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1. Introduction

In this paper, we give a variety of characterizations of weakly mixing
minimal transformation groups. This class of transformation groups was
studied in [13] with respect to various dynamical and eigenfunction properties
under the assumption of a compact metric phase space. We extend these
results to transformation groups with compact Hausdorff phases spaces by
noting that a large class of point-transitive transformation groups with
such phase spaces are an inverse limit of transformation groups with compact
metric phase spaces (Theorem 2.2). This "approximation" theorem enables
us to lift various properties which are true for the metric case and which are
preserved by inverse limits. In particular, we can then answer a conjecture
of Wu on the density of the proximal relation [1, p. 518].
Two other types of characterizations are given. It is shown that the

weakly mixing minimal transformation groups are precisely those totally
minimal transformation groups with a zero-dimensional structure transfor-
mation group. The other characterization is given in terms of disjointness
(cf. [7]). In [7, Problem G], a description of the discrete flows disjoint from
the distal flows is sought. It is shown in [17] that these are the weakly
mixing minimal flows. Here we derive this result via our techniques for a
large class of transformation groups. We then prove a theorem, suggested
by R. Ellis, characterizing disjointness of minimal transformation groups
in terms of their associated groups (Theorem 4.5). This enables us to extend
the above results to larger classes than the distal transformation groups.
The last section is concerned with density problems of integer sets associated

with weakly mixing minimal discrete flows. In [7], the problem of whether
a product of a weakly mixing flow with an ergodic flow is ergodic was raised.
In general the answer is no [14]. A certain class of weakly mixing minimal
flows is distinguished (Theorem 5.3) which has the property that its product
with an ergodic flow on a compact metric supporting an invariant Borel
probability on the whole space is also ergodic. This result applies to a larger
class than the minimal flows.

Unless otherwise stated, we will consider transformation groups (Z, T, p),
where Z is compact Hausdorff and T is abelian. We recall that (Z, T, p)
is ergodic (i.e., (Z, T, p) e 8) if every proper closed invariant set is nowhere
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dense. When Z is metric, this is equivalent to hving point with dense
orbit (point-transitive). Also, (Z, T, p) is weakly mixing (i.e., (Z, T, p)
if (Z Z, T, p X p) e g. Since weakly mixing and minimlity re inde-
pendent of the topology on T, we assume unless otherwise stated that T is
discrete. If T has non-trivial topological group topology, then p is ssumed
continuous. We will frequently surpress p. Finally, we denote suriec-
rive transformation group homomorphism from (Z, T) to nother trans-
formation group (W, T) by (Z, T) --+ (W, T).
We shall assume familiarity with the algebraic theory of point-transitive

transformation groups. See [1, pp. 165-184] or [3] for general reference
and for notation. We will use extensively the notion of quasi-separable
algebra: the T-subalgebr a is quasi-separable if there exists subset
which separates points of a and such that the T-sublgebra a(f) generated
by f is separable (f e ). This is a slight modification of the definition given
in [5]. The point traIsitive transformation group (Z, T, p) is quasi-separa-
ble if an associated algebr ( is quasi-separable.
A general reference for the notions and the notation used is [13].

2. Approximation by metric transformation groups
For completeness, we include the following lemma (cf. [5, Definition 3.12]).
2.1 LEMMA. Let (Z, T, p) be point-transitive and ( a T-subalgebra for

which Z ( [. Suppose that T can be provided with a z-compact topology
for which p is continuous. Then (Z, T, p) is quasi-separable.

Proof. Recall that a is isomorphic to (I a I), the continuous functions
on a I, by f - L where {L } ((f), e. It is direct to verify that ] t]
(f a, e T).

Now fix g a and consider T -- e(I ( I) where (t) 0 t). Now
by [10, Definition 1.66], (e(I ( I), T) with action (L t) ----> -1] is transfor-
mation group, where T is provided with its z-compact topology. Thus,
( T) t( e T} is z-compact and hence separable. But then tg e T},
which together with 1} algebraically generates dense subalgebr of a(g),
is also separable. Thus a(g) is separable, nd the result follows.
We note that 2.1 is pplicable to a lrge class of transformation groups.

For example, if the topology on T is connected, locally compact or separable,
locally compact, then it must be z-compact. Moreover we obtain s a corol-
lary that if T has a separable topology for which p is continuous then (Z, T, p)
is quasi-separable. For let S be countable dense subset of T, and choose
g e a. If e T nd c > 0, then by [10, Remark 4.39], there exists neighbor-
hood N of such that (zu) (zv) < c (z Z, v N). Hence, if s S CI N,
(zt) (zs) < e (z Z). Thus Isg s S}, which is countable, is dense

in tg e T}. It then follows that a(g) is separable.
Note that the commuttivety of T was not used in the bove rgument.

Hence 2.1 and the following theorem still hold in the case that T is nonbelian.
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2.2 TEOREM. Let (Z, T, p) be point-transitive. Then (Z, T, p) is quasi-
separable iff there is an inverse system ((Z., T, p.); q, )_ a) of point-
transitive transformation groups with compact metric phase spaces such that
(Z, T, p) is the inverse limit transformation group of (Z. T, p) ).

Proof. Suppose (Z, T, p) is quasi-separable. Let ( be a T-subalgebra
such that Z a I, and c ( such that separates points and a(f) is
separable (f e ). Let ff be the finite subsets of 9 directed by a

_
g iff a c g

and a(a) the T-subalgebra generated by a(a ). Let (Z., T, p.)
(I a(a) I, T, p.) (a e if). Since a(f) is separable (f e 9), it follows that
a(a) e (I a(a) I) is separable, whence Z. is compact metric (a e fi;).
Moreover, a

_
t implies a(a) a() and thus the restriction map induces

It is direct to verify that ." id and. . if a _< g _< /. Moreover,
since separates points, then the T-subalgebra generated by [J {a(a) a e if}
is dense in a. Thus, (Z, T, p) (I a I, T, p) is isomorphic to the inverse
limit transformation group of ((Z., T, p.)), and this implication follows.

Conversely, suppose (Z, T, p) iavlim.(Z., T, p.) where Z. is compact
metric. Let a, a (a e A) be T-subalgebras for which al Z, In.
Z(a e A). Let : (l(l, T) -- (lal, T) (a e A) be the cannonical
homomorphisms. Then a.p. a for some p. e T and

Note that we identify z e tT and z a e (] here.
Now suppose x, y e a and x y. Then .(x) .(y), i.e.p, x a.

p. y a. for some a. If f e a. and e T such that (fp. x, t) (fp. y, t), then

(t-(fp.), x} ((t-f(p., x) ((t-f)p.), y} (t-(fp.), y}.

Since t-f a. (.J in. p. A separates points of a l. Moreover,
(a.)p. ap. implies that the induced map p. a.p. - a. is one-one.
Then a.p. is compact metric and a.p. separable. Thus, if f e a.p.,
a(f) is separable.
One should note that if a is a T-subalgebra and f e a, then a(f) is separable

iff there exists a coutable subset T of T such that the algebra generated by
{tfl e T} is a(f).
For the rest of this paper, (X, T, r) will denote a quasi-separable point-

transitive transformation group with X non-trivial. One application from
the metric case to the quasi-separable case is"

2.3 PROPOSITION. Let (X, T) be weakly mixing minimal. Then the
proximal relation P X) is not an equivalence relation.

Proof. By 2.2, there exists a transformation group (Z, T) with Z compact
metric such that (X, T) -o (Z, T). Thus, (Z, T) is weakly mixing minimal.
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By [13, Proposition 3.1], P(Z) is not an equivalence relation.
by [4, Lemma 7] that P(X) is not an equivalence relation.

This implies

For our extensions, the following technical lemma is needed. If A, B c X,
let N(A, B) {tlAt B 0}. If x X, we will write N(x,A)
for N({x}, A).

2.4 LEMMA. Let (X, T) be minimal. Then (X, T) is weakly mixing iff
for every x e X and for all non-empty open subsets A, B, C of X,
T N(A, B)N(x, C).

Proof. () Let A, B, C, D be non-vacuous open subsets of X.
x e B. Then

T N(C, A)N(x, D) N(A, C)-IN(x, D).

Thus, e e N(A, C)-IN(x, D) and N(A, C) N(B, D) . If

Let

N(A, C) N(B, D),

(A B)t f (C D)
and the result follows.
() Let A, B, C be non-empty, open subsets of X, and x e X. In [14,

Remark 2.8], it is shown that N(A, B) is discretely replete. Since (X, T)
is minimal, N(x, C) is discretely syndetic and thus T N(A, B)N(x, C).

2.5 LEMMA. Let (X, T) be an inverse limit of weakly mixing minimal
transformation groups. Then (X, T) is weakly mixing minimal.

Proof. Suppose (X, T) is the inverse limit of ((X, T); , _> a),
where (X,, T) is weakly mixing minimal. Then the minimality of (X, T)
can be directly verified. Now let A, B, C be non-empty open subsets of X
and x e X. Then for some a, there exists A,, B, C non-empty open in X
for which

--1(A) c A, (B,) B and (C) c C,

where o," (X, T) --, (X,, T)
x o,(x). Then

is the induced homomorphism. Let

N(A,, B,,) c. N(A, B) and N(x,, C,) N(x, C).

Since T N(A, B)N(x C,) by 2.4, then T N(A, B)N(x, C).
(X, T) is weakly mixing.
For the definitions of Q(X) and I’(X), see [6].

Thus,

2.6 THEOREM. Let (X, T) be minimal. Then the following are equivalent:
(1) (X, T) is weakly mixing.
(2) The regional proximal relation Q(X) X X X.
(3) The structure group F X) is trivial.
Proof. That (1) implies (2) follows directly from the ergodicity of

(X X X, T), and (2) implies (3) is obvious. Suppose (3) holds. Then the
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equicontinuous structure relation S(E) X X X. Also, (X, T) is iso-
morphic to invlim(Xa, T), where Xa compact metric, by 2.2. Now for
every a, S(E) X X X, whence (X, T) is weakly mixing minimal by
[13, Theorem 3.4]. The result follows by 2.5.

2.7 COROLLARY. Let (X, T) be minimal. Then the following are equiva-
lent:

(1) X, T) is weakly mixing.
(2) P X is dense.
(3) The distal structure relation S D X X X.

Proof. Since (2) implies (3) is obvious and (3) implies (1) follows by
2.6, it remains to show (1) implies (2). Suppose (X, T) is weakly mixing,
and (X, T) invlima(X, T), where X compact metric. For every a,
let , (X, T) --. (X,, T) be the induced homomorphism. Then

X ,(P(X)) P(X)

by [12, Theorem 3.3] and (X, T) weakly mixing minimal implies P(X) is
dense by [13, Remark 3.2]. Let U, V be non-empty, open subsets of X X X.
Then :I(U) c and :l(Va) c V, where U, V are non-empty open
subsets ofX for some a. If (x, y,) e P(X) is such that (x, y) e U X V
and (x, y) P(X) satisfies X a(x, y) (x, y), then (x, y) U X V.
Thus, P(X) is dense and the result follows.

Notice that 2.7 answers Wu’s conjecture [1, p. 518].
We now give the extension of the eigenvalue theorem [13, Corollary 2.11],

2.8 THEOREM. Let (X, T) be minimal. Then (X, T) is weakly mixing
iff the only continuous eigenfunctions are the constants.

Proof. Suppose (X, T) is not weakly mixing. Since

(X, T) ---invlim(X, T),
where X compact metric, it follows by 2.5 that (X, T) is not weakly mixing
for some . By [13, Corollary 2.11], there exists a non-constant continuous
eigenfunction f for (Xa, T). If (X, T) --. (X, T) is the cannonical
homomorphism then f f is a non-constant continuous eigenfunction for
(X, T). Since the other way holds by [13, Theorem 2.3], the result follows.
As a consequence, if X is connected, (X, T, r) is minimal and HI(X) 0

in C6ch cohomology, then (X, T, r) is weakly mixing ([19, Proposition 11]
guarantees a continuous logarithm in this case).

3. Total minimality and weakly mixing
We now characterize weakly mixing in terms of total minimality. In

this section, we do not necessarily assume that T is discrete but simply that
(X, T) is point-transitive, quasi-separable.
For the definition of total minimality, see [9, Definition 1.02].
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3.1 THEOREM. The following are equivalent"
(1) (X, T) is weakly mixing minimal.
(2) (X, T) is totally minimal and the structure space X/S(E) is zero-

dimensional.

Proof. Suppose (1) holds. Since the regional proximal relatioa

q(x) l-ia an index of X},

then (X, T) weakly mixing implies aT X X X for every a. If A is the
trace relation on X (cf. [9, Definition 1.02]), then A S(E) [9, Theorem
1.08]. Hence A X X X and the result follows.
Now suppose (2) holds. Since X/S(E) is zero-dimensional, then

(X/S(E), T) is regularly almost periodic by [9, Remark 1.13] and hence
pointwise regularly almost periodic. Now (X/S(E), T) has singletoa traces
by [9, Remark 1.10]. But (X, T) totally minimal implies (X/S(E), T) is
totally minimal. Thus S(E) X X X, and the structure group r(X) is
trivial. By 2.6, (X, T) is weakly mixing, where T is provided with the dis-
crete topology. Since weakly mixing is independent of the topology oa T,
(X, T) is weakly mixing under the original topology on T. The result fol-
lows.

The implication (1) implies (2) is not new for discrete or continuous flows
(see [17] or [15, Theorem 1.1]). Indeed, [15, Theorem 1.3] shows that for
continuous minimal flows, weakly mixing and total minimality are equiva-
lent. Moreover, since discrete or continuous minimal flows satisfy our
stunding hypothesis by 2.1, one may regard the assertion following 2.8 as a
generalization of [2, Theorem, p. 377].

3.2 ConoAn. Suppose (X, T) is minimal distal and X is zero-dimen-
sional. Then (X, T) is not totally minimal.

Proof. Considerthe canonical homomorphism (X, T) (X/S(E), T).
By [8, Theorem 8.1] (stated here for compact metric spaces but also valid
for compact Hausdorff spaces), is open. Thus, X/S(E) is zero-dimensional.
If (X, T) were totally minimal, then (X, T) is weakly mixing by 3.1. But
then by 2.3, (X, T) cannot be distal. Thus, (X, T) is not totally minimal.

3.3 PROPOSITION (Inheritance). Suppose (X, T) is weakly mixing minimal
and S is a closed syndetic subgroup of T. Then (X, S) is weakly mixing
minimal.

Proof. It follows by 3.1 that (X, S) is minimal. Moreover, (X, T)
quasi-separable implies (X, S) is quasi-separable since the relevant algebras
for (X, S) are contained in those for (X, T). Now it is easy to see that
P(X, T) P(X, S), where obvious notation is used for the proximal rela-
tions. Then by 2.7, P(X, T) is dense. Another application of 2.7 yields
the desired result.
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4. Disjointness and weakly mixing
Recall [7] that two transformation groups (Z, T) and (W, T) are disjoint

if whenever A is a closed invariant subset of Z W such that pl A Z,
p2 A W, where pl, p. are the projections, then A Z X W. (This is a
characterization of disiointness, cf. [7, Lemma II.1]). If (Z, T) and (W, T)
are minimal, then this is equivalent to (Z X W, T) being minimal. Again,
the topology of T is unessential in dis]ointness.

In this section, we impose the assumption on T (discrete for simplicity)
that every point-transitive transformation group (Z, T) is quasi-separable.
For brevity, we use the following notation (cf. [7]): C will denote the almost
periodic minimal transformation groups (cf. [10, Theorem 4.48]) a0 the almost
periodic transformation groups, the distal transformation groups, (0
the transformation groups with proximal a closed equivalence relation, 9;

the minimal transformation groups and the weakly mixing transformation
groups. All transformation groups have T as their phase group. If $

is a class of transformation groups, then will denote the transformation
groups disioint from .
We first show that a0 N ). This result has been shown in

[17] for discrete flows with compact metric spaces.

4.1 LEMMA. (0a C:: n .
Proof. Let (Y, T) e C n 9 and suppose (Y, T) t . Then there

exists non-constant eigenfunctioa f for (Y, T) by 2.8. By [13, Lemma
3.3], we have f (Y, T) --+ (Z, T), where Z is non-trivial and (Z, T) e C.
But by [7, Proposition II.2], this is a contradiction, since (Y, T) e ’. Thus,
(Y, T) e ng.

Now suppose (Y, T) e (0". Since there exist non-minimal transformation
groups in a0, then (Y, T) e 9 by [7, Theorem II.1]. Thus, c a0 implies

as a0 c c

4.2 LMM. N ; n
Proof. First let (Y, T) e n , (Z, T) e n t Y, z compact

metric. Then the proof of [7, Theorem II.3], suitably modified for arbitrary
transformation groups, shows that (Y, T) ; (Z, T).
We note here a short version of the fact that (W, T) e n , (w, T) ;

(V, T), (V, T) a minimal G-group extension of (V, T) [5, Definition 4.1]
implies (W, T) ; (V, T). Note that (G, W X V, T) is a G-group ex-
tension of (W X V, T) ia canonical way:

(W V)/G W X (V/G) W V.

Hence (W X V, T) minimal implies (W X V, T) is pointse almost periodic
as in [7, Proposition II.10]. But (W X V, T) has a transitive point
[14, Corollary (2.9) and hence is minimal.
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We also note that if (W, T) is minimal, (V, T) invlima(Va, T) is
minimal and (W, T) (Va, T) for every a, then (W, T) (V, T). For
the inverse system ((W X V,, T); id X r) satisfies

(W V, T) invlim, (W X V, T),

and the minimality of (W V,, T) implies (W V, T) is minimal.
Suppose now (Y, T) ell) [’l 9, (Z, T) e [’1 9 are arbitrary. Then

(Y, T) invlim,(Y,, T), (Z, T) invlim(Z, T), where

(r,, T) e) l 9, (Z, T) e l

and Y,, Z are compact metric. Then by the above comment,
(Y, T) (Z, T) for every a, and another application yields (Y, T) (Z, T).
The result follows.
The following lemma was shown in [17].

.4.3 LEMMA. Suppose (Y, T) is minimal and (Z, T) satisfies Z U,Z,,
where (Z,, T) is minimal. If (X, T) (Za, T) for every a, then
(X, T) (Z, T).

4.4 THEOREM. ( D %2 [ ffl

Proof. Let (Y, T) e . Then Y UZ, where (Y,, T)
By 4.2, l (Y,, T) for everya. Hence% , (Y, T) by 4.3,
whence [ i ’. Since clearly )" aS and aS 2 [ 9 by 4.1,
the result follows.

The question arises from 4.4 as to just how large a class ff a0 will satisfy
if" 9. In general, the decomposition of a transformation group
into miDimal transformation groups will not occur. To circumvent this
problem, we will only consider classes of minimal transformation groups.
The following result, suggested by R. Ellis, shows that disjointness in these
classes can be easily described in terms of the groups associated with the mini-
mal sets. For this analysis, we recall the following (cf. [5]). Let M be a
minimal subset of T, and u an indempotent of M. Every minimal T-sub-
algebra a can be regarded asa subset of (u) = {flf ,fu f}. Moreover,
if e lal, then plaforsomep eM. We writepforplawhenno
confusion arises.

In the following theorem, only the commutativity of T is needed; the
assumption on quasi-separability is not needed.

4.5 THEOREM. Let a and 5 be minimal T-subalgebras contained in ?I(u).
Let A @(a), B @(5) be the assotiated groups. Then (i a X ( I, T)
is minimal iff AB BA G.

Proof. Assume AB BA G. Consider the set

X {(p a, q 5)[ p, q e M, and pu p, qu q}.
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We claim X is dense in a X I(BI. Foruel(l, uel(l and bycommu-
tativity utu uut ut ut for every e T. Since uT [= (u a)T] is
dense in a I, uT is dense in I1 and (uT) (uT) c X, this shows our
assertion.
Now suppose (p a, q l) X. Since pu p and qu q, then

p la pula, q l qul. Since pu, qu G Mu, this means that

Z {(r[a, s]()Jr, seG} Y.

Finally, consider (u, u) e al [( [. Since (u, u)u (u, u) (u, u),
then (u, u) is an almost periodic point of (I a[ X [ [, T). The assertion
will be shown if (U, u)T :::) Y, for then (u, u)T a X ( by the above.
So let (r[a,s.[() e Y. ChooseweGforwhichwr s. SinceG BA,
thenw ba for some a e A, b e B. Letc ar b-ls e G. Now

(u, u)c (uc, uc) (u, u)T,

and uc a uar a r a since ua A, uc ( ub-s s since
ub-1 e B. Thus

(r (, s (B) (uc a, uc )

and the result follows.
Now suppose ([ a ( [, T) is minimal and let r e G. Then

(u[a,r[(B) eY and (U,u)T:::) Y.

Since M is minimal, up ( u a, up 5 r l(B for some p e M. Now
q pueGanduqla u[a, uq[5 ru[(B. Iffea, thenfq
fu f, while if g e (B, then gq guq gru, whence g gruq grq
(since ru r). Thus, q e A, rq-1 e B and r rq-lq e BA. This shows
G BA. Similarly G AB. The proof is completed.
One immediate corollary of 4.5 is the following extension of 4.2.

4.6 COROLLARY. 0 I’l W il

Proof. Let (Z, T) be the universal minimal distal transformation group.
Then the subgroup of G associated with the T-subalgebra of I(u) corre-
sponding to (Z, T) is denoted by D in [1, pp. 165-184]. Let (Y, T)
Since (Y, T) (Z, T) by 4.2, then AD DA G by 4.5, where A
and a is a T-subalgebra of (u) for which (Y, T) -- ([ a [, T). Suppose
(W, T) e e0 Il i), (B is a T-subalgebra of (u) corresponding to (W, T)
and B @(5). Since proximal is closed, some results of Horelick shows
that B :::) D [11, Theorem 4.7 and 4.10]. Then AB BA G and
(Y, T). (W, T) by 4.5.

An immediate consequence of 4.6 is that (e0 91Z) fl i)

For by 4.6, (e0 1 91)" I’1 9 fl 91Z, while

by 4.4.



An equivalent characterization of 2.6 is that (I a I, T) is weakly mixing
minimal iff AE EA G, where E c G is the group for the universal
minimal equicontinuous algebra in I(u). For by 4.4, AE EA G when
(I a I, T) is weakly mixing minimal. Conversely, if (I (B I, T) e C and
(B c (u), then @(() B E [1, p. 177] and AB BA G. The result
follows by 4.5, and 4.4.
An interesting problem is to describe ( rl 9T). By 4.5 and 4.6,

( N ); U (Co N ).
Notice that ( rl 9)" rl 9T. For if (Y, T) e ( rl 9T)’, then
(Y, T) has no non-trivial factors in g, since 3g (% rl ) by 4.1. Hence
(Y, T) e rl 91 by 2.6. Since obviously ( I"1 91)" :=) I’1 , the re-
sult follows.

Continuing in this direction, we have as another application of 4.6 the fol-
lowing result.

4.7 THEOREM. Let (X, T) g, (Y, T) 3g. Then (X, T) (, T)
iff (X, T) and Y, T) have no non-trivial common factors.

Proof. Suppose (X, T) and (Y, T) have no non-trivial common factors.
If a, (B are T-subalgebras of (u) for which al X, i(BI Y, we need
only showAB BA G, whereA @(a),B @(), by 4.5. Since
(I i, T) is equicontinuous, (I (B I, T) is regular and B is a normal subgroup
of G for which G/B is a compact Hausdorff topological group [1, p. 177],
Since a and (B have no non-trivial common factors, a rl R. Moreover,
(B _> R since ( is distal [5]. Then

@() (a N ) =/(a) U ()/ {A U B},

where {...} means the least closed generated subgroup [1, Proposition, p.
178]. Since the cannonical map :G -- G/B is closed, -lv(A) AB
is a closed subgroup of G. Hence AB A U B} G and by normality
of B, BA G. The other way follows by [7, Proposition II.2].

Recall that (X, T) is proximally equicontinuous or coterminous if P(X) is a
closed equivalence relation and (X/P(X), T) is equicontinuous.

4.8 CORO.LAv. Suppose (X, T) e 91, and (Y, T) e 91 with (Y, T)
proximally equicontinuous. Then (X, T) (Y, T)iff (X, T) and (Y, T)
have no non-trivial common factors.

Proof. Again, it is sufficient to show AB BA G, where A @(a),
B @((B), a, (B T-subalgebrasin I(u) for which lal X, I(BI Y.
Now (X, T) e 9T, (Y/P(Y), T) e 5C and by assumption have no non-trivial
common factors. If (o Y/P(Y) with 0 a T-subalgebra in I(u),
then (B0 is similar to (B by [11, Theorem 3.14]. This means that B @((B0).
Hence AB BA G by 4.7.
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It is not known whether we can replace C by 9 in 4.7. However,
we can relax the condition in 4.8 in the presence of regularity. In [1, Theorem
2.1, p. 311], Knapp showed that if (X, T) e , (Y, T) e l with (Iz, T)
regular, then 4.7 still holds. We use this to show

4.9 PROPOSITION. Suppose (X, T) e , (Y, T) e ao 9 with (Y, T)
regular. Then (X, T) (Y, T) iff (X, T) and (Y, T) have no non-trivial
common factor.

Proof. Using notation as in 4.8, we have that B @(() @((0) is
normal in G, since is regular. Hence, since 6t0 is distal and B is normal,
(0 is regular [11, Corollary 5.16]. Now, if (X, T) and (Y, T) have no non-
trivial common factors, the same is true for (X, T) and (Y/P(Y), T).
By Knapp’s result, AB BA G. The result follows.

5. Density and weakly mixing
In [14], it was shown in general that the product ot a weakly mixing dis-

crete flow and an ergodic discrete flow is not necessarily ergodic. In this
section, we consider this problem for weakly mixing minimal discrete flows.
The problem of when the product of such a transformation group with

another is weakly mixing is easily answered for arbitrary transformation
groups.

5.1 LEMMA. Let (Y, T) be weakly mixing minimal and T abelian. Let
(Z, T) be a transformation group. Then (Y X Z, T) is weakly mixing iff
(Z, T) is weakly mixing.

Proof. A basic open set for Y XZ) (Y Z) is(A B) (CD)
with A, C open in Y, B, D open in Z. Using the notation of 2.4, then

N((A X B) X (C D), (E X F) (G H))

N(A, E) N(B, F) N(C, G) N(D, H)

where all sets involved are open. If (Z, T) is weakly mixing, then there
exists L, K open in Y, P, R open in Z such that

N(L, K) c N(A, E) N(C, G),

N(P, R) N(B, F) N(D, H).

Then N(L, K) is discretely syndectic and thus N(L, K) N(P, R) 0 as
in [14, Remark 2.8], Thus, (Y Z, T) is weakly mixing. The converse is
obvious.

Let C be the unit circle, and x a (discrete) character for T. Then (C, T)
with action (c, t) -- c.x(t) is a transformation group and if Cx 0(1),
the orbit closure of 1, then (Cx, T) is equicontinuous minimal.
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The next result characterizes weakly mixing by ergodicity of certain
products.

5.2 LEMMA. Let (X, T) be minimal. Then (X, T) is weakly mixing

iff (X X Cx T) is ergodic for every discrete character x of T.

Proof. Suppose (X X Cx, T) is ergodic for every discrete character
x of T. Let f be a non-zero continuous eigenfunction for (X, T) with

f" X -- C. Then ft x(t)f (t e T) for some discrete character x. Define
g on X X Cx by g(x, c) f(x)c. Then

f( )c c),

and g is a continuous invariant function for (X X Cx, T). Hence g is a
constant by [13, Theorem 2.2]. This implies that f is a constant, whence
(X, T) is weakly mixing by 2.8. The converse follows from [14, Corollary
2.7], since (Cx, T) is minimal.

For the rest of this section, we let T be the integers and consider the dis-
crete flow (X, ). Using the above, if , e C, then Cx is the orbit closure of 1
under the rotation by .
We will also use the following notation" if R is a set of integers, then R+

will denote the non-negative integers in R and R- the negative integers.
addition,/(S), _D(S) and D(S) will denote the upper density, lower den-
sity, and density of a set S of non-negative integers.

5.3 THEOREM. Suppose (X, q) is minimal and satisfies the property

(,) for all non-empty open subsets A, B of X, D(N+(A, B) ) 1.

Then (X, q is weakly mixing.

Proof. Suppose (X, ) is not weakly mixing. Then there exists a non-
constant continuous eigenfunction f. We can assume f" X -- C, the unit
circle. If fq hf, then f (X, ) (Cx, Tx). Now it is a simple exercise
to show that the homomorphic image of a flow with the property (,) also
has the same property. Thus, (Cx, Tx) satisfies (,). But the equiconti-
nuity of (Cx, Tx) shows that diam(W) is small for every n >_ 0 if diam(W)
is sufficiently small. Thus, if U, V are non-empty open sets sufficiently far
apart and U is sufficiently small, then ’U f’l U 0 implies ’U f’l V 0.
Since

lnln>_l and

is syndetic, then/)(N+( U, V) ) < 1.
(X, ) is weakly mixing.

From this contradiction, it follows the

The author conjectures that a weakly mixing minimal discrete flow must
satisfy property (,).

If one replace DN+(A, B) by DN-(A, B) in (,), one can prove the same
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result. Moreover, one can replace the one-sided density in 5.3 by bilateral
density b N(A, B), which is the natural concept in a flow.
We have as an immediate corollary.

5.4 COROLLARY. Suppose (X, q) is minimal and satisfies (.) of 5.3.
Let (Y, b) be such that D_N+(C, D) > 0 for all non-empty open subsets C, D
of Y. Then (X X Y, X b) is ergodic.

Note that the condition _DN+(C, D) > 0 implies ergodicity and is implied
by minimality.
We now give conditions on (Y, b) which guarantee the hypothesis of 5.4.

5.5 LEMMA. Let (a)>o be a sequence of real numbers such that

1
n nc 1 o a’’*a 0

and l >_ a >_ O for every i. Then D_ ({i a > 0}) > 0.

Proof. Suppose _D({i a > 0} _D(A) 0. Then there exists a se-
quence (m) for which

0 x(i) 0,
in + 1

where xA is the characteristic function for A. Now xa (i) _> a for every i,
since i e A implies a 0. Then

m. -t- 1 v’0z a
__

0

which is a contradiction.

5.6 TEOREM. Suppose ( Iz, b) is ergodic with Y compact metric, and there
exists an invariant Borel probability t for which supp t Y. Then
D_N+(C, D) > 0 for all non-empty open subsets C, D of Y.

Proof. First note that if A is open and t(A) > 0, then (A) > 0 for some
ergodic probability , since t(A) f (A) dm(,), where m is a measure on
the ergodic measures (cf. [18, p. 82]).

Now let C, D be non-empty open subsets of Y. Then by ergodicity,
D t for some integer n. Since by hypothesis u(h’C [’l D) > 0,
then ,(’C f’l D) > 0 for some ergodic . Thus, (’C) (C) > 0 and
(D) > 0. Since is ergodic,

n--11_ v(b_ D f’l C) .-, v(D)v(C) > O.
I

By 5.5 _D(/n (-’D f’l C) > 0}) > 0 and thus

D_(Inln>_O and k-"DflC0J) > 0.
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Since b-nD C 0 iff hnC [’l D 0, the result follows.
It would be interesting to know if the existence of t guarantees the existence

of an ergodic probability , for which supp Y.
The existence of such a is easily describe in terms of the Kryloff-Bogliou-

bof theory (cf. [16])

5.7 LEMMA. Let Y, b) be a flow with Y compact metric. Then there exists
an invariant Borel probability for which supp # Y iff the points of density
Q) are dense in Y.

Proof. Suppose QD is dense. If {Unln >_ 1} is a countable base for Y,
then for every n, there exists p e QD such that pn e U. If # is the probabil-
ity induced by p, then (U) > 0. Thus, t n/2 is the desired
probability. On the other hand, since every set of measure 1 for a measure
supported on the whole space must be dense and since Q. is a Borel set of
invariant measure 1 [16, p. 119], the result follows.

5.8 COROLLARY. Suppose Y, b) is a flow with Y compact metric such that
the periodic points are dense. Then there exists an invariant Borel probability #

for which supp t X.

Proof. By 5.7, it is sufficient to show that each periodic point is a point of
density. Let p be a periodic point with period n. Then it is direct to verify
thatp is a mean point and the measure is the ergodic measure giving weight

1In to each point in c0(p). Thus, p is a point of density, and the result follows.

Using 5.8, we can describe large classes of non-minimal flows for which 5.6
holds. One class is the fi;-flows of Furstenberg [7, p. 27], which includes the
symbolic flows. Another class which can be seen to satisfy 5.8 (cf. [20, p.
759]) are Anosov diffeomorphisms of a compact connected manifold which
yield a topologically ergodic flow. Finally, if is a diffeomorphism of a com-
pact manifold M satisfying [20, Axiom A, p. 777], then certain ergodic sub-
flows of the non-wandering set (cf. [20, Theorem 6.2]) will satisfy 5.8.
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