FIELDS OF MODULAR FUNCTIONS OF GENUS 0

BY
JosEpH B. DENNIN, JR.

1. Introduction
Let T be the group of linear fractional transformations

w — (ew + b)/(cw + d)

of the upper half plane into itself with integer coefficients and determinant 1.
T is isomorphic to the 2 X 2 modular group, i.e. the group of 2 X 2 matrices
with integer entries and determinant 1 in which a matrix is identified with
its negative. Let I'(n), the principal congruence subgroup of level n, be
the subgroup of T' consisting of those elements for whicha = d = 1 (n) and
b=c=0(n). Gis called a congruence subgroup of level n if G contains
T'(n) and n is the smallest such integer. G has a fundamental domain in the
upper half plane which can be compactified to a Riemann surface and then
the genus of G can be defined to be the genus of the Riemann surface. H.
Rademacher has conjectured that the number of congruence subgroups of
genus 0 is finite. D. McQuillan [6] has shown that if » is relatively prime to
2:3-5, then the conjecture is true. In this paper, we show that the number
of subgroups of levels 5" and 3", n > 1, of genus 0 is finite and list explicitly
which ones they are.

Consider M@y, the Riemann surface associated with I'(n). The field
of meromorphie functions on M, is called the field of modular functions of
level 7 and is denoted by K(n). If jis the absolute Weierstrass invariant,
K (n) is a finite Galois extension of C(j) with I'/T'(n) for Galois group. Let
SL(2, n) be the special linear group of degree two with coefficients in Z/nZ
and let LF(2,n) = SL(2,n)/ & Id. Then I'/T'(n) is isomorphic to LF(2, n).
If '(n) € G C T and H is the corresponding subgroup of LF (2, n), then by
Galois theory H corresponds to a subfield F of K(n) and the genus of F equals
the genus of G.

The following notation will be standard. A matrix

+(5 4
will be written +(a, b, ¢, d).
T=+x(0,-1,1,0); S==x(,1,0,1); R = x(0,—-1,1,1).

T and S generate LF(2,n) and R = TS. F will be a subfield of K(n) con-
taining C(j) and H, the corresponding subgroup of LF(2,n). g¢g(H) = the
genus of H and & or | H | = the order of H. [A] or [+(a, b, ¢, d)] will denote
the group generated by 4 or +=(a, b, ¢, d) respectively.
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We now concentrate on LF(2, p™), p > 2, whose order is p*"*(p* — 1)/2.
MecQuillan [6] obtained the following formula for the genus of H.

Let r, t and s(p") be the number of distinet cyclic subgroups of H generated
by a conjugate in LF(2, p") of R, T and S”" respectively where 1 < p” < p".
Then

(“)Mm=1+ﬁHW“4NN—®ﬂM—WﬂV—PWMM%
' — " Np— (=1/p))t/4h — p"(p — 1)’W/4h

where W = Y s(p”). One immediate consequence of this is that if two
groups are conjugate, they have the same genus.

We also need the following results from Gierster [2] which is a chief source
of information on LF(2, p"), » > 2.

Lemma 1.1. Suppose p > 2. An element of LF (2, p) is conjugate to T
if and only if its trace is 0. Consequently every element of order 2 is conjugate
to T and has the form = (a, b, ¢, —a) where —a® — bec = 1 (p™). An element
of LF (2, p™) is conjugate to R if and only if its trace is 1.

Let fr be the natural homomorphism from LF(2, p") to LF(2, p"),
0 < r < n, given by reducing an element mod p". The kernel of this homo-
morphism is denoted by K7 and has order p*™*™".

ProrosiTioN 1.1. If H n K,y s the identity, H n K, s the identity for
P=1,-,n—2.

ProrposiTioN 1.2. If|Hn Ky | = p, then H n K{ s cyclic and
|HanKi| <™

Propostrion 1.3. If |H n Kay| = 9’ then H n K1 is generated by two
transformations U and U’ of order p"™" and p"™" respectively and

IH n K{z I = pZn—r—r'.
So|HnKp| < p™

We use the groups Kr to define the concept of level for H. H is of level
p" if H contains K7 and does not contain K;—;. Similarly we say a subfield
F of K(p™) is of level p” if F is a subfield of K(p") and not a subfield of K (p™™).
Note that F is of level p” if and only if its Galois group is of level p".

For each r, K; is a normal subgroup of LF(2, p”) and if p > 3, these are
all the normal subgroups of LF(2, p") [5]. Since K, is normal, H-K, is a
subgroup of LF(2, p™) and we have the following useful formulas:

(1.2) |H-Kr | =|H||K/|/|HnK/|
(1.3) |HnK!| =|H||Kr'|/|H-K|.

In addition to the propositions from Gierster [2], we also use his tables
extensively and when we use the phrase ‘“by Gierster’” we are referring to
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this paper. Gierster writes an element of K, :
Ur = o(p, v, p)r = (u + D', p'v, p'p, ¥ — p'w) mod p”
where p, v, p belong to the set of residues mod p" ™,
wWw=1+2"W+v) modp” and u=1 (p).
A final group we find useful is the one generated by K1 and S which we denote

3n—2

by E and which has order p°" .

To compute the genus of H, we have to calculate 7, ¢ and s(p"). Lemma
1.1 and the Sylow theorems are very useful in calculating r and ¢. We now
give a method for calculating s(p”). Note a conjugate of S?" has the form

+(1 — pac, p'd’, —p'c, 1 + plac).
LeEMmA 1.2,
(1 — pac, pd®, —pc’, 1 + pac)® = (1 — kpac, kpa®, —kpc®, 1 + kpac).
Proof. Induction on k.

Lemma 1.3. Suppose A is a subgroup of LF(2, p") and A 1is conjugate to
[S”'] where 0 < r < n — 1. Then A contains an element conjugate to S*°,

a = £(1 — plac, p'a’, —p'c’, 1 + plac).

If (a, p") = 1, then A contains one and only one element of the
form £ (=, 9", 9, 2).

Proof. Consider
(o} = {£(1 — kp'ac, kp'd’, —kp'd, 1 + kp'ac)}, 1<E<L<p"™

Since (a?, p") = 1, the set {ka’} consists of the p™ " different elements of
Z/p""Z and so ka® = 1 for exactly one .

Lemma 1.4. Suppose & (z, p’, y, 2) belongs to a group conjugate to [S”'].
Then == (z, p’, y, 2) is conjugate to S and further if

+(a,b,¢,d)- =(1,9,0,1): £(a,b,¢c,d)™" = =(, 7,9, 2),
then (a, p") = 1.
Proof. If (=, p', y, 2) is conjugate to (1, s p, 0, 1), then
P’ = sa’p’ (p")
for some a. Thus (a, p) = 1 and s is a quadratic residue mod p™™". But
+(1, sp”, 0, 1) is conjugate to S?" if and only if s, is a quadratic residue

n—r

mod p" .
ProposiTION 1.4 Any group A conjugate to [S*'], where

+(1 — plac, p'd’, —=p'c’, 1 + p’ac)
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is an element of A and (a, p") = 1, contains one and only one element of the
form % (z, p’, y, ) and it is conjugate to S”".

Thus if it is known that, for conjugates of (1, 9", 0, 1), (a, p) = 1, to
calculate s(p”) it is sufficient to set ¢ = 1 and see how many choices of ¢
yield distinct elements of LF (2, p™). In particular, this is the case if it can
be shown that p divides ¢ since ad — bec = 1 (p").

2. LF(2,5")

Let H = {£(a, y, 0, 2)} where z, y, 2 belong to the set of residues mod 25
and 2z = 1 (25).

TrreoreEM 1. The only subfields of K(5"), n > 1, which have genus 0 are
the subfields of K(5) and the following two classes of subfields of K(25) of level
25: (1) {ki} where G(K(25) | k1) has order 250 and is conjugate to H'; (2) {ks}
where G(K(25) | k) has order 125 and is conjugate to H' n E.

Note that all subfields of K(5) have genus 0 since a subfield of a field of
genus 0 has genus 0. The rest of the proof will follow from propositions 2.1
and 2.2,

Suppose that H is a subgroup of LF(2, 5°) of level 25. Then | HnKi| < 5°
and so | H-Ki| > | H |-5 which implies that | H | < 5°-12. By using for-
mula 1.1, Sylow to get upper bounds on ¢ and r, Sylow and Gierster to get
upper bounds on W and the fact that g(H) > 0, we calculate that g(H) > 0
if | H| = 2,3, 4,35, 6, 10, 12, 15, 20, 25, 30, 50, 60 or 75. In this section, r,
will denote a fixed non-zero residue mod 5.

Lemma 2.1, If|H| = 512 or 5°-12, then g(H) 5 0.

Proof. Suppose | H| = 5°-12. Then, by formula 1.2, | H n K| > 5.
If |H n K3| = 5, then H-K3 = LF(2, 25) and H (mod 5) = LF(2,5). So
H contains K} [6,484] which is a contradiction. If | H n K3| = 25, H is of
the third type [2,353]; but there are no groups of order 12-5° of the third
type [2,357-360]. Suppose | H | = 5°-12. Then | Hn Ki| = 25 which im-
plies that | H-K3 | = 5'-12. So H (mod 5) = LF(2, 5) implying H contains
K3}, a contradiction.

Lemma 2.2 If|H| = 5%k, k = 3,4, 6 or 10, then g(H) 5 0.

Proof. Since, if |H n K3| < 25, |H-Ki| would be greater than
|LF(2,5) |, |[Hn K| = 25. If |H| = 5*3 or 5’4, | H-Ki| = 5*3 or
5*.4 and so H(mod 5) = 15 or 20. But LF(2, 5) has no subgroups of order
15 or 20. If |H| = 5°6 or 5°-10, then | H-Ki| = 56 or 5*.10. But
LF (2, 5°) has no such subgroups.

Lemma 23. If |H| = 5°-4,g(H) # 0.
Proof. Notethat|HnK}| =50r25. If [HnKi|=5|H-Ki| =54
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and so | H (mod 5) | = 20 which is impossible. If | H n Ki| = 25, then
g(H) = (115-t-20W)/20. By Sylow, ¢ < 75 and by Gierster pp. 329-330,
W <2, Thusg(H) =0if andonlyif W = 2and ¢ = 75. We show that
t < 75,

Let B = {identity, T, = (7,0,0, —7), &= (0, 7, 7, 0)} and let A be a sub-
group of H of order 4. Since, by Sylow, A and B are conjugate and since
conjugate groups have the same genus, we may assume that, by conjugating
H, B is a subgroup of H. Further note that (H n K3I)-B has 100 elements
and so H = (H n K})-B. So in order to obtain 75 elements of order 2 in H,
it is necessary that each element (5 identity) of B yield 25 elements of order
2 when multiplied by (H n K3}).

K3 T = {£(—5y,1 — 5z, 1 + 5z, 52)}

where z, y, 2z describe all values mod 5. The 25 elements of order 2 in this
set are given by y = 2(5); so

(HnK}) = {£( — 52, 5y, 5y, 1 + 52)}.
But then

(HnK})- %+ (0,7,7,0) = {+=(10y, 7 — 10z, 7 + 10z, 10y)}
yields only 5 more elements of order 2 given by y = 0. So ¢ < 75.
Lemma 24. If |H| = 56, g(H) # 0.

Proof. |HnKi|=50r25 If|HnK;i| =25, then |H-Ki| = 5*6
which is impossible. If | H n Ki| = 25,

W < 2[2,320-330] and g(H) = (125-r-t-20W)/30.

So if g(H) = 0 we have 3 possibilities: W = Qand r + ¢ = 125; W = 1 and
r+t =105 W = 2and r + t = 8. But by Sylow, » + ¢ % 105 or 85
andifr + ¢ = 125,¢t = 75and r = 50. Thusif g(H) = 0, the only possible
orders for elements of H are 2, 3 and 5. But H (mod 5) is a dihedral group
of order 6 containing 3 elements of order 2. So each element of order 2 in H
(mod 5) must have 25 elements of order 2 in its pre-image in H. Therefore
in H, any element of order 2 multiplied by H n K3 has to yield 25 elements
of order 2.

As in Lemma 2.3, we may assume T is in H and so to get 25 elements of
order 2 from (H n K3)-T, H n K} has to be

{£(1 — 5z, by, 5y, 1 + 5x)}.

To get t = 75, we must find 2 elements of order 2 in addition to T which,
when multiplied by H n K}, will yield 25 elements of order 2 different from
those in (H n K3)-T. Now

(Hn K-+ (a, b, ¢, —a)
= {a — 5ax + 5yc, b — 5bx — 5ya, Sya + ¢ + Sax, —a—5ax + 5yb)}.
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So we wish to find a, b, ¢ such that —10ax + 5yc + 5yb = 0 (25)
forz, y =0, ---,4. Ifx = 0,weneed (¢c+b) =0(5). Ify =0, we
need a = 0 (5). Further, from the determinant, we need a* + bec = —1
(25). 8o we have to solve simultaneously (¢ + b) = 0 (5) and —bc = 1 (25).
The only solutions are the pairs {1, —1}, {4, 6}, {9, 11} and their negatives.
The elements of order 2 corresponding to these pairs all belong to (H n K3) - T'.
Sot < 75 and g(H) > 0.

Lemma 2.5. If | H | = 5°-2, then g(H) = 0 if and only if H is conjugate to
H'.

Proof. Note |H’| = 5°-2 and g(H’) = Osince t = 25 and W = 6, the 25
elements of order 2 being given by {=(7, y, 0, —7)} where 0 < y < 24 and
the 6 groups contributing to W being generated by

ﬂ:(""4, 1} 07 6)7 :!:("9, 1; O, 11)7 5’:(11) 1, 0) _9)1
+(6,1,0, —4), =+(1,1,0,1) and =(1,5,0,1).

In general if | H | = 5°-2, | Hn Ki| = 25 and so H is of type 3. So there are
2 possibilities for H, [2,357-360]. First H could be one of 30 conjugate
Gaso(I, I)o containing 1(1, 2) (I, I), and 25 Gy-H'’ is an example of this type
and so all these groups have genus 0.

Second, H could belong to one of 4 types of 30 conjugate Gaso(I, I’, 1), con-
taining 1(1, 2)(I, I, 1) and 25 Gy . So to calculate W, it is necessary to
investigate a(1, 2)(I, I’,1). In LF(2, 5%), there are 4 given by

where 2z describes all values mod 5 and £ all values mod 25. The 4 different
groups correspond to choices for 7o .
Recall a conjugate of S has the form

+(1 — 5ac, 5'd’, —=5'¢*, 1 + 5ac)

where at least one of @ and ¢ is not congruent to 0 mod 5. So if a conjugate
of S belongs to (1, 2)(I, I’, 1)s, —c* = 5rot (25) so that 5 divides ¢ so that
—¢ = 0 (25) so that 5 = 0 (25) which, together with 7, # 0 (5) implies
that £ = 0 (5) so that a* = 0 (5) which is a contradiction since then 5 divides
both @ and ¢. If a conjugate of S° belongs to (1, 2)(I, I’, 1)o, bre¢ = —5¢°
(25) and 50 = £ (25) so that 0 = 25ra® = —5¢” (25). Thus 5 divides ¢ so
that (a, 5) = 1. By Proposition 1.4, we let @ = 1 and find there is only one
conjugate of [S%] in (1, 2)(I, I’, 1), namely [S°] itself. Thus W = 1 and
g(H) = (125-¢)/50 = 0 if and only if { = 125. But H contains 124 elements
of order divisible by 5 in (1, 2)(Z, I’, 1), and at least one element of order 10
in Gy . Since | H | = 250, ¢t = 125 and g(H) # 0.

Lemma 2.6. Suppose |H| = 5 and H % Ki. Then g(H) = 0 if and
only if H is conjugate to H' n E.
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Proof. First observe that g(H) = (24 — 4W)/5. Also note, from Gier-
ster, pp. 345-352, that any group of order 5° (K1) can be gotten by inter-
secting a group of order 250 with E. So we must consider a (1, 2)(Z, I) and
a (1,2)(I, I’,1);. From Lemma 2.5, we see that H' n E is an example of
the first type so that W = 6 and g(H) = 0. We also see that in the second
case W = 1 and g(H) = 4.

From Lemmas 2.1 to 2.6, we now have

ProrosiTiON 2.1. There exist two classes of subfields of K(25) of level 25,
{ki and {ki}, which have genus 0. These are distinguished by the fact that
G(K(25) | k1) has order 250 and s conjugate to H' and that G(K (25) | k») has
order 125 and is conjugate to H' n E.

Lemma 2.7. If F is a subfield of K(125) and F1 = F n K(25) is contained
i K (5), then F 1is contained in K (5).

Proof. Note that since F is a subfield of K(5), F1 equals F n K(5) so that
H-K} = H-K} = G(K(125) | F}).

Also G(K(5) | F1) has order 5°-m where k = 0; m = 1, 2, 3, 4, 6 or 12 or
E=1;m = 1,2, 12. We show that F is a subfield of K(25) which is suffi-
cient since F n K(25) is a subfield of K(5). If F is not a subfield of K(25),
then

|HnKi| = |(HnK)nKi| =1,5or25.

Using the fact that | H-K5 | = | H-Ki| = 5°5"-m and formula 1.2, we see
that | H | = 5°-5"m, 5*-5*m or 5°-5"m as | H n K3| = 1, 5 or 25. But
then by formula 1.3, | H n K3 | = 5°, 5' or 5° which contradicts Proposition
1.1, 1.2, or 1.3 respectively.

Remark. This type of argument, using the orders of the various groups
obtained from H and K; , formulas 1.2 and 1.3 and Propositions 1.1-1.3, will
be used frequently and will be referred to as the usual argument using Propo-
sitions 1.1-1.3.

Lemma 2.8. Suppose F is o subfield of K(125) of genus 0 so that F, =
F n K(25) also has genus 0. If the level of Fy is 25, F is contained in K(25).

Proof. Since the level of Fy is 25, H; = G(K(25) | Fy) is conjugate to H’
or H' n E. If F is not a subfield of K(25), |[Hn K3| =1, 5 or 25. If
| H n Kj| = 1 or 5, the usual argument using Proposition 1.1 or 1.2 leads
to a contradiction. If | Hn K§| = 25, then | H n K| = 5* by the standard
calculations using formulas 1.2 and 1.3.

Suppose H; is conjugate to H n E. Then |H | = 5 and H is either a
(2,3)(I, Iyora (2 3),I 1) [2, pp. 345-352]. An example of the first
is given by {+(u + 5z, & 0, u — 52z)} where £ describes all values mod 125
and z all values mod 25. Using Proposition 1.4, we see that H contains 5
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conjugates of [S] (given by ¢ = 1 and ¢ = 0, 25, 50, 75, 100); 5 conjugates
of [S°] given by ¢ = 1 and ¢ = 0, 5, 10, 15, 20) and 1 conjugate of 8%
(@ =1 ¢ = 0). So W = 11 and g(H) = 16. An example of the
second is given by { == (u + 52, &, 5o, u — 52)} where £, 2 are as above. For
conjugates of [S], consider —¢* = 25r. (125) which implies that 5 divides ¢
and (@, 5) = 1. Applying Proposition 1.4, we let @ = 1 and get —¢’ = 257,
(125). If 7 is a quadratic residue mod 5, there are 10 choices for ¢; if not,
there are none. For conjugates of [S°], 5a®> = £ (125) and so

—5¢ = 251t = 125100° = 0 (125)

which implies that 5 divides ¢ and we see there are 5 choices for ¢ regardless
of what 7o is. Similarly there is only one conjugate of [S%] regardless of what
7ois. So W = 16 or 6 and g(H) = 12 or 20 depending on whether 7, is a
quadratic residue or not.

Suppose H; is conjugate to H’. Then |H| = 52 and H is either
a Goaso(I, I)o or one of 4 types of Geyso(I, I’, 1). An example of the first is
given by {=*(z, y, 0, 2)} where z, y, 2 describe all values mod 125 and zz =
1(125). Then Hn E is a (2,3)(I, I) and so W = 11. Further £ = 125
since the only elements of order 2 in H are (43, ¢, 0, —43). Sog(H) = 8.
In an example of the second case, Hn Eis a (2, 3)(I, I/, 1)oso W = 16 or
6. Then g(H) = (1625 — t)/250 or (2625 — t)/250. But by Sylow, ¢ has
to be a power of 5 and neither 1625 nor 2625 is. Hence g(H) = 0.

Remark. This type of argument, also seen in Lemma 2.5, using Proposition
1.4 to count conjugates of [S"] will be used frequently and will be referred to
as the usual argument using proposition 1.4.

ProrosiTioN 2.2. Suppose F is a subfield of K(5"), n > 3, which has genus
0. Then F is a subfield of K(25).

Proof. Lemmas 2.7 and 2.8 show that the proposition is true for n = 3
and we proceed by induction, i.e. we suppose that a subfield of K(5"),
n > 4, of genus 0 is a subfield of K(25). Consider F a subfield of K(5").
If F is a subfield of K(5™"), we are done by the induction hypothesis. If
not, F; = F n K(5™ ) has genus 0 and by the induction hypothesis is a sub-
field of K(25). Considering the two cases, F a subfield of K(5) and F; a
subfield of K(25) of level 25 separately, we get a contradiction by the usual
argument using Propositions 1.1-1.3.

3. LF(2,3"

TurOREM 2. The only subfields of K(3"), n > 1, which have genus 0 are a
subfield of K(3); a subfield of K(9) of level 9 whose Galois group belongs to one
of the 5 following classes: (1) H has order 9 and is either a subgroup of K3 with
W = 2, a T5(1) or a conjugate of [S], (2) H has order 12, (3) H has order 18
and is either a Gys{ (ITII, a)} or the right kind of Gis{(II, b)}, (4) H has order
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27, (5) H has order 36; and a subfield of K(27) of level 27 whose Galois group
18 the right kind of (2, 3)(I, I’, 1), .

First note that any subfield of K(3) has genus 0 and the rest of the proof
will follow from Propositions 3.1 to 3.3. Second note that Gierster denotes
a conjugate of T by I's. Now suppose H is a subgroup of LF(2, 9) of level
9. Simple calculations show that 3% is the highest power of 3 which can divide
the order of H and that if | H| = 2, 3,4 or 6, g(H) # 0. It also follows
from easy calculations plus Gierster, pp. 356-360, that if | H | = 3*-2 or 3°-4,

H contains K;. In this section r, will denote any fixed non-zero residue
mod 3.

LemMma 3.1. If |H| = 9, there are 3 cases in which g(H) = 0: (1) H is a
subgroup of K3 with W = 2, (2) H isa Ts(1) or (3) H is a conjugate of [S).

Proof. 1f |H n Ki| = 1, |H-Ki| = 3 which is impossible. If
| Hn K} | = 9, H is a subgroup of K3 and g(H) = (18 — 9W)/9. Sog(H) =
Oif andonly if W = 2. If |[HnK3| = 3, g(H) = (18 — 3.r — 9W)/9.
So g(H) = 0if and only if (1) W = 0 and r = 6 whicb is impossible since
then | H | > 9;(2) W = 1and r = 3 which says H is a T5(1); (3) W = 2
in which case H is a conjugate of [S] since | H n K3 | = 3 implies there is at
most 1 conjugate of [S°] in H.

LeMMA 3.2. Any group of order 12 has genus O.

Proof. If |Hn K3| = 1, H is a tetrahedral group so » = 4, t = 3 and
g(H) = 0. If |[HnK}i| = 3, Hisoneof 9 Gio{III} [2,356] so t = 7. Hence
g(H) < (21 — 21)/12 = 0 and since g(H ) is always non-negative, g(H) = 0.

Lemma 3.3. If | H| = 18, there are two cases for which g(H) = 0: (1)
H s one of 3 conjugate Gig{ (IIT,a)} or (2) H is one of 18 conjugate Gis{ (II,b)}
of the right kind.

Proof. By Sylow H has one subgroup of order 9 and ¢ = 1, 3 or
9. | HnKj}| = 10r3 yields an impossible order for | H-Ki|. So|HnK}|=
9 which says that » = 0 since no TI's belongs to K3 and that W = 0, 1 or 2.
g(H) = (27 — 3t — 9W)/18 sothat g(H) = Oif andonlyif W = 0, ¢ = 9;
W = 2,t = 3. The first occurs if H is one of 3 conjugate Gis{III, a)} con-
taining 1(1, 1){II1} and 9G, ; the second if H is one of 18 conjugate G1s{ (IT,b)}
containing 1(1, 1){II} and 3Gs. That not all groups of order 18 have genus
0 is shown by the existence of 18 Gys{ (ITI, b)} containing 1(1, 1){III} and
3@Gs so that g(H) = 1.

Levma 3.4. Any subgroup of order 36 has genus 0.

Proof. |H n Ki| 5 1 since then |H-K3| would be too large and
| Hn K} | # 3 since there are no such groups [2,356]. So |H n K} | = 9 and
there are two possibilities. H may be one of 9 conjugate Gas{III, ¢} or one of
two types of Gae{III, ITI, d}, each containing 1(1, 1){(III)}, 6Gs and 9G: .
So in either case W = 0,¢ = 15 and g(H) = 0.
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LemMma 3.5. Any subgroup of order 27 has genus 0.

Proof. First if H = Ki, then H = G(K(9) | K(3)) and g(H) = 0.
Otherwise | H n Ki | = 9 since, if not, | H-K31 | will be too large. So H may
be one of 4 conjugate I'y7(I, a) containing 1(1, 1)(I) and 9T so that r = 9,
W = 1and g(H) = 0. On the other hand, H may be a (1, 2)(I, I) an
example of which is given by

where ¢ describes all values mod 9 and z all values mod 3. By the usual argu-
ment using Proposition 14, W = 3 4+ 1 =4 and g(H) = 0.
So we now have

ProrosiTioN 3.1. Suppose F is a subfield of K(9) of level 9. Then F has
genus 0 if and only if G(K(9) | F) = H belongs to one of the following classes:

(1) H has order 9 and is either a subgroup of K3 with W = 2, a Ty(1) or a
conjugate of [S];

(2) H has order 12;

(8) H has order 18 and is either a Gis{II11, a} or the right kind of Gis{II,b};

(4) H has order 27;
(5) H has order 36.

Now we consider subfields F of K(27) and let F/; = F n K(9) and
H, = G(K(9) | F1).

Lemma 3.6. Suppose F s a subfield of K(27) of genus 0 and H, has order 9.
Then F 1s a subfield of K(9).

Proof. If |Hn Ki| = 1, |H n Ki| > 3 contradicting Proposition 1.1.
Since Fy has genus 0, there are 3 possibilities for H,. First suppose H, is a
subgroup of Ki. Then F; contains K(3) and so F n K(3) = K(3). Thus
F contains K(3), H is a subgroup of Ki, |Hn K| = 9and |H| = 81. H
H is either a

(2,2)(I) or (2,2)(I',1)[2,338-339].
So H is conjugate to either
{+(u — 3z, 3y, 0, w + 32)} or {x(u — 3z, 3y, =%y, u + 3z)}

where x, y describe all values mod 9. Then by the usual argument using
Proposition 1.4 either W =0+ 3+ 1=4andg(H) =40or W =0+ 0 +
1=1andg(H) = 7.

Suppose H, is conjugate to [S]. If |HnK;3| = 8, | H| = 27 and H n K}
is cyclic of order 9. A conjugate of S has the form =(a, b, ¢, d) where

((a+d)/2)’~1=0 (8") and ad —bc=1 (3").
So H; contains an element of this form and hence H contains an element
a= (b, d)
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where a'd’ — b’ =1 (27) and o’ =a + 9y, = b + 9%, ¢’ = ¢ + ks,
d’ = d 4+ 9k, where the k; are integers. Then

A= (@ +d)/2)° —1=09s (27)

where s = 0, 1, 2. So [«] is either a Gy (I) or Gx(I, 1) and has order 27.
Thus H is eyclic, W < 3and g(H) > 13. If [ HnKi| =9, H| = 81 and
|HnK}| =27. W =0,g(H)>0. IfW >0, Hiseithera (1, 3) (I, I)o
or one of 2 types of (1,3)(1, I, ¢), e = 1 or2[2,345-351]. Asa (1,3)(I, I),
H is conjugate to

{=(u 4+ 3t + 92, § — 98 u— (38 + %))}

and as a (1, 3)(I, I’, 1), H is conjugate to one of

where ¢ describes all values mod 27,z all values mod 3. In either case
W=3+3+4+1=7sothat g(H) = 1. Asa (1,3)(I, I’, 2)¢, H is conju-
gate to one of

{£(u + 3¢ + 92, & 3rot — 9%, u— (3t + 92))}

with £, 2 as above. Here W =0+ 0+ 1land g(H) = 7.

Suppose Hy = T4(1). If |HnKs| =3, |H| = 27 and H n K} is cyclic
of order 9. So [2,364-366] H is oneof 3 types of 108 T's;(I,2), W < 2,7 = 3
and g(H) > 15. If |[HnK;| =9,|H| = 8 and [Hn K| = 27. So
[2,364-366), H contains either a (1,2) (I, I) ora (1,2')(I,I’,1). An example
of a (1, 2)(I, I) is given by

with £,z as aboveand W = 0+ 3 4+ 1 = 4. Anexampleof a (1,2)(Z, I’, 1)
is given by
{=£(u + 9(& + 2), 35, 9ro, u — 9( + 2))}

with £, z as aboveandso W = 0 + 0+ 1 = 1. Now H itself belongs to one
of the following classes and has the genus indicated: (1) H is one of 36 con-
jugate Tsi(I, 1), W = 4,r = 9 and g(H) = 3; (2) H is one of 12 conjugate
oI, I'y1,a), W = 1,7 = 27 and g(H) = 4; (3) H is one of 2 types of
12T, I'1,b), W = 1,r = 0, g(H) = 7; (4) H is one of 36 conjugate
Ta(I, I',1,¢), W = 1,7 = 9 and g(H) = 6. Sog(H) > 0in all cases.

LemmA 3.7. Suppose F is a subfield of K(27) of genus 0 and Hy has order
12, 18 or 36. Then F is a subfield of K(9).

Proof. Suppose | Hy| = 12. If | H n K3| = 1, H is a tetrahedral group
and g(H) = 43. If |[HnKj| = 3,| H| = 36 and H n K} is cyclic of order
9. Then W < 2 and by Sylow, ¢ < 27 so that g(H) > 22/4. If
|HnK}| =9,|H| =3-4and |HnK3| = 27. Sol[2, pp. 345-352], H is
one of 2 types of 81 Gyos{ (III, ITI, d)} for which W = 0 and ¢ < 39 so that
g(H) = 4.
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Suppose | Hy| = 18 0or 36. If | Hn K;| = 1 or 3, one gets a contradiction
to Proposition 1.1 or 1.2. If |Hn K5| = 9, then | H | = 3*.k where k = 2
or4and |Hn Ki| = 3*. So H n K3} is eithera (2, 2)(I) or a (2, 2)(I’, 1).
But [2, pp. 351-361] there are no groups of order 3*-k containing either of
these.

Lemma 3.8. Suppose F is a subfield of K(27) of genus 0 and Hy has order
27. Then either F is a subfield of K(9) or H belongs to the right kind of
(2’ 3)(-[7 I/, 1)0 .

Proof. If | Hn Kj| = 1 or 3, onegets the usual contradiction using Propo-
sition 1.1 or 1.2. If |[H n K3| = 9, then |H| = 38° and | Hn K}| = 3"
Suppose H does not contain any I'; or I'y. Then H is either a (2, 3) (I, I),
or one of two typesof (2, 3)(Z, I', 1)o. An example of the first is given by

{£=(u + 3(8 +2),§0,u — 3(3 +2))}

where £ describes all values mod 27 and 2z all values mod 9. Then
W=3+3+1=7andg(H) = 1. An example of the second is given by

{==(u + 3(3& + 2), & 9ok, u — 3(3¢ + 2))}

where £, z are as above. If ro = 1 (3), s(1) = 0;if ro = 2 (3), s(1) = 6.
In either case, s(3) = 3and s(9) = 1. SoW = 4 or 10 and g(H) = 2 or
0 depending on whether 7, = 1 or 2 (3).

Suppose H contains a T's or T'y. Then [2, pp. 364-366] H belongs to one
of the following classes: (1) 12 conjugate I'ss(a); (2) 12 conjugate I'ss(b);
(3) 12 conjugate I'ss(c). In all three cases, to compute W we need to ana-
lyze a (2, 2)(I’, 1)(s0/3) = —1 of which

{==(u + 3y, 3(y + 2), 9%, u — 3y)}

where z and y describe all values mod 9 is an example. So W = 0 4+ 0 +
1 =1. Alsor = 27,0 or 54 in cases (1), (2) or (3) respectively and thus
g(H) = 2,3 o0r1l.

ProposiTioN 3.2. Suppose F is a subfield of K(27) of level 27. Then F
has genus 0 if and only if G(K(27) | F) has order 8° and is a (2, 3)(I, I, 1),
of the proper type.

Proof. If F, is a subfield of K(3), F is a subfield of K(3) by the usual
arguments using Propositions 1.1-1.3. So we can assume F; has level 9 in
K(9) and the proposition then follows from Lemmas 3.6-3.8.

LeMMA 3.9. Suppose F is a subfield of K(81) of genus 0 and Fy, = F n K(27)
is a subfield of K(9). If Hy = G(K(9) | F1) has order 9, then F 1s a subfield of
K(27).

Proof. Since F; has genus 0, H; is one of the followi/ng types: (1) a sub-
group of Ki, W = 2, (2) a conjugate of [S], (3) a T's(1). In any case if
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|HnK3| =1or3andin case (1) if | H n K3| = 9, we get the usual con-
tradiction using Propositions 1.1-1.3. In cases (2) and (3) with
|HnK3| = 9, we obtain | Hn K3 | = 3°and | H| = 3". 1In case (2), H is
either one of 3 conjugate (3, 4) (I, I)o such as

{=£=(u + 278 + 32, £ 0, u — (278 + 32))}

where ¢ describes all values mod 81 and z all values mod 27 or it is one of 2
types of (3, 4)(I, I’, 1), such as

where £, z are as above. But on reduction mod 9 both of these groups have
order 27 and hence can not be one of the Hy’s which have order 9. In case
(3), Gierster [2, pp. 364-366] has no groups of order 3’ of the proper type.

Lemma 3.10. Suppose F s a subfield of K(81) of genus 0 and
Fi = F n K(27) is o subfield of K(9). If Hy = G(K(9) | F1) has order 12 or
9-k where k = 2, 3 or 4, then F 1s a subfield of K(27).

Proof. The only case in which one does not get the usual contradiction
to Propositions 1.1~1.3 is the one in which | Hy| = 12 and | H n K3| = 9.
But then H is of order 3%-4 with H n Ki a (3, 3) and Gierster, pp. 357-360,
has no such subgroups.

LemMA 3.11.  SupposeF is a subfield of K(81) of genus0andFy = F n K(27)
s a subfield of K(27) of level 27. Then F s a subfield of K(27).

Proof. Since F; has level 27, H, has order 3° by proposition 3.2. If
| Hn K3| = 1 or 3, we get the usual contradictions to Proposition 1.1 or 1.2
If | HnK;| = 9,then| H| = 3"and | H n Ki| = 3°. Then H is conjugate
to one of the two groups given in Lemama 3.9. For the (3, 4) (I, I)o we have
W=9+4+3+3+4+1=16andg(H) = 4. Forthe (3,4)(I,I’,1), we have
W=0+4+3+4+3+1=7andg(H) =17.

ProposITION 3.3. Suppose F is a subfield of K(3"), n > 4 and F has genus
0. Then F is a subfield of K(27).

Proof. The proof is by induction on n. Letn = 4 and F; = F n K(27).
If Fy has level 3, F < K(27) follows from the usual argument using Proposi-
tions 1.1-1.3. If F, has level 9 or 27, F < K(27) follows from Lemmas
3.9-3.11. Now let n > 5 and assume a subfield of K(3"™") of genus 0 is con-
tained in K(27). Then F; = F n K(3"™) is a subfield of K(27) and sup-
posing F is not a subfield of K(3"™") leads to a contradiction by the usual
argument using Propositions 1.1-1.3. So F < K(3"™) and, by the induc-
tion hypothesis, is a subfield of K(27).
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