ON THE RELATIVE STRENGTH OF KARAMATA MATRICES

BY
W. T. SLeEDpD

1. Introduction and deflnitions

If A = (a.) is an infinite matrix and S = {S;} is a sequence then A is
applicable to S if all of the series

yn:z:‘oanksk, n=0,1)2:"'

converge. If, in addition, {y.} is a convergent sequence, then A sums S to
lim y,. Whenever A sums every convergent sequence S to lim S, then A4 is
regular. If A and B are two matrices and A sums every sequence that B
sums then A is sironger than B.

Many useful matrices in the theory of summability are obtained from non-
constant functions f(z) that are analytic in a neighborhood of the origin by
setting

[f(z)]"=Zr'ofnkzk’n=l72’°"’ Jo =1, f0k=07k=1,27°"'

The matrix (f.x) is said to be generated by f(z). For example f(z) =
1 — r 4 7z generates the Euler E, method [1] and f(2) = (1 — r)/(1 — r2)
generates a method studied by W. Meyer-Konig (3] and P. Vermes [6].

A natural generalization of these methods is the matrix generated by

f@) = (@+ (I —a—B)2)/(1 — B2).

Such a method is called a Karamata matrix and will be denoted by K[e, 8]-
B. Bajsanski [2] has studied these matrices and determined conditions that
they be regular when « and 8 are real. He has also investigated the relative
strength of different Karamata matrices.

The conditions for regularity of K[a, 8] have been generalized to complex
values of o and B [5], and Bajsanski’s theorem about the relative strength of
Karamata matrices is a corollary of a more powerful result in his paper. Itis
then reasonable to hope that more specialized techniques together with more
information on regularity will yield other theorems about the relative strength
of Karamata matrices. Results of this type will be found in Section 3. Sec-
tion 2 is devoted to some preparatory theorems, and Section 4 to closing re-
marks.

2. Some preparatory theorems

The Weierstrass theorem on uniformly convergent series of analytic fune-
tions will be a primary tool, and when reference is made to Weierstrass’
theorem it is this theorem which is being cited.
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TureoREM 2.1. If f(2) and g(z) generate matrices F and G, respectively, and
if f(z) is analytic on an open disc which contains g (0), then h(z) = f(g(2))
generates a matrix H and H = F(@.

Proof. Since f(z) is analytic at ¢ (0) then A (z) is analytic in a neighborhood
of the origin and hence generates a matrix. If f(z)is analyticin{z:|2z| < R}
then since |g(0)| < R, there is a neighborhood N of the origin where
lg()| < Ri < R. Applying Weierstrass’ theorem

2 hu = @I = gD = 250 faslg @) = 202" 250 fap 9o
inN. SoH = FG.

CoroLLARY 2.2. If |ad| < 1 then Klv, §]K[a, B] = K[n, u] where
1= (y+al—v-195))/1—ad) and p= B+l —a—4g))/(1—a).

Proof. This result is a direct consequence of Theorem 2.1.

TaroreEM 2.3. If Kla, 8] = (fux) then

;f”kt,, _a —(1a>_(1at; B)t(ﬁ + (i —a = /3)t)’°“, k=12
2iatwt® =1/1 — ab),

Proof. Letf(z) = (a+ (1 —a —B)2)/(1 —Bz). O <R < 1/|8]
then thereisa p > O such thatif || < pand [z| < Rthen |#f(2) | < M < L.
Fix |t] < p and let

6:i(2) = 1/ (1 — tf(2)) = 2a=o "[f ()],

Since this series converges uniformly in |[z| < R, we may apply the Weier-
strass theorem and write

6:(2) = D om0 2 Dm0 fui 1",

1 ___I—Bz 1
1 — tf(2) 1—-at1_(3+(1——a——ﬂ)t>
1 — ot 2

But

and for sufficiently small | z| and | ¢| this may be expanded into the series

1 —Bz<6+(1 —a—ﬁ)t>'°zk_

=01 — at 1 — at

Equating coefficients of the two power series for ¢.(2) then completes the
proof.

TurorEMm 2.4. () If B 5= 0 then Kla, 8] is applicable to {S.} if and only if
S, = O(n_pﬂ—n)’ p= 0, 1’ 2, 000
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(b) If {8.} is summed by Kle, 0] then

= o((:h)

Proof. (a) By Corollary 2.2., Kla, 0]K[0, 8] = Kle, B]. The matrix
K]e, 0] is normal, i.e. all of its terms which lie above the diagonal are zero and
those terms on the diagonal are not zero. If K[a, 0] = (au), KI[0, 8] = (bux)
and Kla, 8] = (cu) then

b = 520851 — B)", nk =12 -

D om0 Cak Sk = om0 Sk Z;no Gnp bpr -

Since a., 3 0, mathematical induction may be used to establish that > et Si
converges for each n if and only if . by Si converges for each p. But it is
known [4] that a necessary and sufficient condition that all these latter series
converge is that S, = O *8"),p =0,1,2, -+ .

(b) It is well-known [1] that if K[a, 0] = (am) and o, = D im0 @ur Sk,
n=201,2, - then

n n a k 1 n—k
=5z ()
Since {ox} converges and hence is bounded, then
Ol )- o (G2))
s =0(& () =o\\t=21) )

1 —a
CoroLLARY 2.5. If Kla, B] sums the sequence {S,} then D, Si t* converges in
some neighborhood of the origin.

and

e
l1—a

Proof. This follows from the estimates obtained in Theorem 2.4.

3. The principal results

TaeoreEMm 3.1. Suppose Kla, 8] and Ky, u] are regular Karamata matrices,
and that there is a reqular Karamata malriz Kly, 8] such that

K[’Y; B]K[a; gl = K{n, pl.

If Kla, B] sums the sequence {S,} to L and D S 2* is analytic at 8, and if
K{[n, u] is applicable to {S,} then K[n, u] also sums {S.} to L.

Proof. Without loss of generality assume that So = 0. For if not, let
Sw =28, —Sand I’ = L — 8,. Since Kl[a, 8] is regular, then | 8| < 1 [5]
50 that K[e, 6] sums the sequence {S»} to L’. Moreover > Si & is analytic at
B8, and since K[n, u] is applicable to {S,}, it is also applicable to {8 »}. Through-
out the proof let K[a, 8] = (au), K[v, 8] = (cur), and K(n, u] = (bu). The
estimates of Theorem 2.4 show that > Sy ¢* and all of its derivatives converge
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uniformly in a closed disc about the origin whose radius is | 8| if 8 # 0 and is
[1—al/2(1 4 |a])ifB =0. (Weexclude from our consideration the case
where 8 = 0 and @ = 1.) Thus if

a(@) =B+ 1 —-a—-gw)/1- aw)

then Y, S[a (w)]* converges uniformly together with its derivatives in a closed
region which contains the origin. By Theorem 2.3 if

@ = L5 5 slar

then
H(@) = D o=t St D gm0 Gpk @ = D1 St @ ().
If Weierstrass’ theorem is applied to H () it follows that
H® (@) = 2 %=1 8 o ()

and the uniform convergence of this series implies that

(n) ©
lim (@) _ 5 g " (0) = 3 awsi.

w0 n! k=1

But since 2 S; ¢* is analytic at 8 and a(O) = 8 then H (w) is analytic at the

origin. So
H(w) = E?-l o' Z;:-l aw Sy = Z?—l o o
Since {oi} is bounded, H (w) is analytic at least where |w| < 1. Let

G(2) = (1 — )1 — 8)zH(c(2)) s+ (1 —y — 6)z
Q=)0+ (1 — v — 0 1 — vz

Now Klv, 8] is regular, so |§| < 1 [5] and if § = 0, then ¢(0) = 0. Since
H (0) = 0 then G (z) is analytic in a neighborhood of the origin. By Theorem

2.3
G(z) = Z;:—l Sk Z?—o (1372 Zr-o i1 2
and for sufficiently small | z|,
2?"0 Qu E;?_o Cjt zj = Z;O-O zj Z‘?—o Cj1 Qe = Z;o—o bjk- Zj.

Using Theorem 2.3 again shows that

77)(1 - I-‘)z Z S [b(z)]k—l where b(Z) r+ (1 - N - [L)z
(1 — g2)? 1 — 92

Now by hypothesis K[, u] is applicable to {S,}, so the argument used earlier
may be duplicated on G (2) to show that

G(n) (O)/n | = Z}?—l buk Sy, .

where c¢(z) =

6() = 4

But

_ (1 =) — )z - l
G0 = TG (= =5 & @]
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when |c(2) | < 1, s0 by Theorem 2.3 G(2) = D =1 01 Q=0 ;1 2’ and it fol-
lows that

G™O)/n! = Dt caar,

Z;:-l bk S = 27-1 Cnl 01«
Since K[y, 6] is regular and {s;} converges to L, then K[y, u] sums {S,} to L.

so that

CoroLLARY 3.2. Suppose that |a(p — B)| < |1 — a — B + au| and
[1—a—B+aul —[|n(l —8) —all —ul
>Q-a)@ =8 -8)A—-u)>0
and that K|[a, 8] sums {S,} to L. If Z Sk t* is analytic at B and Kln, u] 7s ap-
plicable to {S,} then K[n, u] sums {S,} to L.

Proof. The conditions on «, 8, u, 7 are those needed to use Corollary 2.2
and to insure that K[y, 8], as given in Theorem 3.1, be regular [5].

4. Closing remarks

In Theorem 3.1 it was necessary to assume that Z S.. t* be analytic at 8.
To see this we use the fact [4] that if 0 < 8 < 1 then there is an infinite-
dimensional linear space of sequences S = {S,} such that K[0, 8]S = 0. Itis
readily seen that if S is such a sequence and if 3 S, " is analytic at 8 then
S, = O foreachn. Nowlety =gnandé = —8/(1 — B)sothatu = 0. Let
S # 0 be a sequence for which K[0, ]S = 0 and let 0 < 8 < 1/3 so that
there is a number 7 satisfying

B/A—=B8)<a2< (1—-p)/Q1A+8)
The left-hand side of this inequality implies that K[y, 8] is regular but the
right-hand side implies that (1 — 5)/(1 4+ 9) > 8. Consequently if
Sn=0(A+12)/QA =)

then Y S, " is analytic at 8. So by Theorem 2.4 K[, 0] cannot sum {S,}
It is also necessary to assume that K[», x] was applicable to the sequences in

question. That the other hypotheses of the theorem do not always guarantee

this may be seen by considering the case where 0 < & < 1,0 < § < 1 and

A = K[, 0], B = Kl[a(1 —8)/(1 — ad),6(1 — a)/(1 — od)], C = K]0, 8].

Then C is a regular matrix [5] and by Corollary 2.2, CA = B. Butif S, =
(=1 — a)/1 — a))"and 0 < r < 1 then {S,} is assumed to zero by
K][a, 0] while if » and § are chosen near enough to 1, then

1+« l—«
r(l-—a>6(1—aé)>1

so that by Theorem 2.4, B is not applicable to {S.}.
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However, there are relatively common situations where the applicability of
Kla, 8] to {8,! implies the applicability of K[n, u]. It may be seen that if 2
satisfies

¢9) lz| < 1/|8]
and
1) [(@+ 1 —a—8))/(1—-38)<1

then K[a, 8] sums {z"} to zero. If |a] < 1, then an easy application of Weier-
strass’ theorem implies that K[y, u] also sums {z"} to zero. But if there are
values of z which satisfy (II) but not (I) and if || > | B8] then there are
values of z which satisfy (IT) and [2u| > 1 > | Bz|. Then Kla, 8] sums {2"} to
zero but K[y, u]is not applicable. Consequently | u | < | 8| and so by Theorem
2.4, K[n, u] is applicable to every sequence to which K[, 8] applies. Condi-
tions on K[a, 8] that there be a z satisfying (II) but not (I) are complicated
in general, but in the case where o and B are real and Kla, 8] is regular,
these conditions become

@+8) <[l A—8—2a)
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