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1. Introduction

Let M be (2n % 1)-dimensional lmost coatct mnifold with funda-
mental ane collineation , fundamental vector field E nd contact form .
Consider 2n-dimensional mnifold P imbedded in M by i P --. M. In
recent pper [4] the uthors studied invrint nd noninvrint hypersurfces
of M which rise when for ech p e P, the vectorE does not belong to the
tngent hyperplne of the hypersurfce i(P). These hypersurfces dmit
lmost complex structures, nd when M is qusi-Sskin (see [1] for the
definition), e.g., when M is cosymplectic or normal contact spce, nd i(P)
is noninvrint, then P crries Kehler structure. On the other hnd, n
invrint hypersurfce of cosymplectic mnifold is totally geodesic nd
Kehlerin.
We now study the cse where the fundamental vector field is lwys tngent

to the hypersurfce. The structure induced on P turns out to be n f-struc-
ture (see [3], [6], [10]) which is neither lmost complex nor lmost contact.
It gives rise to the notion of qusi-symplectic mnifold which hs nice
properties. This structure on P is determined by (1, 1) tensor field f nd
the metric induced on P by the metric of the qusi-Sskia mnifold.

Following [5], the f-mnifold P is sid to be normal if the lmost complex
structure tensor J of certia subbundle V(P) of the tngent bundle T(P)
of P is integrble ad the connection , of V(P) in terms of which J is defined
is flut. For example, totally umbilical hypersurfce of u cosymplectic
mnifold gives rise to normal framed f-structure. Necessary nd sufficient
conditions re given for the integrbility of qusi-symplectic structure when
the mbient spce is either cosymplectic or normal contact mnifold.
An lmost complex structure my lso be defined on P in terms of the

structure tensors of the framed f-structure. Moreover, if the mbient spce
is cosymplectic mnifold nd P is totally geodesic hypersurfce, P crries
Kehlerin structure. By considering more general framed f-structures

the sme conclusions re obtained under weaker conditions. Other examples
of Kuehler mnifolds re obtained by considering complete nd simply con-
nected qusi-symplectic normal framed f-mnifolds P. Indeed, if P is
totally geodesic hypersurfce nd the mbient spce is cosymplectic, then P
is product with one fctor Kehlerin. The sme conclusion prewils under
more geaerl conditions on the second fundamental form of the immersion.
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The direct product P1 X P2 of two framed f-structures P1 and P: has a
naturally induced almost complex structure other than the one arising from
the underlying almost complex structures of P1 and P.. If i(P1) and i(P)
are totally geodesic hypersurfaces and the ambient space is cosymplectic,
then P1 X P2 is Kaehlerian.
In 8, we study the topology of compact even-dimensional globally framed

f-manifolds P whose structure tensors are parallel fields. Since P has an
associated Kaehlerian structure, its topology may be studied by means of
the theory of harmonic integrals. We choose, however, to introduce an
analogous theory with the fundamental form F of the f-structure playing
the role of the Kaehler 2-form. If the rank of f is maximal, F is the Kaehler
2-form. Hence, if only F is assumed to be parallel, this yields a generaliza-
tion of Kaehler geometry.

2. Framed j-structures

It is assumed throughout that the vector field E is tangent to the hyper-
surface i(P). As examples, we may consider R imbedded in R+ or the
torus T imbedded in T+. Since i is a regular map, there is a vector
field E’ on P such that

(2.1) E i,E’.

Hence

(2.2) b(i,E’) O, v(i,E’) 1.

Putting

(2.3)

we obtain

(2.4) (E’) 1.

PROPOSITION 1. There exist vector fields N on i(P) and A on P such that
N() i(P)o,) for all p e P and

(2.5) N -i.A, v(N) O.

properties
It is well known that a metric G may be defined on M with the

(2.6) G(x, y) -G(x, y),

for all vector fields x, y on M, that is, is skew-symmetric with respect to
G, and

(2.7) G(E, .).

Let N be the unit normal to i(P) with respect to G. Then, since N is
orthogonal to hr with respect to G, it is tangent to the hypersurface and conse-
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quently can be expressed as

(2.8) N -i,A

for some vector field A on P. Moreover, N is orthogonal to the vector field
E since E() e i(P)(), p P, that is,

(2.9) v(N) 0.

PROPOSITION 2. Let P be a 2n-dimensional manifold imbedded in the almost
contact manifold M with imbedding i. Then, there exist tensor fields f, Ep, ’, A
and a on P satisfying the relations

f -I+ ’(R) E’+a(R)A,(2.o)

(2.) rE’ O, fA O,

(2.12) 7’ f 0, a f 0,

(2.13) y’(E’) 1, v’(A) O,

(2.14) a(E’) 0, a(A) 1,

where I is the identity transformation of P.
Proof. Put

(2.15) Oi,X i,fX - a(X)N.

Then, from (2.1), 0 Oi,E’ i,fE’ - a(EP)N. Since o 0 and
y(N) O, v(i,fX) O. From (2.8), 0 v(ON) -y(i,A). Applying
to both sides of (2.15) yields (2.10) and the second half of (2.12) by virtue

of (1.1), (2.1), (2.3) and (2.5). Applying to both sides of (2.5), we ob-
tain the second halves of (2.11) and (2.14).

COROLLARY. The hypersurface i(P) is not invariant with respect to (see
[41).

This is an immediate consequence of (2.14) and (2.15).
We shall occasionally refer to P rather than i(P) as the hypersurface.

3. Normal framed f-structures
If the tensor field f of type (1, 1) on P has the property

f+/=o
and f is of rank r everywhere, it is said to define an f-structure of rank r on P.
As examples, we have the almost complex and almost contact structures,
the former being of maximal rank and the latter having rank one less than
the maximum.

THEOREM 3. The structure on P given in Proposition 2 is an f-structure
of rank 2n 2.
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Proof. By (2.10)-(2.14), f -t- f 0. Let X be a vector field on P satis-
fying fX 0. Then, by (2.10), fX -X - ’(X)E’ - a(X)A, so that

X n’(X)E’- a(X)A.

This structure on P is called a framed f-structure of rank 2n 2 or, simply,
a framed f-sructure. We shall occasionally refer to it as a globally framed
f-structure. When the vector bundle V(P) over P formed by the set of all
tangent vectors v vE, a 2n 1, 2n 2, E,,+ E’, E,,,+ A is
endowed with an affine connection , it admits a natural almost complex
structure (see [5]). If it is integrable, the framed f-structure is said to be
normal.

PROPOSITO 4 (Ishihara [5]). In order that the framed f-structure be
normal, it is necessary and sucient that the tensor field S of type (1, 2) given by

S(X, Y) [f,j](X, Y) + {( V’’)(X, Y) ( V’’)(Y, X)}E’
+ (7’) (Z, Y) (’) Y, X) A

vanish and the connection "r of V(P) have zero curvature, where

[f, f](X, Y) [fZ, fY]- f[fX, Y] -][X, ]Y] + f=[X, Y]

and ’ denotes covarian differentialion wi$h respec

By defining , in such a way that E’ and A are parallel (absolute parallelism),, has zero curvature. By Proposition 4, a framed f-structure is then normal
if S [f, f] - d’ (R) E’ d (R) A vanishes.

Putting Y E’ in Proposition 4, we find after taking the interior product
byE’ that L, ’ 0 if the structure is normal. Similarly, L, a O, L, ’ 0
and La a 0. These relations together with (2.12) imply that L, f 0.
Moreover, L, fvanishes. Theseformulae are required in theproof of Theorem
19.

4. Quasi-symplectic framed f-structures
Let M(, , G) be an almost contact manifold. We give to the framed

]-structure P the metric g induced by G, that is, g i*G. Then, by (2.6)
and (2.15), since the vector field N is normal to i(P), f is skew-symmetric
with respect to the metric g. We put

F(Z, Y) g(/Z, Y)

and call F the fundamental 2-form of the framed f-structure.
Assume now that M(, y, G) is quasi-Sasakian (e.g., assume that it is either

cosymplectic or a normal contact manifold). Let be the fundamental
2-form of M, that is, (x, y) G(x, y). Then, since F i*, dF di*
i*d O. In this case, P is called a quasi-symplectic framed f-manifold of
rank 2n 2. (Observe that a framed f-structure cannot be symplectic (of
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rank 2n).) If M(, 7, G) is a contact manifold, F is an exact 2-form.
is an exact 2-form, that is, d, so F i* i*dy di* d’.
Note that on a quasi-symplectic manifold

(E’)F-1 0 and e(A)Fn-1 0

For,

(where (X) denotes the interior product by X), so

(E’) (7’/ F-1) F- and (A) (/ F-) F-,
from which 7’ / F- 0anda/ F-1 0. If the ambient space is a
contact manifold, F dv’, and in this case, 7’/ (d’)- O. Moreover,
(dy’) 0, for, ,(E’)(7’/ F) F 0.
From (2.7) and (2.8), wefind 7’ g(E’, .),a g(A, .). Thus, E’ andA

are orthonormal vectors.
If M(, 7, G) is a cosymplectic manifold, that is, if v is closed, then V 0,

Vv 0, where F denotes covariant differentiation with respect to the Rie-
mannian connection of M (see [1]). Denote by D the induced connection
on P. Then, the equations of Gauss and Weingarten are

.xi.Y i.DxY -q- h(X, Y)N and .x N -i.HX,

respectively, where
h(X, Y) g(HX, Y),

the tensor h being symmetric. The tensor fields h and H are the second
fundamental tensors of P (with respect to N) of types (0, 2) and (1, 1),
respectively.

Covariant differentiation of both sides of (2.1), (2.3), (2.5) and (2.15)
along the hypersurface yields after again taking account of (2.5), (2.9) and
(2.15)

PROPOSITION 5. Let P(f, E’, A, g) be a quasi-symplectic globally framed
hypersurface of a cosymplectic manifold. Then,

(Dxf)Y a(Y)HX- h(X, Y)A,

Dx E’ O, Dx A fHX,

Dx 7’ O, (Dx a)(Y) -h(Z, fY),
h(X, E’) O, h(X, A) a(HX),

,’(HX) O.

The last relation follows from (2.9) by virtue of Weingarten’s equation.
For any vector field X, it is easily checked that Dx f is a skew-symmetric

linear transformation with respect to g and (D F) (Y, Z) g( (Dx f) Y, Z).
This is also true when the ambient space is a Sasakian manifold.
From the equations (4.1), we obtain

IIOIOSITION 6. Let M be a cosymplectic manifold. If the quasi-symplectic
framed f-structure on P is totally umbilical, then it is totally geodesic and normal.
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Proof. Since P is totally umbilical, h g and H I, where I is the
identity transformation of P. Hence, 0, that is, P is totally geodesic.
One then observes that

If, f](Z, Y) (D: f) Y (D:r f)X f(D: f) Y -F f(Dr f)X.
M:oreover, the curvature of the connection - of V(P) is zero. For,

t(Dx E’) O, t(Dx A) O,

where f2 + I is the projection operator on V(P), (see 6), that is, both
E’ and A are parallel with respect to the connection induced on V(P) by the
connection of the ambient space. The result is now a consequence of Proposi-
tion 4.
From (4.1), it is seen that the vector field A on P is a Killing field if and

only if h(X, fY) --h(Y, fX), that is, if and only if, H commutes with f
(see Theorem 9).
From (4.1),

(Dx F) Y, Z) a( Y)g(HZ, Z) h(X, Y)g(A, Z)

a(Y)h(Z, Z) a(Z)h(X, Y).

The 2-form F has vanishing covariant derivative, if and only if, h ga (R) a.

If P is totally geodesic, then f is a parallel tensor field. Conversely, if f
is a parallel field, DF vanishes. Thus, a(HX) h(X, A) ga(X). This
implies that H gI + If + v (R) E’ for some function and 1-form . On
the other hand, since h(X, fY) ga(X)a(fY) 0, we obtain Da 0 and
DA O. To see the latter, note that

g(DxA, Y) g(fHX, Y) -g(HZ, fY) -h(Z, fY) O.

Hence, fHX vanishes, from which fX - lflX lso vanishes. Thus,

so that if n -> 2, 0, that is, P is totally geodesic.

PaOOSTON 7. Let M be a cosymplectic manifold whose dimension is at
least 5. Then, if the linear transformation field f of the framed f-structure on P
is parallel, P is a totally geodesic hypersurface, and conversely.

Coaov. Let M be a cosymplectic manifold whose dimension is at least
5. Then, iff is a parallel field, so are E and A. Moreover, E’ and A are infini-
tesimal automorphisms of the quasi-symplectic structure on P.

Let M(, v, G) be a Sasakian manifold, that is, M is a contact manifold
and the almost contact structure of M is normal. Then, since

E , b)y -G(x, y)E - v(y)x,

the following relations are obtained in a manner entirely analogous to those
of (4.1).
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(Dxf)Y -g(X, Y)E’ + ’(Y)X + a(Y)HX h(X, Y)A,

DE’ f Dx A fHX,

(4.2)

h(Z, E’) a(Z), h(X, A) a(HX),

,’(HX) (X)
These equations then yield

PROPOSITION 8. Let M(, , G) be a normal contact manifold and
P(f, E’, A, g) a quasi-symplectic framed f-structure. Then, the connection of
the vector bundle V(P) over P is locally fiat.

Proof. By (4.2) and (2.12),

and
t(Dx E’) (7’ @ E’ + a (R) A)fX 0

t(Dx A 7’ (R) E’ + a @ A fHX O,

that is, both E’ and A are parallel with respect to the connection induced on
V(P) by the connection of the ambient space.

(Observe that there are no totally umbilical framed f-hypersurfaces of a
normal contact manifold. Moreover, the covariant derivative of F is differ-
ent from zero.)
From (4.2), it follows that A is a Killing vector field, if and only if H com-

mutes with f. Moreover, the vector field E is a Killing field (see Theorem
10).

5. Quasi-symplectic normal globally framed )’-structures

In this section, we seek necessary and sufficient conditions for the normality
of the structure induced on P when the ambient space M is either a cosym-
plectic or a normal contact manifold. To this end, we apply Proposition 4;
hence, since the connection of the vector bundle V(P) is locally flat in the
cases considered, we seek only necessary and sufficient conditions for the
vanishing of the tensor field S.
We compute (i.X, i.Y), where is the tensor field of type (1, 2) on

M(, E, 7) whose vanishing means that M is normal"

(x, y) [, ](x, y) - 47(x, y)E

( ,)y (,)x {( %)y ( )x}

T ((R)7) (Y) (7) (x) }E,

where x and y are vector fields on M. Thus, putting x i.X and y i.Y,
then applying (2.5), (2.15) and the Gauss and Weingarten equations judi-
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ciously, we obtain after a rather long computation

(i.X, i.Y) i.{[f, j](Z, Y) - dT’(X, Y)E’ - da(Z, Y)A

a(Y) (Hf fH)X - a(X) (Hf fH) Y}

" (Dsxa) (Y) (Dsra) (X)

a(Dr(/Y) + a(Dr(fX)- a(HX)a(Y) a(HY)a(X)}N.

+ (h) (a(X)i,Y a(Y)i.X).

Case 1. M(, 7, G) is cosymplectic. Then, since has vanishing co-
variant derivative with respect to the Riemannian connection,

(, j] + 47’ (R) E’ + d (R) A)(Z, Y) (Y) (Hf fH)X- a(X) (H] fH) Y O.

THEOREM 9. Let M be a cosymplectic manifold. Then, a necessary and
sucient condition that the framed f-structure P be normal is that Hf fH
@ v, where v is the vector field -D. A. If the structure on P is normal and

the integral curves of the vector field A are geodesics, then H commutes with
f. Conversely, if the structure on P is normal and H commutes with f, then the
integral curves of A are geodesics.

Case 2. M(, 7, G) is Sasakian. Then,
( h)(a(X)i,Y a(Y)i,X) {a(X)7(Y) a(Y)7’(X)}N.

Consequently,

(, - d,’ @ E - da @ A) (X, Y) -a(Y) (H$ fH)X- a(X) (Hf fH) Y O.
THEORE 10. Let M be a Sasakian manifold. Then, a necessary and

sucient condition that the framed f.structure P be normal is that Hf fH
(R) v, where v is the vector field --D A. If the structure on P is normal and

the integral curves of the vector field A are geodesics, then H commutes with f.
Conversely, if the structure on P is normal and H commutes with f, then the in-
tegral curves of A are geodesics.

Theorems 9 and 10 may also be obtained by computing S directly from the
relations (4.1) and (4.2).

In both cases, the f-structures are normal if A is a Killing field. For, then
H commutes with f and -v D A fHA HfA O.

6. Examples of Kaehler manifolds
In this section, we show that an almost complex structure may be defined

on the globally framed hypersufface P. Moreover, if the ambient space is
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cosymplectic and P is totally geodesic, it is Kaehlerian. We also show that
the direct product of two globally framed totally geodesic hypersurfaces of a
cosymplectic manifold is Kaehlerian. Other examples are provided by the
following theorem.

THEOREM 11. Let M be a cosymplectic manifold and let P be a hypersurface
of M with the induced quasi-symplectic globally framed f-structure. If P is com-
plete and simply connected, and if it is totally geodesic, it is a product with one
factor Kaehlerian.

Proof. By (4.1), Df O, so DF also vanishes. Thus,

P, {X e P, IF(X, P) 0}
defines a parallel distribution. Therefore, the orthogonal complement P
(with respect to g) also gives a parallel distribution. Note that E and Ap pdo not belong to P. By the de Rham decomposition theorem P

p’ p,,where F 0 on and F has maximal rank on By Proposition 6, P is
normal, so by Proposition 4 and (4.1), [f, f] 0. The almost complex struc-
ture on P" obtained by restricting f to P’ is therefore integrable. Since F is
closed, P" is symplectic; in fact, since F has vanishing covariant derivative,
P’ is a Kaehler munifold.
A generalization of Theorem 11 is obtained by generalizing Proposition 6.

PROPOSITION 12. A sucient condition that a hypersurface P of a cosym-
plectic manifold M have a quasi-symplectic normal globally framed f-structure is
that its second fundamental form h be proportional to a (R) o, that is h a (R) a
where h(A, A).

The generalization of Proposition 6 is obtained by replacing h ),g
byh g W a@ a.

It is now shown that a hypersurface of an almost contact manifold with the
induced framed metric f-structure carries an almost hermitian structure.
This is accomplished by ’twisting’ the frames consisting of the vector fields
E’ and A. In fact, the following stronger statement is established.

THEOREM 13. A hypersurface P of a cosymplectic manifold with the induced
globally framed f-structure is Kaehlerian if its second fundamental form is pro-
portional to o (R) .

Proof. Put] f W ’ (R) A a (R) E’. Then, from (2.10)-(2.14),
rank ] 2n. Moreover, ] defines an almost complex structure on P.
Putting (X, Y) g(]X, Y), we obtain

F- 2 ’ / a.

Thus, the hypersurface P has an almost hermitian structure (], g). Since
the ambient space is a cosymplectic manifold, F and are closed forms. In
addition by (4.1), since h a (R) a, a is also closed, so P(], g) is almost
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Kaehlerian. That it is a Kaehler manifold is a consequence of the fact that
[, ] is zero. For, , 7’ and a are covariant constant with respect to the
Riemannian connection of P.

COROLLARY 1. Let P be a hypersurface of a cosymplectic manifold wih the
induced globally framed f-structure. Then, if f has vanishing covarian deriva-
tive with respect to the Riemannian connection of the induced metric, P is Kaeh-
lerian.

Proof. By (4.1), a(Y)HX h(X, Y)A. Hence, a(Y)a(HX)
h(X, Y), from which h(X, fY) 0 by (2.12). Thus, Da 0.

COROLLARY 2. A totally geodesic hypersurface P o] a cosymplectic manifold
with the induced globally framed f-structure is Kaehlerian.

Observe that
(f- ’ (R) A + (R)/’, g)

is also a Kaehler structure on P as are

(-f-’(R)A-a(R)E’,g) and (-f- 7’(R)AWa(R)E’,g).

Moreover, the vector fields E and A generate one-parameter groups of auto-
morphisms of the various Kaehler structures.

Let P be a manifold (not necessarily a hypersurface) with an f-structure of
rank r. If we put s -f and f W I, where I is the identity trans-
formation field, s I,s s,t t,fs -sandft 0. Thus, the
operators s and acting in the tangent space at each point of P are comple-
mentary projection operators defining two distributions S and T in P corre-
sponding to s and , respectively. The distribution S is r-dimensional and
dim T m r, m dim P. The set of all tangent vectors belonging to the
distribution T has a bundle structure, denoted by V(P), which is a subbundle
of the tangent bundle of P of dimension 2m r.

If there are m r vector fields E spanning the distribution T at each
point of P, and m r linear differential forms satisfying

()(6.)

(6.2) f --I -t- (R) E,

where a and b range over the set {1, .., m r}, P is said to have a framed
f-sructure and P is then called a framed f-manifold or is said to be globally
framed. From (6.1) and (6.2) one may easily obtain

(6.3) fE O, of O.

(If the rank is maximal, that is, if r m when m 2n and r m 1 when
m 2n 1, thenf -I in the former case, and f2 -I W (R) E when
P is odd dimensional.)
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For a globally framed f-manifold P, if we put
2i--1(6.4) ] : + (R) E_- n (R) E, i 1, ..., [(m r)/2]

an almost complex structure tensor ] is defined if dim P 2n, and an almost
contact structure (], Es,-r-1, --) if dim P 2n 1.
The framed f-manifold P(f, Ea, va), a 1, ..., m r, is called a framed

metric f-manifold if a Riemannian metric g on M is distinguished such that
(i) =g(E, .), a 1, ..., m r and (ii) f is skew-symmetric with re-
spect to g. It can be shown that a framed f-manifold carries a metric with
these properties. We put F(X, Y) g(fX, Y) and call it the fundamental 2-
form of the framed for f-manifold.
A framed metric f-manifold P(f, , g) is said to be covariant constant if the

covariant derivatives (with respect to the Riemannian connection) of its
structure tensors are zero.
An examination of the proof of Theorem 11 yields the following generaliza-

tion.
THEOREM 14. Let P be a complete covariant constant even dimensional glob-

ally framed f-manifold. Then, if P is simply connected there is a Kaehlerian
submanifold whose dimension is rant f.
Note that the vector fields E, a 1, ..., dim P r, are orthogonal to

the Kaehlerian factor.
Let P be a framed metric f-manifold of dimension m 2n. Then, an

almost complex structure ] f-t- @ E_- - @ E,i is defined on P
in terms of which the metric g is hermitian. Setting (X, Y) g(]X, Y),
we obtain

(6.5) 2i--I

If the fundamental 2-form F and the ya are closed forms, the almost her-
mitian structure on P is almost Kaehlerian. It is Kaehlerian if ] has van-
ishing covariant derivative with respect to g, that is, if the structure tensors
f and Ea are covariant constant with respect to the metric g. (In this
case, the vector fields E, a 1, ..., 2n r, are infinitesimal automor-
phisms of the Kaehlerian structure.).

THEOREM 15. A covariant constant even dimensional globally framed f-mani-
fold carries a Kaehlerian structure.

In the odd dimensional case the framed metric f-structure P(f, q", g) gives
rise to the almost contact metric structure P(], --1, g). For,

2n--r--1 2n--r--1g(IX, ]Y) g(X, Y) , (X) (Y).
2--r--1Set ], E E__I, y y and ((X, Y) g(X, Y).

$i-1=FW22A
Then

If the fundamental 2-form and the 1-form are closed, the almost contact
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structure on P is almost cosymplectic [4]. It is cosymplectic, if and only if,
the almost contact structure is normal. Clearly, P cannot be a contact mani-
fold.

THEOREM 16. A covariant constant odd dimensional globally framed f-mani-
fold carries a cosymplectic structure.

Proof. Since f and the 7 have vanishing covariant derivatives with re-
spect to the Riemannian connection of g, so does . Hence, the torsion

(D,x ) Y (Dr )X -+- (Dr th)X tb(Dx ) Y
q- (Dx 7) (Y) (Dr 7) (X)}E

vanishes, where D denotes covariant differentiation with respect to the Rie-
mannian connection of g. Thus, P(b, E, 7) is normal.

Besides the twisted structures of Theorem 13, there are the almost complex
manifolds provided by taking direct products.

THEOREM 17. The direct product of the framed metric f-structures
P(f 7 a g), i 1, 2, has a naturally induced almost complex structure J.
If the f-structures are normal, then J is integrable, and conversely. If the P are
totally geodesic hypersurfaces and the ambient space M(, 7, G) is a cosymplectic
manifold, then P1 )< P. is Kaehlerian.

Proof. For X e Pi i 1, 2, we put

J(,I.)(X1, X2)

(flXl- 7’(X2)S’x- a.(X:)A, fX.-[- 7’I(X)E -[- al(X)A).

Then, it is easily checked that J -I where I(X1, X2) (X, X). If
the f-structures on P are normal, then the almost complex structure on
P X P. is integrable (see [8]). The converse is obtained by employing the
relations

[J, J](X 0, Y 0) 0, [J, d](0 X, 0 Y.) 0,

[J,J](0XX,YX0) =0 and [J,J](XIX0,0XY) =0

in the expression for [J, J](Xx X X., Yx X Y) where X )< Y (X, Y).
Define a metric on P1 X P by g + g, where g. iG is the metric induced
on P. by the almost contact metric G of the cosymplectic manifold M(, 7, G).
The 2-form f on P )< P given by

e (F. 0) + (0. F) + (,. 0) A(0. ,) + (.. 0) A (0.

where F i, j 1, 2 are the fundamental forms of P and P, respec-
tively, is the Kaehler form of P X P.. For, since the fundamental form
of M is closed, F and F. are closed. Moreover, by (4.1), the 7 and a are
closed, the latter following since the P are totally geodesic submanifolds.



SAMUEL I. GOLDBERG AND KENTARO YANO

Finally,
g(J(X X.), Y X Y.) f(X X., Y X Y).

COnOL,AV 1. Let P be a totally geodesic hypersurface of a cosymplectic
manifold with the induced globally framed f-structure. Then, the direct product
of P with itself is Kaehlerian.

If the linear transformation fields f and f are covariant constant, then by
Proposition 7, P and P ure totully geodesic hypersurfces. Thus, we obtain

COnOLAY 2. Let P and P. be hypersurfaces of a cosymplectic manifold
with the induced globally framed f-structures (f o g). Then, if the (1, 1)
tensor fields f are covariant constant with respect to their Riemannian connections,
P >( P. is a Kaehler manifold.
Theorem 17 may be improved by considering f-structures of rank 2n 2.

Indeed, if M and N are spaces endowed with normal quasi-symplectic framed
metric f-structures, then M X N possesses a Kaehlerian structure if the
structure tensors ure covuriunt constunt.

7. Integrability of globally framed f-structures
We have seen that a totally geodesic hypersurface of a cosymplectic mani-

fold with the induced globally framed f-structure is covariant constant. Re-
placing the condition that the hypersurface P be totally geodesic (HX 0
for all X) by the condition that the vector field A is parallel (fHX 0 for
all X), we prove

THEOE 18. Let P(f, E, A, g) be a globally framed f-manifold and suppose
that E’ and A are parallel vector fields. Then, the f-structure on P is normal if
and only if there exists a symmetric ane connection with respect to which f is
parallel and the connection "r of V(P) is fiat.

Proof. Suppose there is a symmetric uffine connection D’ such that D’f
0. Then, the tensor field S If, f] d- d’ (R) E’ -t- da (R) A vanishes. Con-
versely, assume that S vanishes. In terms of the Riemannian connection D
we define a new connection D’ by D’ Y D:c Y -F T(X, Y) where

T(X, Y) -f{Dx(fY) -F Dr(fX) -f(Dx Y -F Dr X)}

-I{D,(fX) fDe,X + fDx(fY) + DxY}.
Then

4(Dr f) Y 4[(D:r f) Y q-- T(X, fY) fT(X, Y)]

2[r’( Y)fDxE’ q-- o( Y)fDxA]

3[7’( (D:r f) Y) E’ -q-- a( (Dx f) Y)A

q-- ’(Y) (DB,f)X q-- a(Y) (Daf)Z

y’((D, f)X)E’ a((Dr f)X)A.
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From equations (4.1) and (2.12), we get

’((Dxf) Y) 0 and a((Dxf) Y) 0.

Moreover, DE,f and DAf vanish. For,

DE,(fX) D:xE’ -5 [E’, fX] f[E’, X]
(see 3). Hence,

(DE,f)X --fDE,X + f[E’, X] f(DE,X Dx E’- DE,X) 0

since DE’ O. Similarly, DA f is zero. We conclude then that D f 0.
On the other hand,

D’x Y D’r X [X, Y] Dz Y Dr X [X, Y] -5 T(X, Y) T( Y, X)

{ [fX, fY] f[fX, Y] f[X, fY] + f2[X, Y]} 0

since and a are closed.
A similar result for hermitian manifolds was obtained by Walker [9].

8. Topology of globally framed f-spaces

Let P(f, , g), a 1, ..., dim P r, be a covariant constant even dimen-
sional globally framed f-manifold, henceforth called a K-manifold. As we
have already seen P(], g) is a Kaehler manifold. If P is compact its topology
can therefore be studied from several points of view. In the first instance, as
a compact Kaehler manifold and secondly, by introducing a theory on
p(f, va, g) analogous to Weil’s generalization of Hodge theory on algebraic
varieties. Whereas P is the Kaehler 2-form, F plays that role in the latter
theory. A parallel study may be carried out for odd dimensional spaces but
this is omitted here. If r dim P, the manifold is Kaehlerian and the ensu-
ing theory is well-known.
Added in proof. The proper generalization along these lines has been given

by one of the authors in a paper to appear in the Journal of Differential
Geometry, dedication volume in honour of S. S. Chern and D. C. Spencer.
In the sequel, we assume that P is connected. If in addition P is compact,

then since the induced structure is Kaehlerian, we have

THEOREM 19. The p-th betti number of a compact K-manifold is even if p is
odd and the even dimensional betti numbers are different from zero. Moreover,
with respect to the induced complex structure the -1, i 1, ..., n r/2, are
holomorphic differentials, so the first betti number exceeds dim P r.

Remar]. The operator C on p-forms defined by

C/(XI, ..., X,,) a(fX,, ..., fX,)
annihilates the harmonic differentials v, a 1, ..., 2n r. Moreover, if
P is compact, it can be shown that C maps harmonic forms into harmonic
forms.
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Define dual operators L and A on P by L e(F) and A (F) where
e and are respectively the exterior and interior product operators. A p-form
(p >_ 2) is called effective if it is annihilated by A. For p 0 or 1 every
form is said to be effective. Since (F) (-1) .e(F). on p-forms where
is the Hodge star isomorphism, A 1) .L..
An orthonormal basis of P of the form {X, Xo, E}, A 1, ..., r/2,

X.o fX. a 1, ..., 2n r, dim P 2n, will be called an f-basis. Such
a basis always exists. To see this, let P, {X P, g(X, E) 0, a 1,.., 2n r}. Equations (6.1)-(6.3) and g(E, .) show that f
is an almost complex structure on P and g I’ is an hermitian metric. If an
orthonormal basis of P of the form {X, f I’ X}, A 1, ..., r/2, is then
chosen, an f-basis of P is obtained.

In terms of an f-basis {Xa, Xa., E} with dual basis {oa, a*, },

L ’ e() (o,), h :.,-, ,(X**) ,(X,).

Since ,(X) is an anti-derivation, AF r/2.
A p-form a on P is said to have tridegree (k, , ) if it is expressible as a

sum of decomposable forms

,.,a, A A , A ,.,,,," A A ," A ’ A A ’.
If .,,, A A A ,," A A ." A ’ A A ’,
we shall denote by ah the ’horizontal’ part

, A A A ," A A
and by a the ’vertical’ part

’A... A’.
Thus, a a A a. Clearly,

LEMMA 1. On a framed metric f-manifold, L and A satisfy

hLa Lha (r/2 + ,
for any p-form a of tridegree (, , ,).

Proof. By linearity it suffices to consider the decomposable forms ah and
aa A a, The result then follows from formula (8.1) and the corresponding
relation for almost hermitian spaces.
We shall require the following operators"

d" , (..)D.,

" , ,(X.)Dx,

d a
o ’.
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A 1, ...,r/2;a 1, ...,2n-r. Then,

d d’-t- d" + d and ’-/t" +.
LEMMA 2. On a K-manifold

’L L’ -d", L L" d’,
L L, L L d’ d".

Proof. Since L commutes with D, (y) and (E), the proof is a computa-
tion similar to the corresponding one for Kaehler manifolds. It is important
to note the role played by DF O.

LEMMA 3. On a K-manifold
d’d’ O, d’d" - d"d’ O,

d"d" O, dd dd O,

dd O, dd" -+- d"d O.

Proof. Since dd O, the result follows by comparing tridegrees.

LEMMA 4. On a K-manifold
dL Ld, A A,

d’L Ld’, d"L Ld", dL Ld,
A’ ’A, A" "A, A

Several interesting consequences my be derived from Lemmas 2 and 4.
To begin with, we hve

LEMMA 5. On a K-manifold

d’" + "d’ O, d"’ + ’d" = O.

Proof. Immediate from Lemma 2 and the dual of Lemma 3.

LEMMA 6. On a K-manifold

d’’ -+- ’d’ d"" + "d".

Proof. From Lemma 2, the expression "L’ 6’L" - L’" "6’L is
equal to d"6" - "d" from the first relation and to d’/}’ - ’d’ from the second.

Let/’ denote the linear space of horizontal p-forms.

LEMMA 7. On a K-manifold

A l^ 2(d’’ - ’d’)l ^ 2(d"6" -t- 6"d")] ^.



472 SACEL I, GOLDBERG AND KENTARO Y_A_NO

LEMMA 8. On a K-manifold
AL LA, AA AA.

Hence, L and A send harmonic forms into harmonic forms.
Proof. Apply Lemms 2-4. That AA AA is consequence of the

fct that commutes with A.

LEMMX 9. On a K-manifold the forms F F / / F (p times) are
harmonic of degree 2p for every integer p <- r/2.

]LEMMA 10. On a framed metric f-manifold
(AL LA)a It(r + ,, p + 1)L-a

for any p-form a of tridegree (k, tt, ,,), p <= r/2 + ,, 2l + 2.

Proof. By recursion on the integer k using Lemma 1.

THEOREM 20. On a framed metric f-manifold a p-form a of tridegree (k, tt, )
p <= r/2 + , + 1, may be uniquely expressed as a sum

(8.2) a =0 Lb-,
where the b_ are effective forms of degree p 21c and s [p/2].

Proof. The theorem is trivial for p 0, 1. Proceeding inductively, assume
its validity for p <- r/2 -2. Then, to any p-form/ is associated a
unique p-form a such that

(8.3) AL , p <= r/2 - , --1.

For,
t t=0iO-.

where the 0_. are effective. By (8.2) and Lemma 10

ALa =0 AL+-
=0 (] -]- 1)(r/2 + , p + k)ib_.

Since p <- r/2 + 1, r/2 p + + ] O, so, in order that (8.3) hold,
it is sufficient to take

Op--2k
@- (/c + 1) (r/2 -+- ,, p + It)

} O, 1, s.

By uniqueness, this is also necessary. The rest of the proof is omitted.

Denote by/kx’E’ the linear space of forms of tridegree (),, t, ).

COIOLIY 1. On a framed metric f-manifold, AL is an automorphism of
/x.. for p <- r/2 + , 1 and of/’ for p <= r/2 1.

COIOSLRY 2. On a framed metric f-manifold, L is an isomorphism of
/x,,. into/x+""+’forp <= r/2 + , I and of /k’into /N+for p <= r/2 1.
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Since A commutes with L and A on a K-manifold, we obtain

COROLLARY 3. On a K-manifold, a harmonic p-form a of tridegree (, tt, ,),
p <- r/2 , 1, may be unqiuely expressed as a sum

EkO

where the

_
are effective harmonic forms of degree p 2 and s [p/2].

COROLLARY 4. The betti numbers b of a compact K-manifold satisfy the
monotonicity condition b b+ p r/2 -1. Moreover, b 0 for all q.

Proof. The first part follows from Lemma 8 and Corollary 2, whereas the
the second half is a consequence of Lemma 9 and the fact that the , a 1,.., 2n r are harmonic forms.

The erence b b_ may be measured in terms of the dimension % of
the space of effective harmonic forms of degree p, p r/2 1. For, by
Corollary 3

A A LA: L A, s [p/2],

where A andA denote the linear spaces of harmonic and effective harmonic
p-forms, respectively. Hence, A+2 nv+

/xn LA. By LemmaBand
Corollary 2, dim LA dim A from which by+2 ev+2 + bv, p r/2 1.

THEOREM 21. On a compact K-manifold

ev by by_2, p r/2 + 1.

Since the A , a b are effective harmonic forms of degree 2, we obtain

COROLLARY 1. On a compact K-manifold
b2 1 + (2n r)(2n r 1)/2.

Let v denote the dimension of the space of effective harmonic p-forms on
the Kaehler manifold P(f, g). If a and b are of opposite parity, the harmonic
2-forms a A b, a b, are effective with respect to the operator A, but not
in the Kaehler metric. To see this, let L and A be the operators of Hodge-
Weil on P(], g). Then, by (6.5), since X (- 1)v.. on p-forms,

X 2 E
fromwhichX(aA ) 2 a a(2- 2- 2-) However, we do
have the following result.

COROLLARY 2. On a compact K-manifold
ev, p r/2 + 1.
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