THE RING OF POLAR PRESERVING ENDOMORPHISMS OF AN
ABELIAN LATTICE-ORDERED GROUP

BY
P. F. Conrap aND J. E. Diem!

1. Introduction

Let G be an abelian lattice-ordered group (I-group). We investigate the
ring P (G) generated by the semiring P* (G) of all group endomorphisms « of
@ such that for z, y ¢ G

z/A\y=0 implies « A ya = 0.

P (@) is a po subring of the ring B(G) of all order-bounded endomorphisms of
G with P (G) as its positive cone. If A is any ring of l-endomorphisms of G
that contains the identity automorphism I, then A € P(G). Thus P (@)
is the largest such ring. 'We show (Theorem 3.4) that the class

{P(@) : G is an archimedean [-group}

is identical with the class of archimedean f-rings with identity. This allows
us to derive many useful properties of P* (G).

For an archimedean [-group G, the largest f-ring of B(G) that contains the
identity is P (G). Let G be an archimedean [-group with a weak order unit e.
Then there is at most one multiplication on G so that G is an f-ring with identity
e, and such a multiplication exists if and only if {ea : « ¢ PT(@)} = G .

The elements in P* (G) preserve minimal prime subgroups. In Section 6 we
investigate those group endomorphisms of G which preserve all the prime sub-
groups. In Section 7 we apply our theory to solve a problem posed by G.
Birkhoff.

Notation and terminology. If G is an l-group, then we denote itspositive
cone by G" = {geG : g = 0}. An l-subgroup of G is a subgroup K whichis
also a sublattice. If,in addition, 0 < z < k ¢ K implies « ¢ K, then we say that
K is a convex I-subgroup. An l-ideal is a normal convex [-subgroup. A prime
subgroup is a convex l-subgroup M such that 2 A\ y e M impliesz e M ory e M.
Various other characterizations of prime subgroups are given in [4] and [9].
An l-endomorphism of @ is a group endomorphism that also preserves the lattice
operations. Thus an endomorphism « of G is an l-endomorphism if and only
if z A\ y = 0 implies za /A ya = 0 [7].

If X is a subset of G, then

X =1{geG:|g|A|z| =0forallzeX)}
is called the polar of X. X’ is a convex [-subgroup of G and the set p (G) of
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all polars of G forms a complete Boolean algebra [11]. Note that P+ (G)
consists of those group endomorphisms of G that preserve each polar.

2, Polar preserving endomorphisms of a lattice-ordered group

Let G be a lattice-ordered group (l-group). Then a polar preserving endo-
morphism or p-endomorphism of G is a group endomorphism « of G such that
forallz, y e G

x/\y=0 implies z A ya = 0.

Note that « is an l-endomorphism and hence Gta C G*. Forifz A y = 0,
then z A ya = 0 and hence za N ya = 0.

In the first part of this section we give several characterizations of p-
endomorphisms. Then we show that the semiring of all p-endomorphisms of
an abelian I-group G is the unique maximal subsemiring of the ring of group
endomorphisms of G which contains the identity automorphism I and which
consists of lattice endomorphisms. Finally we investigate this semiring in the
case where @ is a subdirect sum of subgroups of the reals.

2.1 PrRoOPOSITION. Let « be a group endomorphism of the l-group G. Then
the following are equivalent.

(a) ats a p-endomorphism.

) Ga S GFand Ma S M for each minimal prime subgroup M of G.

(¢) Gta € G and Pa P for each polar P of G.

@) G'a S G and 2’ S (za) for each x e GT.
Moreover if G is abelian, then (a) ts equivalent to

(e) GTa C GT and a + I is an l-endomorphism.

Proof. (a) implies (b). If 0 < z e M, then there is a y ¢ M such that
2 Ay =0 (see [6] or [9]). But then za A y = 0, so that xa € M since y ¢ M
and M is prime. It follows that Ma & M.

(b) implies (¢). This follows from the fact that a polar of G is the inter-
section of minimal prime subgroups of G [4].

(c) implies (d). Let y e 2’ be positive. Thenz A y = 0 and so z e y'.
Thus za € ya C 3. But za > 0, so that za /A y = 0. Hence y ¢ (za)/,
and it follows that 2’ & (za)’.

(d) implies (a). Ifz A y = 0, then y e 2’ C (zra)’ and za ¢ G*. Thus
za /A ¥y = 0 and hence « is a p-endomorphism.

Finally suppose that G is abelian and let « be a p-endomorphism of G. Then
2 /\ ¥y = 0 implies za A y = 0 and hence (xa + z) A y = 0. Therefore
a + I is a p-endomorphism and hence an l-endomorphism. Conversely if
o + I is an l-endomorphism and Gta C G and z A y = 0, then

O=z@+I)Ayla+I)= @a+z)N\ at+y) 2za Ny 20

Thus 0 = za /\ y and s0 « is a p-endomorphism.
We now characterize p-endomorphisms in the case where G is a subdirect
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sum of totally ordered groups (o-groups). In particular, this characterization
holds for abelian I-groups. Recall that an I-group is representable if there is an
l-isomorphism ¢ of G into a cardinal sum =G of a family {G\ : A € T'} of o-
groups. In general, the intersection of all minimal prime subgroups of G is
zero, and Byrd has shown that @ is representable if and only if each minimal
prime subgroup is normal [3].

2.2 ProposITION. Let G be a representable l-group and let oo be a group
endomorphism of G such that Gta C G*.  Then the following are equivalent.

(@) « s a p-endomorphism.

(b) There is a set N of normal prime subgroups of G such that nft = 0 and
No € N for each N ¢ N.

Proof. (a) implies (b). Let M be the set of all minimal prime subgroups
of G.

(b) implies (a). Since No & N, «a induces an o-endomorphism on the o-
group G/N and so it induces an o-endomorphism & of #{G/N : N e N}. Leto
be the natural map of G into #G/N:

go = (...’g+N’...)‘

Then it is clear that ¢& = ao and for 2 ¢ #G/N we have that the support of
za is contained in the support of z (since Na € N for each N ¢ ). Thus
@ is a p-endomorphism of #G/N and so a is a p-endomorphism of G.

Let G be an abelian I-group and let E (G) denote the endomorphism ring of
G. We make E (@) into a po ring by setting

E@)" = {aeE@) : GTa C G'.

Elements of E (G)" are called o-endomorphisms of G. In general E (@) is not
directed under this partial order and so we define B(G) = E(G)* — E(G).
Then B(G), the ring of order bounded endomorphisms of G, is a po ring with
positive cone B(G)" = E(G)*.

2.3. If G is an abelian l-group, then the set P* (G) of all p-endomorphisms of
G is a subsemiring of E(G)* and
P@G) ={a—B:a B8P @)}
18 a po subring of B(G) with positive cone
P@)nE@@)" = PT(Q).

Proof. Consider a, 8 ¢ P*(@) and suppose that # A y = 0. Then
za A\ y = 0 and hence zaB A y = 0, so that aB e PY(@). Alsoz8 Ay = 0
and hence (za + z8) A y = Oso that « + B¢ PT(@). Thus PT(Q) is a sub-
semiring of E (G)* and so P (G) is a po subring of B(G).

Clearly P (G) n E(@)* D P*(G). Consider @ — 8 ¢ P(@) n E(G)* and
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zeG". Thenza > za — 28 = z(a — ) = 0andsoif z A y = 0, then
O=zaANyZzla—pB)Ny=0.

Therefore « — B8 ¢ PY(Q).

Now let S be a subsemiring of E(G)" and let S = {a — 8 : a, 8 ¢S} be the
subring of B(G) that is generated by S. If each element of S is an l-endo-
morphism, we say that S is a ring of l-endomorphisms of G.

2.4 TuroreM. Let S be a ring of l-endomorphisms of an abelian l-group G
which satisfies () for each 0 < g ¢ G there is a B € S such that g8 = g. Then
S C P*(Q) and hence 8 C P (G).

Proof. Let a e S and let z, y € G be such that z /\ y = 0. Now choose
B e 8 such that 28 > z and write 8 = 81 — B, where 81, 8:¢S. Theng + 8, =
B1eS sothat B 4+ B2 + aeS. But then

O=2@B+B8+a) Ay + B+ a)
= (@B + 2B + za) \ (B + yb: + ya)
2B NANya=z N\ ya 0.
Thus z A ya = 0, so that o e P*(@). The result now follows.

2.5 CoroLLARY. If 8 is a ring of l-endomorphisms of an abelian l-group G,
which contains I, S < P (G).

Remarks. (i) The proof of 2.4 actually shows that if S is an additive sub-
semigroup of l-endomorphisms of G, where G is an abelian l-group, and if
IeS, then 8 € PY(@G).

The examples referred to in the next three remarks can be found in §8.

(ii) A ring of l-endomorphisms of an abelian l-group G need not be con-
tained in P(G) (Example 1).

(iii) If S is a ring of l-endomorphisms of an abelian l-group G and if
I €8, then I need not belong to S (Example 4).

(iv) If 8 is a ring of l-endomorphisms of an abelian I-group G and if
I €8, then (8)" need not be contained in S (Example 4).

We now identify the ring P (@) in case @ is a subdirect sum of subgroups of
the reals. First recall that if G is an o-group, then the set of convex subgroups
of G is totally ordered. Moreover, if G has a largest convex subgroup M, then
M is normal and G/M is o-isomorphic to a subgroup of the reals R [7]. Now
let 7 be an o-endomorphism of G, and let x ¢ M with & > 0 be such that zr ¢ M.
Then since @ is an o-group and xw ¢ M, we have that = > nz for all n > 0.
Thus zr* > nar for all n > 0, so that en” + M > n(er + M) for alln > 0.
This contradicts the fact that G/M is archimedean and hence zr ¢ M, so that
Mz € M. Thus we have shown the following.
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2.6. Let G be an o-group with a largest convex subgroup M. Then for each
o-endomorphism = of G, Mm & M.

2.7. LemMA. Let G be a representable l-group, let o e Pt (@), and suppose that
M 1s a maximal convex l-subgroup of G. Then Ma & M.

Proof. Since M is a maximal convex [-subgroup of G, M is prime. Let P
be a minimal prime convex l-subgroup contained in M [4]. Then G/P is an
o-group and M /P is the largest convex subgroup of G/P. Now by 2.1,
Pa C P so that a induces an o-endomorphism & defined by (z + P)a = za + P
of G/P. But by 2.6, (M/P)a & M/P, so that Ma C M.

Remark. Recall (2.1) that p-endomorphisms leave invariant all minimal
prime subgroups. Moreover, by 2.7, p-endomorphisms leave invariant maxi-
mal convex [-subgroups in representable I-groups. However, even in an
archimedean I-group a prime subgroup need not be left invariant by a p-endo-
morphism (See Example 9 of §8). In Section 6 we examine those o0-endo-
morphisms which leave fixed all the prime subgroups of G.

Now suppose that @ is an l-group which is a subdirect sum ws{R) : X e T'} of
a family {Ry: X eI} of subgroups of the reals. Then ws{R):MNeT} is an
l-subgroup of the I-group R of all functions from T into R where addition and
the partial order are defined pointwise. Moreover, pointwise multiplication
on R" makes the l-group R” into a lattice-ordered ring (/-ring) which is an
f-ring? We are now ready to prove

2.8 TarorEM. Let G be an l-group which is a subdirect sum ws{Rx : N eT}
of a family {Ry : \ € T'} of subgroups of the reals R and let o be an o-endomorphism
of G. Then

() aeP™(Q)if and only if Ma S M for all maximal l-ideals of G;

(i) f ae PT(Q), then there is a unique extension of a to a p-endomorphism
& of RT; and

(iii) P (Q) is isomorphic to the subring {f e R" : fg ¢ G for all g € G} of R'.

Proof. Let M (G) denote the set of maximal l-ideals of G. Then since G
is a subdirect sum of subgroups of the reals, we have that nI(G) = 0.
Thus if Ma C M for all M ¢ M(G), then a ¢ PT(G) by 2.2. The converse im-
plication in (i) is immediate from 2.7.

To see (i) let z € G and let x, denote the value of z, considered as function
onT,at ANel. Let Gh = {xeG:an = 0}. Then Gh e M(G) and hence by
(i), Gra C Gr. Thus « induces an o-endomorphism o* on G/Gr. Since
G/Gy is a subgroup of the reals R, there is a real number ax such that

(@ + G)a* = ar(g + G).

It follows that there is a unique extension of a to & : RF — R". Moreover, it
is now clear how to prove (iii).

2 An f-ring is an l-ring in whicha A b = 0 and ¢ > 0 imply ca A b =ac A b = 0.
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Remark. In the next section we extend the above result to show that
P (@) is an archimedean f-ring whenever @ is an archimedian l-group.

2.9 CoroLraRY. Let X be a topological space and let C(X) denote the -

group of continuous real-valued functions on X. Then P(C(X)) is isomorphic
to C(X).

To close this section we remark that almost all the results in the sequel
are valid only for archimedean I-groups. Consequently, we shall restrict our
attention to the class of archimedean l-groups. The final result of this sec-
tion shows that our results will apply to archimedean vector lattices.

2.10 ProrosiTioN. Suppose that G is a vector lattice. Then
(i) each l-ideal of the l-group G s a subspace and
(i) If a: G — G is an o-endomorphism of the l-group G, then o is linear
provided that G ts archimedean.

Proof. (1) Let Cbe an l-ideal of G, let c ¢ C, and let r ¢ R". Then thereisa
positive integer n > r such that 0 < r¢t < nc"eCand 0 < r¢” < nc” e C.
Thus since C is convex, both 7¢* and r¢” are in C. Hence r¢ = r¢" — r¢” ¢ C.

(ii) For g e G and k a rational number, we have that (kg)a = k(ga) for
any o-endomorphism a of the l-group G. Now suppose that geG" and
r ¢ R is strictly positive. Then for rationals 7; and 7, such that 0 < < r <72,
we have, since « is an o-endomorphism, that 0 < r(ga) = (ng)a < (rg)a <
(reg)a = r2(ga). Moreover, we have that r;(ga) < r(ga) < r(ga). Thus

(rg)a — r(ga) < m(ga) — ri(ga) = (r: — 1) (ga)
and

r(ga) — (rgle £ ra(ga) — ri(ga) = (r2 — 1) (ga),
so that | (rg)a — r(ga)| < (2 — m)(ge). It follows that

| (g)e — r(ga) | < s(gar)

for all positive rationals s. Thus since G is archimedean,] (rg)a — r(ga) | =0
and so (rg)a = r(ga).

Remark. Example 10 of §8 shows that (ii) of 2.10 need not hold in the
non-archimedean case.

3. p-endomorphisms of archimedean I-groups

The main result of this section provides a generalization of 2.8 in case the
l-group @ is archimedean but not necessarily a subdireet sum of subgroups of
the reals. Our techniques require a functional representation of the archime-
dean l-group. We use Bernau’s representation [1] of an archimedean I-group
as an l-subgroup of a vector lattice D (X) of almost finite continuous functions
on a Stone space X. We now collect the pertinent facts about this representa-
tion.
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Let G be an archimedean l-group, and let ® (G) denote the set of polars of
G. Then ®(G) is a complete Boolean algebra [11], and so the associated
Stone space X is extremely disconnected, Hausdorff and compact. Let
D (X)) be the collection of almost finite continuous functions from X into
Ru{xx}(ie,DX)={f: X—>Ru{ & «} : fis continuous and {x e X :
f(x) e R} is dense}). Then D(X) is a complete vector lattice and Bernau
established the following result.

TueOREM. Let G be an archimedean l-group. Then there is an l-isomorphism
o of @ in D(X) (where X 1s the Stone space of the complete boolean algebra of
polars of Q) which preserves all existing infima and suprema and such that if
deD(X) s strictly positive, then there is a g e G and an integer n such that
0 < g < nd. Moreover, if {ex:NeT} is a maximal disjoint subset of G*,
then o can be chosen so that each e\ o s the characteristic function of a subset X

of X where the family {X» : N eT'} 1s a collection of compact open subsets of X
whose union s dense in X.

Now let G be an archimedean I-group and let {ex : X e I'} be maximal dis-
joint subset of G. Let o be an l-isomorphism of @ into D (X )with the prop-
erties of Bernau’s Theorem. We shall identify G with Go. Thus G is an [-
subgroup of D (X') and all infima and suprema in G agree with those in D (X).

For each z¢ X, let G, = {geG@:g(x) = 0}. Then for each heG with
h(x) > 0 and real, we have that G, is a l-ideal maximal with respect to not
containing 4. Then if G” is the intersection of all -ideals of G that properly
contain G, , then h e G*\ G, and G°/@G, is (isomorphic to) a subgroup of the
reals B. Conversely, if g e G°\G., then ¢(z) is real. We are now ready to
prove

3.1 LEmMA. Let o be a p-endomorphism of G, let ex ¢ {ex : N e T'} a maximal
disjoint subset of G, let X be the compact open subset of X associated with e ,
and let e Xy. Then exa(x) = + if either Fa G or Goa £ G, .

Proof. Tirst suppose that G°a & G°. Then there is a strictly positive
g € G such that ga ¢ G°. Since ey () = 1, we have that ey e G°\G. and hence
there is an n > 0 such that G. + g < G, + ne, since G°/G, is archimedean.
Since G, is a prime l-ideal, there is a minimal prime I-ideal N contained in G, .
Thus, by 2.1, Na © N so that « induces an o-endomorphisms on the o-group
G/N. f N + g > N + ne., then G, + ¢ > G, + nen. Hence
N+ g < N+ nen. Thus N + ga £ N + n(era), so that G, + ga <
G, + n(era). Then G < G 4+ ga < G + n(ena), so that n(era) ¢ G°
and hence ey« ¢ G°. Thus e\ a(z) is not real, so that ey a(z) = + .

Now suppose that G, o $ G,. Then there is a strictly positive g ¢ G, such
that ga ¢ G,. Thus for all positive integers n we have that G, + ng =
G, < G, + en. Hence N + ng < N + e, where N is a minimal prime [l-ideal
contained in G, . Thus N 4+ n(ga) £ N + eya, and hence G, < G: + n(ga)
< G. + ea. But G°/G, is archimedean so that e« ¢ G° and thus
ea@) = 4o,
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3.2 TarorREM. Let G be an archimedean l-group, and let {ex: NeT} be a
mazximal disjoint subset of G. Consider G as a l-subgroup of D (X)) as in Bernaw’s
Theorem. Then each p-endomorphism of G is a multiplication of G by an element
in D(X)*; and conversely if de D (X))t and Gd S G, then the map g — gd
(9 e@G) is a p-endomorphism of G.

Proof. For each g ¢ G, the closure S(g) of the set {x ¢ X : g(x) = 0} is the
support of g. Now let a be a p-endomorphism of G and let A e . Then by
2.1,

aae(na) ce ={geG:8() S 8a) = X}l

Thus e\ « is zero outside of X, and is finite on a dense open subset of X, .
Thus by 3.1 the set Dy = {zeX):GFa & G and G.a © G} is dense and
open. Now for each x ¢ D\, « induces an o-endomorphism on G°/G,. But
G”/@, is a subgroup of B and hence there is a real number @, > 0 such that if
ge@ and g(x) is real, then ga(x) = g(x)a,. Moreover, eya(r) = o, SO
that map ¢ — «, is a continuous real-valued function defined on D, . But this
holds for each \ € I, and hence it follows that there is a continuous real-valued
function * — «, defined on a dense open subset of X such that z e D,
(ga) (@) = g(x)ay if g(x) is real. But then the map z — . has a unique
extension to an element of D (X)*, say &; and it follows that ga = ga where ga
denotes the f-ring multiplication in D (X).
Finally, the converse is clear since D (X') is an f-ring.

We remark that a routine computation shows that the map P (G) such that
a — @& eD(X) is an l-isomorphism of l-rings. Hence we have

3.3. CoroLLARY. For archimedean l-groups G and the associated Bernau
representation in D (X) we have that P (G) is an f-ring with identity and

P(G) = {deD(X):Gd S G}.

Now let F be an archimedean f-ring with identity 1. Then by Bernau [1],
F is a subring of D (X) (1 is the identity of D (X)) where X is the Stone space
associated with l-group (F, +). Moreover, P(F) = {deD(X):Fd < F}
and since 1 ¢ F it follows that P (F) = F. This together with 3.3 proves

3.4 TreoreM. The class {P(G) : G s an archimedean l-group} is identical
with the class of archimedean f-rings with identity.

We now turn our attention to some consequences of 3.2. We shall, of
course, assume that G is an archimedean l-group.

35. (i) For a, BePT(@) and geG', gla V B) = ga V g8 and
gla N\ B) = ga N\ gB.

(@) For a, BePT(G) and g e GT\{0}, gaB = 0 if and only if ga A\ g8 = 0;
and hence a3 = 0if and only if « A\ B = 0.

(iii) For a e PT(G) and z ¢ G\{0}, za" = 0 if and only if za = 0; and hence
a" = 0 implies a = 0.
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3.6. If a e PY(Q) and a is onto, then a is one-to-one and o ¢ P (@).

Proof. Let y ¢ G be non-zero. Then since a is onto, there is an z e G such
that za = y % 0. But then by 3.5 (iii) 0 5 2o’ = ya so that « is one-to-one.
The rest is routine.

37. If ae PY(Q), then the subgroup of G generated by Ker (o) and Go
18 the cardinal sum Ker (o) ® Ga and it is an l-subgroup of G. In particular,
if o’ = a, then G = Ker (o) ® Ga.

Proof. First we show that the sum of an l-ideal B and an I-subgroup C of G
is an l-subgroup of G. To this end let £ = b 4+ ¢ ¢ B + C. Then
B+ 2 =B+ cand so

B+ (zV0)=B+z)VB=B+c)VB=(B+c)VB=B+cV0

since B is an l-ideal of G. Thusz\/ 0 = b 4 ¢\ 0 forsome b’ ¢ B. Thus
2\ 0eB + C, and B + C is an l-subgroup of G.

Now Ga is an l-subgroup of G and Ker () is an l-ideal of G, so that
Ker (a) + Ga is an l-subgroup of G. Now let y e Ker (o) n Ga, and let
x € G be such that y = 2za. Then 0 = ya = xa’ so that 2a = 0 by 3.5 (iii)
and hence y = 0. Thus Ker (¢) + Ga = Ker (o) ® Ga. To show that
Ker (¢) ® Ga = Ker (a) © Ga it suffices to show that Ga is convex in
Ker () ® Ga. To this end suppose that 0 < z < yo where £ = a + ba
with a e Ker (o) and beG. Suppose thata % 0. Then —ba < a < (y — b)e,
so that

(=) V0)a<LaVOL (y—0) V0

and

(=) A0)a<aAOZ ((y—Db)A O

Thus, since a \V 0 and a A 0 are in Ker («), there is a ¢ e Ker (a) and an
heGT such that 0 < ¢ < ha. If M is a minimal prime I-ideal of G such that
c¢M,then M + ¢ £ M + haso that ha ¢ M. Now since G is archimedean,
there is a positive integer n such that nc £ ». Hence there is a minimal
prime l-ideal N of G such that N 4+ n¢ > N 4+ h. Now « induces an o-endo-
morphism & of G/N and we have that N + nca > N + haor N > N + ha
since ce Ker (o). Thus haeN since N > N + ha > N. But c¢N since
N 4+ nc > N + hand b > 0. This contradicts the fact that any minimal
prime [l-ideal not containing ¢ also does not contain ha, and we are done.

3.8. IfaePt(Q), then a preserves all existing infima and suprema.

Proof. This follows from the fact that in any archimedean f-ring F,
y=A{yy:veTlanda e F imply ya = A {yya:vel}. (See[l]or[7].)

39. If ae PY(Q), then Ker (o) is a polar and G/Ker (e) is archimedean.

Proof. By 3.8 it is clear that Ker (a) is closed. Hence Ker («) is a polar
[6] and so G/Ker («) is archimedean [5].
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3.10. If G is complete, then P (G) ts complete.

Proof. Let {a,:v eI} be an upward directed subset of P*(G) which is
bounded above by aePT(G). Then for ge G, g, < ga for all v e T.
Thus we set g8’ = \ {ga, :veT}. But then for g, heG™, it follows since
{ay 1 ¥ €T} is directed, that (g + h)8 = g8 + h@, and hence there is an
o-endomorphism 8 of G such that g8 = g8’ for geG*. Nowif g A b = 0,
then

gNAM=gN\ (Vihay:vel} = V{g/A\hay:vel} =0

and it follows that 8¢ P*(G) and hence 8 = \/ {a, :veT}. Similarly, the
infimum of a downward directed subset of P* (@) has an infimum, and it
follows that P (@) is complete.

Remark. If P(G) is complete, G need not be complete. See Example
5 of §8.

We close this section with some results about relationship between P (G')
and P (G) where @ is the completion of the archimedean I-group G. First we
prove

3.11. Let G denote the completion of the archimedean l-group G, and let o be
an endomorphism of G which preserves all existing infima and suprema. Then
there is a unique extension of o to an endomorphism & : : G — G which preserves
all existing infima and suprema.

Proof. Let heG. Then h = VVi{keG:k < h} = Nikek:h < k).
Define ha = VV{ka:keG and k < h}. This supremum exists since a
preserves order and the set {k e G : k < h} is bounded above by any element
of @ larger than h. Now let #’ ¢ G. Then

ha + Wéa=Vika:keG@and k < A} + V{ka:k eG@ and ¥ < A}
=V{Ek + Kk FeG, bk Lhand k' <k < (b + W)

To see the reverse inequality, let « ¢ G be such that

2<h+HWN=Vik:keGandk <h}+V {F : k' eGand k' < 7'}.

Then

z=V{k+¥)ANz:hkeG k< handk <H},
and
2o =V {(ha + Ka) A za:k ¥e@ & < h and ¥ < I}

< Vika + Kok k"G k < hyand ¥’ < W'} = ha + K.

Since A + A’ is the supremum of all such z’s, we have (h + A’')a < hé + Ha.
Thus & is an endomorphism of G. The rest is straightforward.

3.12 ProposiTioN. Let G be an archimedean l-group, and let o« e P (G).
Then there is a unique extension of o to & ¢ Pt (@). Moreover, o is one-to-one
if and only if & is one-to-one; and & s onto if a is onto.
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Proof. Let ae P*(G). Then by 3.8 and 3.11, there is an extension of
atod:G — G. Nowlet h W e@ with h A & = 0. Then

ha = Vika:keG and k < B},
so that

e AW =Vika:keGrandk < B AW =V ika AW :keGrand k < h}
=Vikae ANK:k KeG k< handk <A} =0.
Thus & e PT(Q). )
Now suppose that o is one-to-one on G, and let g e GT\{0} be such that
gé = 0. Then there is a ¢’ ¢ G*\{0} such that 0 < ¢’ < g. But then

0 < ¢a4 < ga = 0 so that ¢’ = 0. Thus & is one-to-one on G.
Finally suppose that o is onto, and let & ¢ G with

h=VikeG:k<h <y

where g ¢ G. Since ais onto, a is one-to-one by 3.6 and hence « is an l-automor-
phism of G. Now k < g implies ko' < ga’, so that

\V) {ka_likeGa,ndk < h}e@.
Thus

IVika™:kehand bk < h})a = Vikaa:keGandk < h} = h
so that & is onto.

Remark. Example 11 of §8 shows that & e Pt (G) can be onto without
a e PT(G) being onto.

As usual let G be an archimedean I-group, and G its completion. Then it
follows from 3.10 that P, = P(Q) is a complete f-ring with identity, and it
follows from 3.11 that there is a natural embedding of P; = P(G) into P;.
Example 5, §8 shows that P; need not be the completion of the archimedean
fring P,. However we are able to show

3.13 TurEorEM. If G s a dz;vz's'ible archimedean l-group with a strong order
unit and a basis, then P, = P (G) s the completion of P, = P1(G).

Proof. We may assume that Py € P,. Thus since P, is complete, it is
sufficient to show that for B e P3\{0}, there are @, v ¢ P; such that
0<a<p <y (Seel6]).

Now since @ is divisible and has a basis, we may assume that

S {Ra:neP} CGC J[{Rv:NeP}

where {R) : \ ¢ P} is a family of divisible subgroups of the reals. Then [4]
G is the l-ideal of [T {T»: NeT} (Tx = R for all A eT') generated by G and

S {Th:NeT} S G S JI{Th:2eT}.
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By Theorem 2.8, 8¢P3\{0} has the form (.-, Br, ---) where B eR™.
Suppose that B, > 0 and choose n so that 1/n < By and let

a = (O’ -, 0, 1/”’10: ’O)

where the 1/n is in the \-th place. Then aeP; since @ 2 D {Ry: NeT}
and each R, is divisible. Moreover,0 < o < 8. Finally, we can assume with-
out loss of generality that (1, 1, -+ ) is a strong order unit for G and hence
for G. But then (1, 1, ---)8 = (-++, B, +--) and the set {8 : \eT} is
bounded, by n say. Thus if we set 2y = nx for x ¢ G, we have a v ¢ P; such
that 8 < 7.

Remarks. 3.13 fails without the assumption of divisibility (See Example
5 of §8). However, we do not know if any of the other assumptions can be
omitted.

Note that the intersection of all the laterally complete l-subgroups of D (X)
that contain G is the lateral completion of G (see [5]). In particular, each
p-endomorphism « of G has a unique extension to a p-endomorphism of the
lateral completion of G.

4. A characterization of P*(@)

In this section we prove a single theorem. It shows, for an archimedean
l-group G, that the largest f-ring of B(G') containing the identity is P (G).
Precisely

4.1 TurorEM. Let G be an grchimedean l-group, and let F be a subring of the
ring B(G) of ordered-bounded endomorphisms of G containing the identity 1.
Moreover, suppose that F s an f-ring where the order is given by the
cone F* = B(G)* nF. Then F* C P*(G) and hence (See 3.3)P(Q) is the
largest sub-po ring of B (G) which is an f-ring and contains 1.

Proof. Consider G as an l-group of almost finite extended real-valued con-
tinuous functions on the Stone space X of the Boolean algebra of polars as in
§3. Then it is sufficient to show that the support of gp is contained in the
support of ¢ for each g e G* and each p ¢ F*.

To this end suppose that there is an z e support (gp) which is not in sup-
port (g). Then there is a neighborhood Vi of z such that g(Vi) = {0}.
However, since z e support (gp), there is a ye Vi such that (go)(y) > O.
Since gp is continuous, there is a neighborhood V, of y contained in V; such that
(g9p) (@) > O for each we V1. It follows that there is 2; ¢ X and a neighbor-
hood V; of 2; such that g (V3) = {0} and (gp)(w) > Oforallwe V5. Now gp
is finite on an open dense subset of X and hence there is a y e V3 such that
0 < (gp)(y) + . Again, it follows that there is a 2, ¢ X and a neighborhood
V. of 2, such that ¢g(V,) = {0},and 0 < (go) (w) < 4+ forallwe V,. Also
we have that (gp°)(y) < -+ for some yeV,. Consequently there is an
zeX such that g(z) = 0,0 < (go) (@) < 4+, and 0 < (gp°) ()< + .
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Pick an integer n > 0 such that ngp () > go’(x) and let 8 = p A nl. Then
0= (p—8)/\ (n1 —45)sothat (p —d)(nl — o) = Osincep — dandnl — 3§
are disjoint elements of the f-ring F. We obtain a contradiction to our assump-
tion that support (ge) is not contained in support (¢) by showing that
g — 8)(nl — ) # 0. To this end note that

glo —8) (@) = (gp(x) — (90) (=) = (90) ()

since0 < 6§ < nlandg(x) =0. Thusg(p — ) = A where 0 < h < gp and
h(x) = gp(x). Moreover, inl(x) = ngp(x) and hS(x) < hp(z) <
go () < mge(z). Thus

g(p — 8)(nl — 3)(z)
= hlnl — 8)(x) = hnl(x) — hd(x) = ngo(x) — hé(z) > 0,
and we’re done.

Remark. By a similiar proof, one can show the following result. Theorem.
Let G be an archimedean I-group and let F be a subring of B (@) which contains
1, is an l-ring in the partial order F* = B(G)* n F, and satisfies: a, 8¢ F and
geG imply g (@ A B) = ga A g8. Then F* C P*(G).

5. The additive subgroup of an archimedean f-ring with identity

The object of this section is to prove

(5.1 TaeorEM. Let (G, +) be an archimedean l-group with weak order unit
e. Then (a) there s at most one multiplication on G so that (G, +, +) is an
f-ring with identity e, and (b) such a multiplication exists if and only if

{ea: a e PY(Q)} = G .

Before proving 5.1 we lay some groundwork. Let G be an archimedean
l-group with a weak order unit e, and let ePT(G) = {ea: ae PY(@)}. For
o, BePT(@),let ea + €8 = e(a + B), ea N\ €8 = e(a A\ B) and ea \/ €8 =
e(e \V B). Then eP*(G) is a subsemigroup and a sublattice of GT. Now
for ea, e8¢ PT(G), define (eax)(eB) = eaB. Then since e is a weak order
unit, it follows from 3.2 that if ey = e» where u, » ¢ PT(G), then u = ». Hence
the multiplication (ex)(e8) = eaB is well defined. It follows that eP™ (G)
is a semiring. Let G° denote the subgroup of G generated by eP*(G). Then

G ={ea —eB:a, BeP(G) = {eu — ev:p, veP(@) and ep N\ ev = 0}.

For if @, Be P(@), then ea = ea A e + s and e8 = ea N\ eB -+ t where
s/A\t=0. Thus

s=ea—ela\NB)=ela— (@ AB)) =eu wherey=0a— (e AB)eP(G)

and

t=e8—e(a/N\B)=¢e(B— (@ \B)) =e whereyr=8— (a/\B)eP(G)
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Thus e« — ¢8 = eu — ev. Inparticular, ey = (ea — e8)" and ev = (e —eB)”.
Thus (e — e8)*, (ea — €8)™ e ePT (@), so that G° is an I-subgroup of G with
positive cone eP*(G). Now by linearity, one can extend the multiplication
on eP*(G) to G, and it then follows easily that the map a — ea from P (G)
onto G° is an l-isomorphism. Thus P(G) is l-somorphic to G°. Thus if
G* = ePT(G), we have that (G, +) can be made into an f-ring with e as
identity. This proves one way of part (b) of 5.1. To see the converse of
part b), let g e Gt and assume that (@, +) is an f-ring with e as identity.
Then since the map  — ¢ is a p-endomorphism and eg = ¢, we have that
ePT(G) = G*. This completes the proof of part (b) of 5.1.

To see part (a) let o and - be two multiplications on G making G* into an
archimedean f-ring with identity e. Then for g e G"\{0}, the map & — zog
and z — z- e are p-endomorphisms of G. But a p-endomorphism is determined
by its action on a weak order unit and since ecg = g = e-g, we have that
zog = z-gforall ze@ and geG*. It follows that zoy = 2.y forall z, y e G
and we’re done.

This theorem is more or less “well known” (see [8]). The novelty is the
discription in terms of P (G).

6. Contractors on archimedean [-groups

Previously we have considered those endomorphisms of an I-group G which
leave invarient all minimal prime subgroups of G (see 2.1). We now turn
our attention to those endomorphisms of G which leave invarient all prime
subgroups of G.

6.1 DErFINITION. A contractor a on an l-group G is a group endomorphism
o of G such that Gta G and for each g e G there is an integer n = n(g) such
that go < mg.?

6.2 ProrosITION. Let G be an l-group and let a be an endomorphism of G
such that GTa S G*. Then the following are equivalent:
(1) « s a coniractor on G;
(i) o leaves invarient each convex l-subgroup of G'; and
(i) « leaves tnvarient each prime subgroup of G.

Proof. That (i) is equivalent to (ii) is clear. That (ii) is equivalent to
(iii) follows from the fact [4] that each convex [-subgroup is the interesection
of prime convex [-subgroups of G.

Note that the set C* (@) of contractors on G is closed under multiplication
and if G is abelian. it is closed under addition. Thus for abelian I-groups we
have that

C@) ={a—B:a,BeCT (@)}
8 Langford’s contractors [10] are our contractors withn(g) = 1for all g e G. Langford

asks if contractors on archimedean l-groups commute. Since each contractor is a p-
endomorphism the answer is yes.
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is a po subring of P (G) with positive cone
C@)nPY@G) = CT(@).

For if « — BeC(G) n P*(@) and g belongs to a convex l-subgroup M of G,
then go, g8 ¢ M and 80 g(a — B) = go — g8 e M. Therefore o — B C™ (G).

Now suppose that G is an archimedean l-group and assume as in §3 that
G C D(X) where X is Stone space of the Boolean algebra of polars on G.
Moreover, suppose that G has a weak order unit which we can assume is the
constant function 1 in D (X). Now let @ ¢ C(G). Then since « is a p-endo-
morphism of @, « is multiplication by a function & of D (X) (Theorem 3.2).
Moreover, there is an integer n such that 0 < ea < ne and hence for each
zeX wehavethat 0 < a(x) £ n. Thusa e C(X), the real-valued continuous
functions on X. Consequently, C* (@) is isomorphic to a subring of C'(X).

Example 8 of §8 shows that if G does not have a weak order unit, then C (@)
need not be contained in C'(X). However, we are able to prove

6.3 ProrosiTioN. Let G be an archimedean l-group. Then there vs a topo-
logical space Y such that C(G) s 1somorphic to a subring of C(Y).

Proof. Let {ex: \ e T} be a maximal disjoint of subset of G and assume that
G € D(X) where X is the Stone space of the Boolean algebra of polars of ¢
agin §3. Let {Xi : A e '} be a family of compact open subsets of X such that
er is the characteristic function of X, .

Let Y = U{Xy:\eT} and let « e C(G). Assume that e is represented by
the function @e D (X). (Theorem 3.2) Now let z¢Y and let A e T be such
that x € Xa. Then there is an integer n such that 0 < exa < me, so that
0 < a(x) £ n. Thus a(x) is real for each z ¢ X3, and hence & is real on Y.
It follows that C(G) is isomorphic to a subring of C(Y).

Now we show that a contractor « on an archimedean I-group G extends to a
contractor & on @, the completion of G. Note that since « is a p-endomor-
phism, « extends to a p-endomorphism & of G (see 3.11). Thus we need only
show that & is a contractor on (. First we note that if a, b, ¢, and d are real
numbers such that 0 < ¢ < band bc < db, then ac < da. Hence from Theorem
3.2 it follows that if « is a contractor on an archimedean l-group G and if
a, b e Gt are such that 0 < a < b and ba < nb where 7 is a positive integer,
then ae < na. Now recall that if heG, then h = \/ {k:keG and k < h}
and hé is defined by hé = VV {ka:ke@ and k < h}. Moreover let ge G
be such that ¢ > h, and let n be an integer such that ga < ng. Then for
k < h we have that ka < nk and hence

hé = Vika:keGandk < h} < V{nk:keGandk < h}
nVi{k:keGand k < h} = nh.

Hence & is a contractor on G. Thus we have proven

]

6.4 ProrosITION. Let G be an archimedean l-group, let a be a contractor on
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G, and let G denote the completion of G. Then if we define & : G — G by
hé = Vika:Gand k < h}
for he@, then & is a contractor on G.

Remark. It can be shown thatif {a : ¥ ¢ '} is a disjoint subset of an [-group
G, a = V ay and a is a contractor, then aa = V (aya).

7. A problem of Birkhoff

In this section E will always denote a complete vector lattice. By a
bounded contractor on E we shall mean a linear transformation « : £ — E
such that E¥ae € E* and za < M for some \ e R* and all 7 ¢ E*.

Recall [2] that if E is a complete vector lattice, then the algebra B (E) of
order-bounded linear transformations on E is a complete I-algebra; and if
{Th:NeT} is a subset of B(E) bounded above, then the supremum of
{T\ : N eT} is the linear transformation T : E — E defined by

. xT=’\/{$T)‘:)\€P}
forxeE™.

Now let a be a bounded contractor on E. Then the family
(>k va/mlik =12 -}

is bounded above by ¢'1z where 15 denotes the identity map of E and A ¢ R*
is such that za < Mz for all z ¢ ET. Thus the supremum of the family

(D hed"/nlik =12}

exists in B(E). We denote this supremum by ¢”. Birkhoff’s problem (Prob-
lem 154 of [2]) is now as follows. If ais a bounded contractor on a complete
vector lattice E, show that the family {¢* : ¢ ¢ R™} is a semigroup of operators.

The proof that {¢'* : t ¢ R*} is a semigroup of operators is broken up into a
series of steps.

1. Asusuallet X denote the Stone space of the Boolean algebra of polars of
E, and consider E as a sub-vector lattice of D (X) as in §3. Moreover, for
aeP(E), let @ denote the function in D (X) associated with « as in Theorem
3.2. Thus for f e E, fa = fa where the product on the right is the ring mul-
tiplication in D (X).

2. Let feD(X) and let R(f) = {xeX :f(x) is real}. Then for each
zeR(), [beof"/n 1) (x) < ¢ and since the map z — ¢’® is continuous
on R(f) (and hence extends to an element of D (X) which we denote by
exp (f)), we have that the set { D 5mof"/n!:k = 1,2, ---} is bounded above
by an element of D (X). Thus the supremum of the set { D bof"/n!: k% =
1, 2, ---} exists; we denote it by ¢/. Note that ¢ < exp (f). Moreover,
suppose that geD(X) is > > %_,f"/n! for each k. Then

g(@) > D hof"(@)/n!
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for each k and each z ¢ R(f) n R(g). It follows that g(z) > ¢’ for each
zeR(g) n R(f) and hence g > exp (f); and hence ¢ = exp (f). Thus for
each zeR(f), we have that

VI o /mlik =12 -}(@) = £°.

Thus it is clear that for f, g e D (X)), we have that e"*? = ¢’¢’.
3. If ais a bounded contractor on E, then ¢ is also a bounded contractor

by the remarks in the first paragraph of this section. Now for g ¢ E* we have
that

ge* = gV {D b oa/mlik =1,2, -} = V{Dhogd/mn!l k=12 -}

= V{Xhaga'/mlik=12 -} =\V{2hod"/m)g:k=12"--}.
But by 3.8,

(O thpa/m)g ik =1,2 -}

=[Vi{2riia"/m!:h =12 ---}lg = e%.
Thus

ge® = e%g
and hence we have that

e = e°.

4. For o and 8 bounded contractors on E, we have that o + 3 is a bounded
contractor and

e(a+ﬂ) = e¢¥+ﬂ = 60-1 E E E Za? = eaeﬂ

so that e*** = %,
We thus have proven

7.1 TaeorEm. Let E be a complete vector lattice and let o be a linear trans-
formation such that EYa C ET and za < Mz for some N e R and all z ¢ EY.
Then the family {e**: ¢ e R*} is a semigroup of operators where

e =\ (ko= 1,2 ).
8. Examples

In examples (1), (2), (3) and (4),let @ = R @ R be the cardinal sum of
two copies of the reals B. Then each o-endomorphism of G is linear,

B@)" ={(a):ab¢d>0}
and B(Q) is the full ring of linear transformations on G. Moreover,
PYG) =C@) ={(¢3):adeR".

1. Let8 = {(®%) : aeR}. The 8 is a sub-fring of l-endomorphisms of
B (@) not contained in P (G).

2. 8 ={Gy) :xyeRN0}] is subsetmrmg of l-endomorphisms of
B(G) which contains I. But (60) = G1) — G1)e 8)N\S.
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3. LetS = {2 :a reR}. Then S isa commutative subring of B(G)
which contains 1¢ and is generated by the l-endomorphisms (5 1) and ( 3).
Now (05) A le¢ = 0, but (25)1e¢ = (7 0) so that S isnot an f-ring. Also (3 1)
is not an [-endomorphism since (1,0)@ 1) = (1,1) and (0,1)(G 1) = (0, 1)
are not disjoint. Finally 8 is not real representable since (3 §)* = 0.

4. LetS = {( zgﬂ,) : &,y e RT}. Then 8 is a subsemiring of P* (@) and
52) — (03) = 1¢e8\S. In particular, (8)* & S.

5. An example where P (G) s complete and proper subring of P(G). Let G
be the additive group of all rational numbers with square free denominators.
Then clearly @ = R and so P(G) = R*, but PT(@) = Z*. For if the map
& — kz belongs to P*(G), then 1 — % so that k& ¢ G and also &* ¢ G since k — k’.
Now write k* = m?/pi® -+ p’» where p., are primes and m is an integer.
Then it follows since %’ ¢ G that & must be an integer and hence P*(G) = Z™.

6. A non-archimedean o-group G for which P*(G) is commutative. Let
G =Z ® Q where (n,q) < (0,0)if ¢ >00rq =0andn > 0. Then all
o-endomorphisms commute since o-endomorphisms are of the form
(n, ¢) — (kn, pq) where k ¢ Z* and p ¢ Q.

7. A coniractor which is an l-automorphism but whose inverse is not a con-
tractor. Let G be the direct product of countably many copies of the reals.
For (x1, 22, ---) e G, let (x1, 22, )a = (@1, 22/2, 23/3, -++). Then

(1) 1; "')0‘~1 = (1, 2:3, ) ¢n(1y 171 )
for any integer n.

8. A contractor in D (X)\C(X). Let G be the direct sum of countably
many copies of the realsand let p = (1,2,3, ---). Then since the Stone space
X of the Boolean algebra of polars of G is the Stone-Cech compactification of
the rational numbers, it is clear that p ¢ D (X )\C (X).

9. An archimedean l-group, a p-endomorphism o, and a prime l-ideal P such
that Pa $ P. Let @ be the direct product of countably many copies of the
integers and let @ be the p-endomorphism given by (1, 2, 3, ---). Then if
G(1, 1,1, --+) denotes the l-ideal generated by (1, 1, 1, ---) we have that
1,1,1,---)ae¢G@,1,1,--.). Thus there is a prime l-ideal P of G contain-
ing @1, 1, 1, - -+ ) but not containing (1, 1,1, - -+ ). Thus Pa $ P.

10. An o-endomorphism of the l-group of a vector lattice which is not linear.
Let @ = R @ R where (x,y) > (0,0)ifz > 0orxz =0andy > 0. Then
(1), where a, b ¢ R* and f is a non-linear group endomorphism of R, is a non-
linear o-endomorphism of G.

11. An archimedean l-group G, and a p-endomorphism o of G such that
& G — G is onto but a isnot onto. Let G = E?—l @ Qt" where @ denotes the
rationals and ¢ is a transcendental number. Then G C R and we put the
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natural induced order on G. Now G = R and the map « : G — G given by
y — ty is not onto but & : G@ — @ is onto.

Added in proof. There is some overlap between the theory developed here,
and that in A. Bigard and K. Keimel, Sur les endomorphismes conservant les
polaires d’un groupe réticulé archimédien, Bull. Soc. Math. France, vol. 97
(1969) pp. 381-398.

Their paper was submitted after but published before ours.
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