at b (b, t) for 0, 1.
The ex-space (X, at, p’) will be denoted by t X. Note that S0 X is ex-
homeomorphic to $1 X.
Now suppose that X admits a section a, with pa 1, and so constitutes an

ex-space. The definition of as can be extended to all e I, by at b (ab, t).
Thus a family t X of ex-spaces is derived from X. When 0 < < I it is easy
to see, by reparametrization, that X is independent of the choice of t, to
within an ex-homeomorphism.
For any e I, the identity function on X X I determines an ex-map

&X-+SX.

Now B X I constitutes an admissible.subspace of t X, and if the pair

(,X,B X Z)

hs the ex-homotopy extension property it follows t once from (5.1) that is
n ex-homotopy equivalence. When this is the ese we en replace t X by
SX, for mny purposes.
When the bse spree is point A is the unredueed suspension of the spree

A. Suppose that A is G-spree, nd regard A s G-spree in the obvious
wy. Suppose that A is eompet differentible pointed G-spree. Then it
follows from (2.7.9) of [5] that A is G-ANR, nd hence that the nturl
projection A ---. SA is G-homotopy equivalence.

Let P be principal G-bundle over B, where B is regular nd locally compact.
If A stisfies the bove conditions, so that is G-homotopy equivalence, then
the transform

P,() P, t(A) P, S(A)

It seems reasonable to conjecture that A is a G-ANR if A is a G-ANR.
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lent to SP. (A), under an ex-homomorphism. A similar argument shows that
is an ex-homotopy equivalence. We have shown in 3 that P. S (A) is equiva-
P. t (A) is equivalent to P. (A) and that P. () is equivalent to

, P, (A ) .--, SP, (A ).

Hence is an ex-homotopy equivalence. Of course this can also be deduced
from (5.1).

It is convenient to take 1/2 as standard, and henceforthX will mean the
ex-space with this section. When , is an ex-homotopy equivalence we identify
r (SX, Y)with r (X, Y) under *, so that the track addition defined in 3 is
transferred to the latter set. Thus r (X, Y) obtains a natural group struc-
ture, which is abelian if X X’ for some ex-space X’.

In the applications we usually begin with a euclidean bundle V over B, and
take P to be the associated principal bundle. Consider the Whitney sum
V r of V and the trivial r-plane bundle, where r 1, 2, .... If we denote
the associated sphere-bundle by square brackets then [V r] can be identified
with the iterated suspension r[V]. Thus

r([V r], Y)

constitutes a group for r >_ 1, an abelian group for r >_ 2. In the sequel to this
note we shall study the structure of these ex-homotopy groups in some detail.
The unreduced suspension is a special case of the join operation, which can

be discussed on similar lines. Thus let X (i 0, 1) be a space over B. In
this category the direct product X0 X X1 is the subspace of the ordinary topo-
logical product consisting of pairs (x0, xl) (x X) such that p0 x0 pl xl,
with projection p given by p (x0, x) p, x. Let X0 X denote the space
formed from the union of the cylinder (Xo X X) X I and Xo, X, by identify-
ing (Xo, x, i) with x for i 0, 1. The join of Xo and X in the category of
spaces over B is defined to be this space Xo X1 with projection p’ given by

p’ (x0, x, t) p x, (x, X,, e I).

If X1 I B, and p is right projection, then X0. X is equivalent to SXo.
Next suppose that X admits a section a, and so constitutes an ex-space.

Then we can define a section a of the join X0 X1 by arb (Xo, a b, 1), where
b e B and where Xo e X0 is arbitrary. Thus X0 X also constitutes an ex-space.

Finally, suppose that X admits a section a, for i 0, 1, and so constitutes
an ex-space. Then we can define a family at of sections of X0 X1, for e I, by

atb (a0b, ab,t) (bB).

Choose a value of and regard Xo X as an ex-space with at as section. In the
ex-category, the smash product X0/% X is defined and the identity function

In fibre bundle theory this is known as the fibre-join. Given a pair of
euclidean bundles, over B, the fibre-join of their associated sphere-bundles is equivalent
to the sphere-bundle associated with their Whitney sum.
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on the cylinder (X0 X X1) X I determines an ex-map

Xo X, (Xo A X,).
This natural projection is an ex-homotopy equivalence, under certain condi-
tions. For example, let G be a compact Lie group and let P be a principal
G-bundle over B. Suppose that X P. (A), where A is a differentiable
G-space. Then an argument similar to the one used in the case of shows
that q is an ex-homotopy equivalence, provided B is regular and locally com-
pact. For applications in which the join operation plays a major role see the
latter part of [3].

7. She Pppe sequence
Let X be an ex-space over B. By the cone on X, in the ex-category, we

mean the ex-space (CX, a’, p’) defined as follows. Consider the ordinary
cylinder X X I and write

(x X, ).

Then CX is obtained from X I by identifying points of B X I u X X 0
which have the same image under r. The section aP is given by aPb (b, t),
for any t, and the projection p is induced by r. It is easy to check that CX is
ex-contractible. An ex-map u X - CX is given by ux (x, 1).
Given an ex-map f X -- Y we define the ex-map cone Cj to be the push-out

of (u, f). It is simple exercise to check that the structural ex-map v Y -- Cj
is an embedding, in the topological sense, so that Y can be regarded as a sub-
space of Cf. Furthermore, following almost literally the argument in 1 of
[6], we obtain

LEMMA (7.1). If f X Y is an ex-map then the structural ex-map
v Y ---> C] is an ex-cofibration, with ex-cofibre CffY SX.

Let E be any ex-space. It is a simple exercise to show that the sequence

X::f)y v

is exact for r E).
sequence

Substitute u for f and consider the corresponding exact

By (7.1), u is an ex-cofibration and so it follows as in Theorem 2 of [6] that
C, has the same ex-homotopy type as the ex-cofibre SX of v. Pursuing this
argument in exactly the same way as Puppe does in Theorem 5 of [6], we arrive
at

THEOREM (7.2). Let f X Y be an ex-map, and let E be any ex-space.
Then the sequence

X--- Y--- C]---, SX--- SY----
with appropriate ex-maps, is exact for E).
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Thus we have eneralised form of Puppe’s mapping sequence, and follow-
ing Puppe we can deduce various corollaries. As an example we state

COROL.RY (7.;). Let X (i O, 1) be a well-based ex-space. Then
S (Xo X) has the same ex-homotopy type as SXo /SX /S(Xo/ X).

The dual notion of ex-fibration will be discussed in the second paper in this
series.
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