CLOSED ONE-SIDED IDEALS IN CERTAIN B*-ALGEBRAS

BY
Bruce A. Barnes ${ }^{1}$

1. Introduction

Throughout this paper we work in a B^{*}-algebra B with a special property we call Property A (Definition 2.4). Essentially this property assures that B has enough projections for our purposes. $A W^{*}$-algebras have Property A. We relate the closed left ideals of B to subsets of a certain ordered set of sequences of projections in B (Theorem 3.8). Then this relationship between closed left ideals of B and sets of projections in B is used to characterize the maximal left ideals of B. When B is commutative, a proper closed ideal M of B is maximal if and only if whenever E is a projection on B such that $E \notin M$, then $(I-E) \in M$. This can be verified for $A W^{*}$-algebras using the results of (7). We generalize this result to the case where B is non-commutative (and say an $A W^{*}$-algebra) as follows. When E and F are projections in B such that $E \cap F=0$ and $E+F$ is invertible in B then we call F a strong complement of E. Then a proper closed left ideal M of B is maximal if and only if whenever $E \notin M$, then E has a strong complement in M (Theorem 4.5).

In the last two sections of the paper we apply the results relating closed left ideals and sets of projections in B. First we give a new proof (and a slight generalization) of the known theorem that E is a central projection of B if and only if E has a unique complement in B (Theorem 5.1). Then in the last section we characterize the null space of a pure state of B and use this result to give a necessary and sufficient condition that a pure state of a closed ${ }^{*}$-subalgebra of B with property A have a unique extension to a pure state of B.

2. Preliminaries

Throughout this paper we assume that B is a B^{*}-algebra with an identity I. $E \in B$ is a projection if $E=E^{2}=E^{*}$. If $\left\{E_{n}\right\}$ is a sequence of projections in B with the property that $\lim _{n \rightarrow \infty}\left(I-E_{m}\right) E_{n}=0$ for every fixed m, then $\left\{E_{n}\right\}$ is called an admissible sequence. In particular any decreasing sequence of projections is admissible. We denote the set of all admissible sequences of projections in B as S . If $\left\{E_{n}\right\}$ and $\left\{G_{n}\right\}$ are in S , we define $\left\{E_{n}\right\} \leq$ $\left\{G_{n}\right\}$ if $\lim _{n \rightarrow \infty}\left(I-G_{m}\right) E_{n}=0$ for every m.

Proposition 2.1. $\leq i s$ reflexive and transitive on S .
Proof. Reflexivity is immediate since every sequence in \mathcal{S} is admissible. Now assume that $\left\{G_{n}\right\},\left\{F_{n}\right\},\left\{E_{n}\right\} \in \mathcal{S}$, and $\left\{G_{n}\right\} \leq\left\{F_{n}\right\}$ and $\left\{F_{n}\right\} \leq\left\{E_{n}\right\}$. Fix

[^0]m and assume that $\varepsilon>0$. Choose k so large that $\left\|\left(I-E_{m}\right) F_{k}\right\|<\varepsilon / 3$. Then choose N so large that $n \geq N$ implies $\left\|\left(I-F_{k}\right) G_{n}\right\|<\varepsilon / 3$.
\[

$$
\begin{aligned}
\left(I-E_{m}\right) G_{n} & =\left(G_{n}-F_{k} G_{n}\right)+\left(F_{k} G_{n}-E_{m} F_{k} G_{n}\right)+\left(E_{m} F_{k} G_{n}-E_{m} G_{n}\right) \\
& =\left(I-F_{k}\right) G_{n}+\left(I-E_{m}\right) F_{k} G_{n}+E_{m}\left(F_{k}-I\right) G_{n}
\end{aligned}
$$
\]

Therefore when $n \geq N$,
$\left\|\left(I-E_{m}\right) G_{n}\right\| \leq\left\|\left(I-F_{k}\right) G_{n}\right\|+\left\|\left(I-E_{m}\right) F_{k}\right\|+\left\|\left(I-F_{k}\right) G_{n}\right\|<\varepsilon$.
This proves that $\lim _{n \rightarrow \infty}\left(I-E_{m}\right) G_{n}=0$. Therefore $\left\{G_{n}\right\} \leq\left\{E_{n}\right\}$.
If $\left\{E_{n}\right\}$ and $\left\{F_{n}\right\}$ are in S, and $\left\{E_{n}\right\} \leq\left\{F_{n}\right\}$ and $\left\{F_{n}\right\} \leq\left\{E_{n}\right\}$, we call $\left\{E_{n}\right\}$ and $\left\{F_{n}\right\}$ equivalent and we write $\left\{E_{n}\right\} \sim\left\{F_{n}\right\}$. It follows from Proposition 2.1 that \sim is an equivalence relation on S. Let \mathcal{K} denote the set of equivalence classes of \mathcal{S} determined by \sim. When $\left\{E_{n}\right\} \in \mathcal{S}$, we denote the equivalence class in K containing $\left\{E_{n}\right\}$ by $\left[E_{n}\right]$. We extend the ordering from \mathcal{S} to K in the usual way: If $a, b \in \mathscr{K}$, then $a \leq b$ if there exists $\left\{E_{n}\right\} \in a$ and $\left\{F_{n}\right\} \in b$ such that $\left\{E_{n}\right\} \leq\left\{F_{n}\right\}$.

If E is a projection in B we identify the sequence $\{E, E, E, \cdots\}$ in δ with E. Furthermore we again identify E with the equivalence class containing $\{E, E, E, \cdots\}$. It is not difficult to verify that $\left\{E_{n}\right\} \sim\{E, E, E, \cdots\}$ if and only if there exists an integer N such that $E_{n}=E$ for all $n \geq N$. Also $[\{E, E, E, \cdots\}] \leq[\{F, F, F, \cdots\}]$ in \mathcal{K} if and only if $E<F$ in the usual ordering of projections in $B(E<F$ means $E F=E)$. Thus from now on we consider the lattice of projections of B as embedded in \mathcal{S} and \mathfrak{K}, and we write without confusion, $E \in \mathcal{S}$ or $E \in \mathcal{K}$.

Definition 2.2. Given $T \in B$, we call $\left\{E_{n}\right\} \in \mathcal{S}$ an annihilating sequence of T if
(1) $E_{n} \neq 0$ all n,
(2) $\lim _{n \rightarrow \infty} T F_{n}=0$,
(3) for every m, there exists $T_{m} \in B$ such that $T_{m} T=I-E_{m}$.

Proposition 2.3. Assume $T \in B$ and $\left\{E_{n}\right\},\left\{F_{n}\right\} \in S$. Then:
(1) If $\left\{F_{n}\right\} \leq\left\{E_{n}\right\}$ and $\lim _{n \rightarrow \infty} T E_{n}=0$, then $\lim _{n \rightarrow \infty} T F_{n}=0$.
(2) If $\lim _{n \rightarrow \infty} T F_{n}=0$ and $\left\{E_{n}\right\}$ is an annihilating sequence of T, then $\left\{F_{n}\right\} \leq\left\{E_{n}\right\}$.
(3) If $\left\{F_{n}\right\}$ and $\left\{E_{n}\right\}$ are annihilating sequences of T, then $\left\{F_{n}\right\} \sim\left\{E_{n}\right\}$.

Proof. Assume that $\left\{F_{n}\right\}$ and $\left\{E_{n}\right\}$ satisfy the hypotheses given in (1). Then $T F_{n}=T E_{m} F_{n}+T\left(I-E_{m}\right) F_{n}$ for all n, m. Given $\varepsilon>0$, choose m_{0} so large that $\left\|T E_{m_{0}}\right\|<\varepsilon / 2$. Since $\left\{F_{n}\right\} \leq\left\{E_{n}\right\}$, there exists an integer N such that whenever $n \geq N$, then $\|T\|\left\|\left(I-E_{m_{0}}\right) F_{n}\right\|<\varepsilon / 2$. Therefore when $n \geq N$, then $\left\|T F_{n}\right\|<\varepsilon$. This proves that $\lim _{n \rightarrow \infty} T F_{n}=0$.

Now assume that $\left\{E_{n}\right\}$ and $\left\{F_{n}\right\}$ are as given in (2). Let $T_{m} \in B$ be such that $T_{m} T=I-E_{m}$ for every m. Then

$$
\lim _{n \rightarrow \infty}\left(I-E_{m}\right) F_{n}=\lim _{n \rightarrow \infty}\left(T_{m} T F_{n}\right)=0
$$

for each m. Therefore $\left\{F_{n}\right\} \leq\left\{E_{n}\right\}$. This proves (2). (3) follows immediately from (2) and Definition 2.2.

The theorems that we prove in this paper hold when B is an $A W^{*}$-algebra. However the results are true for more general algebras B. Therefore we introduce a property which is sufficient for our purposes. An additional hypothesis concerning B will be assumed in Section 5 and part of Section 4.

Definition 2.4. $\quad B$ has property A if whenever T is a noninvertible positive element in B, then there is an annihilating sequence of T in \mathcal{S}.
B will have property A if every maximal commutative *-subalgebra of B is generated by projections. We shall not prove this. Particular examples are $A W^{*}$-algebras (see [3, p. 236]), and the $B_{p}{ }^{*}$-algebras introduced by C. Rickart (see [5, pp. 534-536]; Lemma 2.9, p. 535 is especially relevant). For the remainder of this section we shall be concerned with the proof that when B has property A, then every two elements of \Re have a greatest lower bound. The formal statement of this result is given in Theorem 2.8. Now we prove several technical lemmas.

Lemma 2.5. Assume that $\left\{E_{n}\right\},\left\{F_{n}\right\} \in \mathcal{S}$ and that for each $m \geq 1$, there exists $\left\{G_{n}{ }^{(m)}\right\} \in \mathcal{S}$ such that $G_{n}{ }^{(m)} \neq 0$ for all n, m,

$$
\lim _{n \rightarrow \infty}\left(I-E_{m}\right) G_{n}^{m}=0 \quad \text { for all } m
$$

and

$$
\lim _{n \rightarrow \infty}\left(I-F_{m}\right) G_{n}^{(m)}=0 \quad \text { for all } m
$$

Then the operator,

$$
T=\sum_{k=1}^{+\infty}\left(\frac{1}{2}\right)^{k}\left(\left(I-E_{k}\right)+\left(I-F_{k}\right)\right)
$$

is not invertible.
Proof. Assume $\varepsilon>0$. Take N so large that $\sum_{k=N+1}^{+\infty}\left(\frac{1}{2}\right)^{k}<\varepsilon / 6$. Choose m so large that $\left\|\left(I-E_{k}\right) E_{m}\right\|<\varepsilon / 6$ and $\left\|\left(I-F_{k}\right) F_{m}\right\|<\varepsilon / 6$ for all k such that $1 \leq k \leq N$.

$$
\begin{aligned}
T G_{n}^{(m)}= & \sum_{k=1}^{N}\left(\frac{1}{2}\right)^{k}\left(\left(I-E_{k}\right) E_{m}+\left(I-F_{k}\right) F_{m}\right) G_{n}^{(m)} \\
& +\sum_{k=N+1}^{+\infty}\left(\frac{1}{2}\right)^{k}\left(\left(I-E_{k}\right)+\left(I-F_{k}\right)\right) G_{n}^{(m)} \\
& +\sum_{k=1}^{N}\left(\frac{1}{2}\right)^{k}\left(\left(I-E_{k}\right)\left(I-E_{m}\right) G_{n}^{(m)}+\left(I-F_{k}\right)\left(I-F_{m}\right) G_{n}^{(m)}\right) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\left\|T G_{n}^{(m)}\right\| \leq & \sum_{k=1}^{N}\left(\frac{1}{2}\right)^{k}(\varepsilon / 3)+\sum_{k=N+1}^{+\infty}\left(\frac{1}{2}\right)^{k}(2) \\
& +\sum_{k=1}^{N}\left(\frac{1}{2}\right)^{k}\left(\left\|\left(I-E_{m}\right) G_{n}^{(m)}\right\|+\left\|\left(I-F_{m}\right) G_{n}^{(m)}\right\|\right)
\end{aligned}
$$

We can choose n so large that this last term is less than $\varepsilon / 3$. Then $\left\|T G_{n}^{(m)}\right\|<\varepsilon$. This proves that T can not be invertible.

Lemma 2.6. (1) If T and S are positive elements in B and

$$
\lim _{n \rightarrow \infty}(T+S) G_{n}=0
$$

where $\left\{G_{n}\right\} \in \mathbb{S}$, then $\lim _{n \rightarrow \infty} T G_{n}=0$ and $\lim _{n \rightarrow \infty} S G_{n}=0$.
(2) Assume that $\left\{T_{n}\right\}$ is a bounded sequence of positive elements in B, and let $T=\sum_{n=1}^{+\infty}\left(\frac{1}{2}\right)^{n} T_{n}$. If $\lim _{n \rightarrow \infty} T G_{n}=0$ where $\left\{G_{n}\right\} \in \mathbb{S}$, then $\lim _{n \rightarrow \infty} T_{m} G_{n}=0$ for all m.

Proof. First we note the following results concerning sums of positive elements of a B^{*}-algebra. Any finite sum of positive elements is positive by [6, Lemma (4.7.10), p. 234]. Also a limit of a sequence of positive elements is again positive by the remarks on p. 37 in [6]. We assume these results in the proof of (1) and (2).

Assume that (1) holds and T is defined as in (2). We can write T as the sum of two positive elements:

$$
T=\left(\frac{1}{2}\right)^{m} T_{m}+\sum_{n=1, n \neq m}^{+\infty}\left(\frac{1}{2}\right)^{n} T_{n}
$$

Then if $\lim _{n \rightarrow \infty} T G_{n}=0, \lim _{n \rightarrow \infty} T_{m} G_{n}=0$ by (1).
Now we prove (1). Assume that T, S and $\left\{G_{n}\right\}$ satisfy the hypotheses of (1). Then $\left\|(T+S) G_{n}\right\|=\varepsilon_{n}$ and $\varepsilon_{n} \rightarrow 0$. By [6, Theorem (4.8.11), p. 244], we may assume that T, S and $G_{n}, n \geq 1$, are operators on a Hilbert space \mathfrak{H}, and that $\|\cdot\|$ is the operator norm. For any h in the unit ball of \mathfrak{H},

$$
\left((T+S) G_{n} h, G_{n} h\right) \leq \varepsilon_{n}
$$

Then $\left(T G_{n} h, G_{n} h\right)+\left(S G_{n} h, G_{n} h\right) \leq \varepsilon_{n}$, and therefore

$$
\left(T G_{n} h, G_{n} h\right) \leq \varepsilon_{n} \quad \text { and } \quad\left(S G_{n} h, G_{n} h\right) \leq \varepsilon_{n}
$$

It follows that $\left\|G_{n} T G_{n}\right\| \rightarrow 0$ and $\left\|G_{n} S G_{n}\right\| \rightarrow 0 . \quad\left\|G_{n} T G_{n}\right\|=\left\|T^{1 / 2} G_{n}\right\|^{2}$, so that

$$
\left\|T G_{n}\right\| \leq\left\|T^{1 / 2}\right\|\left\|T^{1 / 2} G_{n}\right\| \rightarrow 0
$$

Similarly $\left\|S G_{n}\right\| \rightarrow 0$.
Lemma 2.7. Assume that B has property A. Suppose that $\left\{E_{n}\right\}$ and $\left\{F_{n}\right\} \in \mathbb{S}$ have the property that $\left(I-E_{n}\right)+\left(I-F_{n}\right)$ is not invertible for all $n \geq 1$. Then there exists $\left\{J_{n}\right\} \in \mathbb{S}$ with the following properties:
(1) $\left\{J_{n}\right\}$ is not equivalent to 0 .
(2) $\left\{J_{n}\right\} \leq\left\{E_{n}\right\}$ and $\left\{J_{n}\right\} \leq\left\{F_{n}\right\}$.
(3) If $\left\{G_{n}\right\} \in \mathcal{S}$ and $\left\{G_{n}\right\} \leq\left\{E_{n}\right\}$ and $\left\{G_{n}\right\} \leq\left\{F_{n}\right\}$, then $\left\{G_{n}\right\} \leq\left\{J_{n}\right\}$.

Proof. Let

$$
T=\sum_{k=1}^{+\infty}\left(\frac{1}{2}\right)^{k}\left(\left(I-E_{k}\right)+\left(I-F_{k}\right)\right)
$$

Since $\left(I-E_{k}\right)+\left(I-F_{k}\right)$ is not invertible for any k, there exist for each k, an annihilating sequence for $\left(I-E_{k}\right)+\left(I-F_{k}\right),\left\{G_{n}^{(k)}\right\}$. Then

$$
\lim _{n \rightarrow \infty}\left(I-E_{k}\right) G_{n}^{(k)}=0 \quad \text { and } \quad \lim _{n \rightarrow \infty}\left(I-F_{k}\right) G_{n}^{(k)}=0
$$

by Lemma 2.6 (1). By Lemma 2.5, T is not invertible. Let $\left\{J_{n}\right\} \in \mathcal{S}$ be an annihilating sequence of T in B. By Lemma 2.6, $\lim _{n \rightarrow \infty}\left(I-E_{m}\right) J_{n}=0$ and $\lim _{n \rightarrow \infty}\left(I-F_{m}\right) J_{n}=0$ for every m. It follows that $\left\{J_{n}\right\} \leq\left\{E_{n}\right\}$ and $\left\{J_{n}\right\} \leq\left\{F_{n}\right\}$. Now assume that $\left\{G_{n}\right\} \in \mathbb{S},\left\{G_{n}\right\} \leq\left\{E_{n}\right\}$, and $\left\{G_{n}\right\} \leq\left\{F_{n}\right\}$. Then for each m,

$$
\lim _{n \rightarrow \infty}\left(\left(I-E_{m}\right)+\left(I-F_{m}\right)\right) G_{n}=0
$$

It is easy to verify that this implies $\lim _{n \rightarrow \infty} T G_{n}=0$. Then by Proposition $2.3(2),\left\{G_{n}\right\} \leq\left\{J_{n}\right\}$. This completes the proof.

Now we are in a position to prove that any two elements in \mathscr{K}^{K} have a greatest lower bound in \Re.

Theorem 2.8. Assume that B has property A. If $a, b \in \mathscr{K}$, then a and b have a greatest lower bound in \mathfrak{K} which we denote $a \wedge b$. Furthermore $\left[E_{n}\right] \wedge$ $\left[F_{n}\right] \neq 0$ if and only if $\left(I-E_{n}\right)+\left(I-F_{n}\right)$ is not invertible for all n.

Proof. Given $\left[E_{n}\right]$ and $\left[F_{n}\right] \in \mathfrak{K}$. If $\left(I-E_{n}\right)+\left(I-F_{n}\right)$ is not invertible for all n, then we can choose $\left\{J_{n}\right\} \in \mathcal{S}$ with the properties listed in Lemma 2.7. Then clearly $\left[J_{n}\right]$ is a greatest lower bound of $\left[E_{n}\right]$ and $\left[F_{n}\right]$. Now assume that there exists m such that $\left(I-E_{m}\right)+\left(I-F_{m}\right)$ is invertible. Assume $\left\{G_{n}\right\} \leq\left\{E_{n}\right\}$ and $\left\{G_{n}\right\} \leq\left\{F_{n}\right\}$. Then

$$
\lim _{n \rightarrow \infty}\left[\left(I-E_{m}\right)+\left(I-F_{m}\right)\right] G_{n}=0
$$

It follows that $G_{n}=0$ for all but a finite number of n. Therefore $\left[G_{n}\right]=0$. This proves that 0 is the greatest lower bound of $\left[E_{n}\right]$ and $\left[F_{n}\right]$.

3. The closed left or right ideals of B

Throughout this section we assume that B has property A.
Definition 3.1. $\mathfrak{T K}$ is a proper ideal of \mathfrak{K} if
(1) $a \in \mathfrak{T H}$ implies $a \neq 0$,
(2) a and $b \in \mathfrak{N}$ implies $a \wedge b \in \mathfrak{N}$,
(3) $a \in \mathfrak{T}, b \in \mathfrak{K}$, and $a \leq b$, implies $b \in \mathfrak{N}$.

Assume \mathfrak{T} is a proper ideal of \mathfrak{K}. We define $L(\mathscr{T})$ to be the set of all $T \in B$ with the property that there exists $\left[E_{n}\right] \in \mathfrak{M}$ such that $\lim _{n \rightarrow \infty} T E_{n}=0$. Similarly we define $R(\mathscr{N})$ to be the set of all $T \in B$ with the property that there exists $\left[E_{n}\right] \in \mathfrak{I T}$ such that $\lim _{n \rightarrow \infty} E_{n} T=0$. We restrict our attention to the sets $L(\mathfrak{F})$. Results concerning $L(\mathfrak{H})$ are easily extended to $R(\mathfrak{T C})$ using the fact that $R(\mathfrak{F})=(L(\mathfrak{N C}))^{*}$.

Lemma 3.2. If $\mathfrak{T l}$ is a proper ideal of \mathfrak{K}, then $L(\mathscr{T})$ is a proper left ideal of B.
Proof. Assume $T \in L(\mathfrak{N})$ and $S \in B$. Then there exists $\left[E_{n}\right] \in \mathscr{N}$ such that $\lim _{n \rightarrow \infty} T E_{n}=0$. Then clearly $\lim _{n \rightarrow \infty}\left(S T E_{n}\right)=0$. Now assume T, $S \in L(\mathfrak{F})$. There exist $\left[E_{n}\right],\left[F_{n}\right] \in \mathfrak{M}$ such that $\lim _{n \rightarrow \infty} T E_{n}=0$ and $\lim _{n \rightarrow \infty} S F_{n}=0$. Assume $\left[G_{n}\right]=\left[E_{n}\right] \wedge\left[F_{n}\right]$. Then $\left\{G_{n}\right\} \leq\left\{E_{n}\right\}$ and
$\left\{G_{n}\right\} \leq\left\{F_{n}\right\}$ so by Proposition $2.3(1), \lim _{n \rightarrow \infty}(T+S) G_{n}=0 . \quad$ Since $\left[G_{n}\right] \epsilon \mathfrak{M}$, $T+S \epsilon L(\mathfrak{M})$. If $I \in L(\mathfrak{M})$, then for some $\left[E_{n}\right] \epsilon \mathfrak{N}, \lim _{n \rightarrow \infty} I\left(E_{n}\right)=0$. This contradicts the hypothesis that \mathfrak{N} is proper. Therefore $L(\mathscr{N})$ is a proper left ideal of B.

Lemma 3.3. Assume T and S are positive elements in B such that $T+S$ is not invertible. Let $\left\{E_{n}\right\},\left\{F_{n}\right\}$, and $\left\{G_{n}\right\}$ be annihilating sequences of T, S, and $T+S$, respectively. Then

$$
\left[E_{n}\right] \wedge\left[F_{n}\right]=\left[G_{n}\right]
$$

Proof. $\lim _{n \rightarrow \infty}(T+S) G_{n}=0$. Then by Lemma 2.6 (1), $\lim _{n \rightarrow \infty} T G_{n}=0$ and $\lim _{n \rightarrow \infty} S G_{n}=0$. By Proposition $2.3(2),\left\{G_{n}\right\} \leq\left\{E_{n}\right\}$ and $\left\{G_{n}\right\} \leq\left\{F_{n}\right\}$. Therefore

$$
\left[G_{n}\right] \leq\left[E_{n}\right] \wedge\left[F_{n}\right]
$$

Conversely assume $\left\{J_{n}\right\} \in\left[E_{n}\right] \wedge\left[F_{n}\right]$. Then by Proposition 2.3 (1), $\lim _{n \rightarrow \infty} T J_{n}=0$ and $\lim _{n \rightarrow \infty} S J_{n}=0$. Thus $\lim _{n \rightarrow \infty}(T+S) J_{n}=0$ which imnlies by Proposition 2.3 (2) that $\left\{J_{n}\right\} \leq\left\{G_{n}\right\}$. Thus

$$
\left[E_{n}\right] \wedge\left[F_{n}\right] \leq\left[G_{n}\right]
$$

This nroves the lemma.
Assume that N is a proper left ideal of B. Define $\mathscr{T}(N)$ to be the set of all $a^{\boldsymbol{\epsilon}} \mathbb{K}$ with the property that there exists a positive element $T \in N$ with annihilating sequence $\left\{E_{n}\right\}$ such that $\left[E_{n}\right] \leq a$.
r.emma 3.4. If N is a proper left ideal of B, then $\mathfrak{T}(N)$ is a proper ideal of \mathcal{K}.

Proof. Assume that $a \in \mathfrak{N}(N), b \in \mathfrak{K}$, and $a \leq b$. By definition there exists a positive element $T \in N$ with annihilating sequence $\left\{E_{n}\right\}$ such that $\left[E_{n}\right] \leq a$. Then $\left[E_{n}\right] \leq b$, so $b \in \operatorname{Mi}(N)$. Next assume $a, b \in \mathfrak{M}(N)$. Let T and S be positive elements in N with annihilating sequence $\left\{E_{n}\right\}$ and $\left\{F_{n}\right\}$ respectively such that $\left[E_{n}\right] \leq a$ and $\left[F_{n}\right] \leq b$. Let $\left\{G_{n}\right\}$ be an annihilating seauence of $T+S$. Then by Lemma 3.3,

$$
\left[G_{n}\right]=\left[E_{n}\right] \wedge\left[F_{n}\right] \leq a \wedge b
$$

and since $T+S \in N, a \wedge b \in \mathscr{T K}(N)$. Finally assume $0 \in \mathfrak{T H}(N)$. Then there exists a positive element $T \in N$ and an annihilating sequence $\left\{E_{n}\right\}$ of T such that $\left[E_{n}\right]=0$. But this is impossible by the definition of annihilating sequence. Thus $\mathfrak{T}(N)$ is proper.

The purpose of this section is to describe precisely the relationship between the closed left ideals of B and the ideals in \Re. Lemmas 3.2 and 3.4 are the beginning of this program. The full results are stated in Theorems 3.7 and 3.8. We now prove a technical lemma.

Lemma 3.5. Assume that N is a proper closed left ideal of B. Assume that $\left\{E_{n}\right\} \in \mathcal{S}$ and $E_{n} \in \mathfrak{M c}(N)$ for all n. Then $I-E_{n} \in N$ for all n.

Proof. For each m there is a positive element $T_{m} \in N$ and an annihilating
sequence $\left\{G_{n}^{(m)}\right\}$ of T_{m} such that $\left\{G_{n}^{(m)}\right\} \leq E_{m}$. Therefore for each m, $\lim _{n \rightarrow \infty}\left(I-E_{m}\right) G_{n}^{(m)}=0$. Also for each $m, n \geq 1$, there exists $S_{n, m} \in B$ such that $S_{n, m} T_{m}=I-G_{n}^{(m)}$. Since N is a left ideal $\left(I-G_{n}^{(m)}\right) \in N$ for all m, n. Then

$$
\left\|\left(I-E_{m}\right)-\left(I-E_{m}\right)\left(I-G_{n}^{(m)}\right)\right\| \rightarrow 0
$$

as $n \rightarrow \infty$, and since N is a closed left ideal, $\left(I-E_{m}\right) \in N$ for all $m \geq 1$.
In order to relate closed left ideals in B to ideals in \mathfrak{K}, we need the concept of a closed ideal in κ.

Definition 3.6. An ideal \mathfrak{T} in \mathfrak{K} is closed if whenever $\left\{E_{n}\right\} \in \mathcal{S}$ and $E_{n} \in \mathfrak{M}$ for all n, then $\left[E_{n}\right] \in \mathfrak{N}$.

Theorem 3.7. If $\mathfrak{T l}$ is a closed proper ideal in \mathfrak{K}, then $L(\mathfrak{T K})$ is a closed proper left ideal of B. If N is a closed proper left ideal in B, then $\mathfrak{M}(N)$ is a closed proper ideal in \mathfrak{K}.

Proof. Let $\mathfrak{T C}$ and N be as in the statement of the theorem. Then by Lemma 3.2, $L(\mathscr{T K})$ is a proper left ideal of B, and by Lemma 3.4, $\mathfrak{T}(N)$ is a proper ideal in \mathfrak{K}. It remains to be shown that $L(\mathscr{T})$ and $\mathfrak{M}(N)$ are closed.

Assume that $\left\{T_{m}\right\}$ is a sequence in $L(\mathscr{F})$ and that $T_{m} \rightarrow T$. Then $T_{m}^{*} T_{m} \in L(\mathfrak{N})$ for all m and $T_{m}^{*} T_{m} \rightarrow T^{*} T$. We choose a projection $E_{1} \in \mathfrak{N}$ such that $\left\|T_{1}^{*} T_{1} E_{1}\right\|<1$. Assume we have chosen projections $E_{k} \in \mathfrak{T}$, $1 \leq k \leq n$, with the properties that

$$
\left\|T_{k}^{*} T_{k} E_{k}\right\|<1 / k \quad \text { and } \quad\left\|\left(I-E_{j}\right) E_{k}\right\|<1 / k
$$

whenever $1 \leq j \leq k$. Let $S_{n+1}=T_{n+1}^{*} T_{n+1}+\sum_{k=1}^{n}\left(I-E_{k}\right)$. Then $S_{n+1} \epsilon L\left(\mathfrak{T}\right.$ C), and therefore there exists $\left[F_{n}\right] \in \mathfrak{T}\left(\right.$ such that $\lim _{m \rightarrow \infty} S_{n+1} F_{m}=0$. By Lemma 2.6 (1),

$$
\lim _{m \rightarrow \infty}\left(T_{n+1}^{*} T_{n+1}\right) F_{m}=0 \quad \text { and } \quad \lim _{m \rightarrow \infty}\left(I-E_{k}\right) F_{m}=0
$$

for $1 \leq k \leq n$. Therefore we can choose a projection $E_{n+1} \in \mathscr{N}$ with the properties

$$
\left\|T_{n+1}^{*} T_{n+1} E_{n+1}\right\|<1 / n+1 \quad \text { and } \quad\left\|\left(I-E_{k}\right) E_{n+1}\right\|<1 / n+1,1 \leq k \leq n
$$

By induction we define a sequence of projections $\left\{E_{n}\right\}$ which is admissible by the construction. Since $E_{n} \in \mathfrak{T K}$ for all n and \mathfrak{M} is closed, $\left[E_{n}\right] \epsilon \mathfrak{M}$. Furthermore,

$$
\begin{aligned}
\left\|T E_{n}\right\|^{2} & =\left\|E_{n} T^{*} T E_{n}\right\| \\
& \leq\left\|E_{n}\left(T^{*} T-T_{n}^{*} T_{n}\right) E_{n}\right\|+\left\|E_{n} T_{n}^{*} T_{n} E_{n}\right\| \\
& \leq\left\|T^{*} T-T_{n}^{*} T_{n}\right\|+1 / n \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$. This proves that $T \in L(\mathfrak{N})$.
Now assume that N is a proper closed left ideal of B. Assume $\left\{E_{n}\right\} \in \mathcal{S}$ and $E_{n} \in \mathscr{T}(N)$ for all n. By Lemma 3.5, $I-E_{n} \in N$ for all n. Let

$$
T=\sum_{n=1}^{+\infty}\left(\frac{1}{2}\right)^{n}\left(I-E_{n}\right)
$$

Since N is closed, T is a positive element in N. Let $\left\{F_{n}\right\} \in S$ be an annihilating sequence of T. Then by Lemma $2.6(2), \lim _{n \rightarrow \infty}\left(I-E_{m}\right) F_{n}=0$ for all m. Therefore $\left\{F_{n}\right\} \leq\left\{E_{n}\right\}$. It follows by definition that $\left[E_{n}\right] \in \mathfrak{M r}(N)$. Therefore $\mathfrak{M}(N)$ is closed.

Theorem 3.8. If N is a proper closed left ideal of B, then $N=L(\mathscr{T}(N))$. If \mathfrak{T} is a proper closed ideal of \mathfrak{K}, then $\mathfrak{N}=\mathfrak{N}(L(\mathfrak{Y}))$.

Proof. Assume N is a proper closed left ideal of B. First assume $T \in L(\mathscr{H}(N))$. Then there exists $\left[E_{n}\right] \in \mathscr{M}(N)$ such that $\lim _{n \rightarrow \infty} T E_{n}=0$. By Lemma 3.5, $I-E_{n} \in N$ for all n. Then $\left\|T-T\left(I-E_{n}\right)\right\| \rightarrow 0$ as $n \rightarrow \infty$, which implies $T \in N$. Conversely assume $T \in N$. Then $T^{*} T \in N$. Let $\left\{E_{n}\right\}$ be an annihilating sequence of $T^{*} T$. By definition, $\left[E_{n}\right] \in \mathscr{T}(N)$. Then $\left\|T^{*} T E_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$, and $\left\|T E_{n}\right\|^{2}=\left\|E_{n} T^{*} T E_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty$. Therefore $T \in L(\mathscr{N}(N))$. This completes the proof that $N=L(\mathfrak{N}(N))$.

Now assume \mathfrak{N} is a proper closed ideal of \Re. If $\left[E_{n}\right] \in \mathfrak{N}$, then $\left(I-E_{n}\right) \in L(\mathfrak{N})$ all n. Let $T=\sum_{k=1}^{+\infty}\left(\frac{1}{2}\right)^{k}\left(I-E_{k}\right)$. By Theorem 3.7, $L(\mathfrak{T})$ is closed, so that $T \in L(\mathfrak{T})$. Let $\left\{F_{n}\right\}$ be an annihilating sequence of T. Then by Lemma $2.6(2), \lim _{n \rightarrow \infty}\left(I-E_{m}\right) F_{n}=0$ for all m. Therefore $\left\{F_{n}\right\} \leq\left\{E_{n}\right\}$. By definition $\left[E_{n}\right] \in \mathfrak{M}(L(\mathfrak{H}))$. Conversely assume $\left[E_{n}\right] \in \mathfrak{N}(L(\mathscr{H}))$. Then there exists a positive element $T \in L(\mathfrak{F})$ and an annihilating sequence $\left\{F_{n}\right\}$ of T such that $\left\{F_{n}\right\} \leq\left\{E_{n}\right\}$. Since $T \in L(\mathfrak{N})$, there exists $\left[G_{n}\right] \in \mathfrak{N}$ such that $\lim _{n \rightarrow \infty} T G_{n}=0$. By Proposition $2.3(2),\left\{G_{n}\right\} \leq\left\{F_{n}\right\}$. Therefore $\left\{G_{n}\right\} \leq$ $\left\{E_{n}\right\}$, so that $\left[E_{n}\right] \in \mathscr{H}$.

Corollary 3.9. $\mathfrak{T} \rightarrow L(\mathfrak{F})$ is a one-to-one order preserving map from the set of all proper closed ideals of \mathcal{K} onto the set of all proper closed left ideals of B.

Corollary 3.10. If N and M are two closed left ideals of B which contain the same projections, then $N=M$.

Proof. Assume $N=L(\mathfrak{H})$ and $M=L(\mathfrak{H})$ where \mathfrak{N} and \mathfrak{M} are ideals in \mathfrak{K}. Assume $T \in N$. Then there exists $\left[E_{n}\right] \in \mathfrak{N}$ such that $\lim _{n \rightarrow \infty} T E_{n}=0$. Also $I-E_{n} \in N$ for all n. Then by hypothesis $I-E_{n} \in M$ for all n. Then since $\left\|T-T\left(I-E_{n}\right)\right\| \rightarrow 0, T \in M$. Thus $N \subset M$. By symmetry $M \subset N$.

4. The maximal left ideals of B

We assume throughout the remainder of the paper that B has property A. It is well known that N is a maximal closed left ideal of B if and only if N is a maximal left ideal of B. Using this we prove that $\mathfrak{T l}$ is a maximal closed ideal of \mathfrak{K} if and only if \mathfrak{H} is a maximal ideal of \mathscr{K}. First assume that \mathfrak{H} is a maximal closed ideal of \mathfrak{K}, and suppose that $\mathfrak{T} \subset \mathfrak{g}$ where \mathfrak{J} is a proper ideal of \mathfrak{K}. Suppose that $\mathfrak{T} \neq \mathfrak{J}$. Then \mathfrak{J} is not closed, and therefore there exists $\left\{E_{n}\right\} \in \mathcal{S}, E_{n} \in \mathcal{J}$ for all n, and $\left[E_{n}\right] \oplus \mathcal{J}$. It follows that \mathcal{J} contains a projection E such that $E \notin \mathfrak{N}$. But $L(\mathscr{N})$ is a maximal left ideal of B by Corollary 3.9, $L(\mathfrak{J})$ is a proper left ideal of B by Lemma $3.2, L(\mathscr{T}) \subset L(J)$, and $I-E \epsilon$
$L(\mathfrak{J}), I-E \notin L(\mathscr{T})$. This is a contradiction which proves that $\mathfrak{T}=\mathfrak{J}$. Conversely assume that \mathfrak{T} is a maximal ideal of \mathscr{K}. Then $L(\mathscr{T})$ is a proper left ideal of B. Let $N=\overline{L(\mathscr{N})} . \quad \mathfrak{N}(N) \supset \mathfrak{N}$, and therefore $\mathfrak{N}(N)=\mathfrak{N}$. Finally \mathfrak{M} is closed by Theorem 3.7. By this result and Corollary 3.9 we have that N is a maximal left ideal of B if and only if $N=L(\mathfrak{T C})$ where $\mathfrak{N l}$ is a maximal ideal of \Re. Now we characterize the maximal left ideals of B in another fashion. We prove the following result.

Theorem 4.1. Assume that N is a closed left ideal of B. Then the following are equivalent:
(1) N is maximal.
(2) $\quad N=L(\mathfrak{K})$ where \mathfrak{T} is a maximal ideal of \mathfrak{K}.
(3) If E is a projection in B and $E \notin N$, then there exists a projection $F \in N$ such that $E+F$ is invertible in B.

We have already noted the equivalence of (1) and (2). Before completing the proof of the theorem, we establish a lemma.

Lemma 4.2. Assume that \mathfrak{T} is a proper ideal of \mathfrak{K} and that $a \in \mathfrak{K}$ has the property that $a \wedge b \neq 0$ for all $b \in \mathfrak{N K}$. Then there is a proper ideal \mathcal{J} of \mathfrak{K} such that $a \in \mathfrak{J}$ and $\mathfrak{T} \subset \mathfrak{J}$.

Proof. Let \mathcal{J} be the set of all $c \in \mathfrak{K}$ such that there exists $b \in \mathfrak{N}$ with $a \wedge b \leq c$. Clearly $a \in \mathcal{J}$ and $\mathfrak{T} \subset \mathfrak{J}$. We verify that \mathfrak{J} is a proper ideal of \mathfrak{K}. First if $c \in \mathcal{J}$ and $c \leq d$, then it is obvious that $d \in \mathscr{J}$. Assume $c, d \in \mathcal{J}$. Then there exists $e, f \in \mathfrak{M}$ such that $a \wedge e \leq c$ and $a \wedge f \leq d$. Then

$$
a \wedge(e \wedge f)=(a \wedge e) \wedge(a \wedge f) \leq c \wedge d
$$

By the definition of $\mathfrak{g}, c \wedge d \in \mathfrak{J} . \quad 0 € \mathfrak{J}$ since by hypothesis it is not true that $a \wedge b \leq 0$ for any $b \in \mathfrak{T}$. This completes the proof.

Now we complete the proof of Theorem 4.1. Assume (3) holds. N is contained in some maximal left ideal M of B. Assume that E is a projection in M. Then $E \in N$; for if not, there exists a projection $F \in N$ such that $E+F$ is invertible. Thus N and M contain the same projections. By Corollary $3.10, N=M$. Conversely assume that $N=L(\mathfrak{H})$ where \mathfrak{H} is a maximal ideal of \mathscr{K}. Assume $E \notin N$. Suppose that whenever $\left[E_{n}\right] \epsilon \mathfrak{T}, E+\left(I-E_{n}\right)$ is not invertible for all n. Then $(I-E) \wedge\left[E_{n}\right] \neq 0$ by Theorem 2.8. By Lemma 4.2, there is a proper ideal \mathcal{J} in \mathfrak{K} such that $(I-E) \in \mathcal{J}$ and $\mathfrak{N} \subset \mathcal{J}$. But this is impossible since \mathfrak{N} is maximal and $(I-E) \notin \mathscr{F}$. Therefore there exists an idempotent $(I-F) \in \mathfrak{T} \mathcal{I}$ such that $E+F$ is invertible. This proves (3).

If B has an additional property that we now describe, then we can sharpen the result in Theorem 4.1. We assume for the remainder of this section that whenever E and F are projections in B, then E and F have a greatest lower bound in B with respect to the usual ordering of projections ($E<F$ means $E F=E)$. We denote this glb as $E \cap F$. Any $A W^{*}$-algebra has this additional property.

Definition 4.3. Let E and F be projections in B. Then F is a strong complement of E if $E \cap F=0$ and $E+F$ is invertible in B.

If F is a strong complement of E in B, then F is a complement of E in the usual sense that $E \cap F=0$ and $E \cup F=I$. However it is not difficult to find examples of complements which are not strong complements.

Lemma 4.4. Assume that E and F are projections and that $E+F$ is invertible in B. Let $G=E \cap F$. Then $(F-G)$ is a strong complement of E.

Proof. First we verify that $E \cap(F-G)=0$. For let $J=E \cap(F-G)$. $J<E, J<F$ and therefore $J<E \cap F=G$. Then $J=J(F-G)=$ $J F-J G=J-J G$. Thus $J G=0$. Therefore $J=J G=0$. Now there exists $K \in B$ such that $K(E+F)=I$. Then

$$
(K+K G)(E+(F-G))=I-K G+K G+K G-K G=I
$$

Therefore $(F-G)$ is a strong complement of E.
Now we have the following result.
Theorem 4.5. Assume that whenever E and F are projections in B, then $E \cap F$ exists in B. Assume that N is a proper closed left ideal of B. Then N is a maximal left ideal of B if and only if whenever E is a projection in B and $E \notin N$, then E has a strong complement in N.

Proof. Assume that N is a maximal left ideal of B and E is a projection in B such that $E \notin N$. Then by Theorem 4.1 there exists $F \in N$ such that $E+F$ is invertible in B. Let $G=E \cap F$. Since $F \in N$ and $G F=G$, then $G \in N$. Therefore $F-G \in N$. Finally $(F-G)$ is a strong complement of E by Lemma 4.4.

5. Central projections

We assume throughout this section that whenever E and F are projections in B, then E and F have a greatest lower bound in B. A linear functional α on B is a state of B if $\alpha(T) \geq 0$ for all positive elements T in B and $\alpha(I)=1$. If α is an extreme point of the convex set of all states of B, then α is a pure state. Given a state α, let

$$
K_{\alpha}=\left\{T \in B \mid \alpha\left(T^{*} T\right)=0\right\}
$$

K_{α} is a closed left ideal of B and when α is a pure state, then K_{α} is a maximal left ideal of B by [1, Théorème 2.9.5, p. 48].

It is a well-known theorem that when B is an $A W^{*}$-algebra, then a projection E in B is central if and only if E has a unique complement; see [4, Theorem 70, p. 119]. We prove a slightly more general form of this theorem.

Theorem 5.1. A projection $E \in B$ is a central projection if and only if E has a unique strong complement in B.

Proof. We prove the "if" direction of the theorem. By hypothesis the
unique strong complement of E is $I-E$. Assume that α is any pure state. K_{α} is a maximal left ideal of B, and therefore by Theorem 4.5 either $E \in K_{\alpha}$ or $I-E \in K_{\alpha}$. The generalized Cauchy-Schwartz inequality, [6, p. 213], states that when $R, S \in B$,

$$
\left|\alpha\left(R^{*} S\right)\right|^{2} \leq \alpha\left(R^{*} R\right) \alpha\left(S^{*} S\right)
$$

Therefore given any $T \in B$ we have,

$$
|\alpha(E T(I-E))|^{2} \leq \alpha(E) \alpha\left((T(I-E))^{*} T(I-E)\right)
$$

and

$$
|\alpha(E T(I-E))|^{2} \leq \alpha\left((E T)(E T)^{*}\right) \alpha(I-E)
$$

But by the previous part of the proof either $\alpha(E)=0$ or $\alpha(I-E)=0$. In either case $\alpha(E T(I-E))=0$. This proves that for an arbitrary pure state α of $B, \alpha(E T(I-E))=0$. Since the pure states of B separate the elements of B by the remarks in [2, p. 112], then $E T(I-E)=0$. A similar proof shows that $(I-E) T E=0$. Therefore $E T=E T E=T E$ which proves the theorem.

6. The null space of a pure state and an application

Assume that α is a pure state of B and let \mathfrak{T} be the unique maximal ideal of \mathfrak{K} such that $K_{\alpha}=L(\mathfrak{N})$. We define $N(\mathfrak{N})$ to be the set of all $T \epsilon B$ with the property that there exists $\left[E_{n}\right] \in \mathfrak{T l}$ such that $\left\|E_{n} T E_{n}\right\| \rightarrow 0$. It is not difficult to verify that $N(\mathscr{T})$ is a proper subspace of B. Note that $L(\mathscr{T C})+(L(\mathscr{T C}))^{*} \subset N(\mathscr{F})$. It is a result of R. V. Kadison [1, Proposition 2.9.1, p. 46] that $\alpha^{-1}(0)=K_{\alpha}+\left(K_{\alpha}\right)^{*}$ for α a pure state. Therefore $\alpha^{-1}(0)=N(\mathfrak{T})$. If $T \in B$, then $T-\alpha(T) I \in N(\mathfrak{M C})$, and therefore there exists $\left[E_{n}\right] \in \mathfrak{T}$ such that $\left\|E_{n} T E_{n}-\alpha(T) E_{n}\right\| \rightarrow 0$. We state these results as a lemma.

Lemma 6.1. Assume that α is a pure state of B and $K_{\alpha}=L(\mathfrak{T C})$, \mathfrak{T} a maximal ideal of \mathfrak{K}. Then $\alpha^{-1}(0)=N(\mathfrak{F})$ and for any $T \in B$, there exists $\left[E_{n}\right] \in \mathfrak{F}$ such that $\left\|E_{n} T E_{n}-\alpha(T) E_{n}\right\| \rightarrow 0$.

We apply this result to the question of when a pure state of a subalgebra of B has a unique extension to a pure state of B. Let B_{0} be a closed *-subalgebra of B which contains I and such that B_{0} has property A. Let \mathcal{K}_{0} be the set of all equivalence classes of admissible sequences of projections in B_{0}. Assume that α_{0} is a pure state of B_{0}, and let \mathscr{N}_{0} be the unique maximal ideal of \mathfrak{K}_{0} such that $L\left(\mathscr{I f}_{0}\right)=K_{\alpha_{0}}$.

Theorem 6.2. $\quad \alpha_{0}$ has a unique extension to a pure state of B if and only if given any $T \in B$, there exists a scalar λ and $\left[E_{n}\right] \in \mathfrak{T H}_{0}$ such that

$$
\left\|E_{n} T E_{n}-\lambda E_{n}\right\| \rightarrow 0
$$

Proof. Assume that given any $T \in B$ there exists a scalar λ and $\left[E_{n}\right] \epsilon \mathscr{T}_{0}$ such that $\left\|E_{n} T E_{n}-\lambda E_{n}\right\| \rightarrow 0$. Let α be any state of B which extends α_{0}. Let $T \in B$, and assume λ and $\left[E_{n}\right]$ are as given in the previous hypothesis.

Since $E_{n} \in \mathscr{N r}_{0}$ for all n, then $\alpha\left(I-E_{n}\right)=\alpha_{0}\left(I-E_{n}\right)=0$ for all n. We write T as

$$
T=E_{n} T E_{n}+E_{n} T\left(I-E_{n}\right)+\left(I-E_{n}\right) T
$$

By the general Cauchy-Schwarz inequality,

$$
\alpha\left(E_{n} T\left(I-E_{n}\right)\right)=\alpha\left(\left(I-E_{n}\right) T\right)=0
$$

Therefore $\alpha(T)=\alpha\left(E_{n} T E_{n}\right)$ for all n. Then

$$
|\alpha(T)-\lambda|=\left|\alpha\left(E_{n} T E_{n}-\lambda E_{n}\right)\right| \leq\left\|E_{n} T E_{n}-\lambda E_{n}\right\| \rightarrow 0
$$

This proves that any state α of B which extends α_{0} takes the values λ at T. It follows that α_{0} has a unique extension to a state α of $B . \quad \alpha$ must be a pure state of B by [1, Lemma 2.10.1, p. 50].

Conversely assume that α_{0} has a unique extension to a pure state α of B. Let L_{0} be the set of all $T \in B$ with the property that there exists $\left[E_{n}\right] \in \mathfrak{T}_{0}$ such that $\left\|T E_{n}\right\| \rightarrow 0 . \quad L_{0}$ is a closed left ideal of B by the proof of Theorem 3.7. Suppose L_{0} were not a maximal left ideal of B. Then by [1, Théorème 2.9.5, p. 48] there exist maximal left ideals of B, L_{1} and L_{2}, such that $L_{0} \subset L_{1}$, $L_{0} \subset L_{2}$, and $L_{1} \neq L_{2}$. By this same Theorem there exist corresponding pure states α_{1} and α_{2} of B such that $K_{\alpha_{1}}=L_{1}$ and $K_{\alpha_{2}}=L_{2}$. Assume $T \in B_{0}$. Then there exists $\left[E_{n}\right] \in \mathfrak{N I}_{0}$ such that

$$
\left\|E_{n} T E_{n}-\alpha_{0}(T) E_{n}\right\| \rightarrow 0
$$

(Lemma 6.1).
Since $L_{0} \subset L_{1}$ and $L_{0} \subset L_{2}$, then $\alpha_{1}\left(E_{n}\right)=\alpha_{2}\left(E_{n}\right)=1$ for all n. By the same argument as used in the first paragraph of the proof it follows that $\alpha_{1}(T)=$ $\alpha_{0}(T)$ and $\alpha_{2}(T)=\alpha_{0}(T)$. Therefore α_{1} and α_{2} extend α_{0} which is a contradiction. It follows that L_{0} is a maximal left ideal and $K_{\alpha}=L_{0}$. Therefore $\alpha^{-1}(0)=L_{0}+\left(L_{0}\right)^{*}$. Then by the definition of L_{0}, given any $T \in B$ there exists $\left[E_{n}\right] \in \mathfrak{T r}_{0}$ such that

$$
\left\|E_{n} T E_{n}-\alpha(T) E_{n}\right\| \rightarrow 0
$$

This completes the proof of the theorem.

References

1. J. Dixmier, Les C^{*}-algébres et Leurs Représentations, Gautier-Villars, Paris, 1964.
2. R. Kadison, "Lectures on operator algebras" in Cargèse lectures in theoretical physics, F. Lurçat editor, Gordon and Breach, N.Y., 1967, pp. 41-82.
3. I. Kaplansky, Projections in Banach algebras, Ann. of Math., vol. 53 (1951), pp. 235249.
4. -, Rings of operators, W. A. Benjamin, New York, 1968.
5. C. E. Rickart, Banach algebras with an adjoint operation, Ann. of Math., vol. 47 (1946), pp. 528-550.
6. --, General theory of Banach algebras, Van Nostrand, Princeton, N. J., 1960.
7. F. B. Wright, A reduction for algebras of finite type, Ann. of Math., vol. 60 (1954), pp. 560-570.

[^0]: Received February 13, 1969.
 ${ }^{1}$ Part of the research for the revised version of this paper was supported by a grant from the Graduate School of the University of Oregon.

