
MORSE FUNCTIONS ON GRASSMANNIANS

BY
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It is occassionally useful to have an explicit Morse function on a manifold.
In this note we describe a quite explicit "nice" Morse function on the Grass-
mann manifolds G(n, 1) of n planes in (n -t- k)-space. We work on real
Grassmanns for definitiveness; however with obvious adaptions, the pro-
cedure works for complex or quaternionic Grassmanns. In the case of

0 0 0 0

0 0

G(1, k) (projective space), the resulting functions are of the type defined in
[3, p. 26]. In the cse of G(2, k), they hve the form of sectional curvature
clculted t a point. It ws consideration of this special cse as developed
in [2] that led to these results. We refer the reder to [3] for general discus-
sion of Morse theory. It is no doubt the cse that several of the methods
nd/or results of this note re known; however we hve followed the pth of
least resistance, which is to reprove them and to put them into cohesive form
rather thn search the literature.
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The statement

We consider particular well known model of G(n, t). Let M(n, k) be
the set of all n X (n q- /) matrices of rank n. GL(n) M(n, 0). If
X, Y M(n, ]) define X Y if X rY for some e GL(n). This is the
equivalence relation of row equivalence. Then G(n, Ic) M(n, ])/-..
The correspondence is as follows" fix a basis in (n q-/) space and then the row
vectors of X determine an n-plane. It is a known result, and is in any event
straightforward computation in linear algebra, that a set of representatives

of G(n, lc) are the reduced echelon matrices; those of the form shown in the
figure where the elements in the "boxes" of size g X r, are arbitrary. The i
are column numbers. If the i, are fixed and the elements in these boxes vary
over all values, the resulting set in G(n, k) is a cell. This decomposition into
cells is the Schubert decomposition. It is minimal. Let I (i, i)
with 1 _< i i _< n q- k. Denote this cell X(I). Its dimension is

(2) d(I) ;-1 ttr, , (n -+- 1)(i, i._1- 1).

(We let i0 0.) Let c(I) denote the center of the cell, that point where all
values in all boxes are zero. Let

Q Q(n,k) [I (i,...,i,,) [1

_
il < < iv_ n+ k}.

Q(n, k) has C(n, k) (n + k)!In!k! elements. We order Q as follows" if
I (i, i.), J (j, ,j.), defineI

_
Jif i.

_
j. for 1, n.

From (2), we get

1. LEMMA. For I, J e Q(n, k),

d(I) d( J) . i. j.)

Hence I > J implies d(I) > d(J).

For X (x.) M(n, k), let det, (X) detz (x.) be the n X n deter-
minant of X obtained by choosing the i, iv rows (we do not care about

Let ],,k M n, It) -+ R be
d(I) det(X)

(3) ],,.k(X) ,.,a

det(X)

Then],, induces a C function f f,, G(n, ) R with the following prop-
erties.
() f(c(I) d(1).
(b) The c(I) are precisely the critical points of f; they are non-degenerate.
(c) Indexm f d(I).
(d) If G(n, 1) is considered the subset of G(n, 1 q- 1) with last column zero,

fn,+l G(n, l) f,

the sign).

2. THEOREM.



(e) The m-skeleton of the Schubert decomposition is a subset of V
(- oo, a] if a > m.

The general construction

Let q(n, k) be the set of all pairs (I, J) where I, J are unordered n-tuples
of the first (n + k) positive integers. Let R" q(n, k) --> 1 (I, J) -- R,)satisfy

(4a) Rr, R,

(4b) R(), (-1)t’tR. for s S.
Here S is the symmetric group and Is] sign s.

s(i, ..., i) (i,(), ...,
LetX (x,a) and Y (Y,a) be members of M(n,k). LetI (i,
i), J (jx, ,j). Define

(5) gn (X, Y) ](r,z),q Rr, x,, x,,, yx,.,

3. LEMMA. If X’ aX, Y’ rY for , r e GL(n),
(6) gn (Z’, Y’) (det a)(det r)gn(X, Y).

Proof. Fix Y. Let the rows of X be vectors in (n + k)-space. X thus
determines an n-plane. Consider g(X) ga (X, Y) as an n-linearfunction in
this n-plane. By (4b) it is alternating. Thus if X’ aX, g(X’) (det
g(X). The full result follows from (4a).

4. COnOLAnY. If (X) gn (X, X), then

(7) an (aZ) (det a)an (X).
Call R diagonal if

(s)
=0

In this event, denote R, .
if J s(I) for some s S.
if J # s(I) for any s S..

If, in addition, all , 1, call R trivial and
denote g by go. In these cases we can put g in two other convenient forms.
Suppose (n + k)-space has an inner product < > and the fixed basis
is orthonormM. Let X, X be the row vectors of X and likewise for Y.

5. LEMMA. If R is diagonal,

(9) gR (Z, Y) ,(.) det (Z) det (Y).
If R is trivial,

(10) go(X, Y)

Proof. (10) comes from expanding the right hand side nd compuring
with (9). (9) comes from expanding the right hand side and comparing with
(5).
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6. COROLLARY. If R is diagonal,

(11) R (Z) gR (X, X) _r,(n,k) kr det(Z).
In particular o (X) go (X, X) > 0 for all X

The following is now obvious from corollaries 4 and 6.

7. PROt’OSITION. For any R satisfying conditions (4), fR /o is (in-
duces) a well-defined C function on G(n, ).

8. Remarlcs. (a) Let O(n, tc) c M(n, k) be the set of matrices whose row
vectors are orthonormal. Then O(n, O) O(n), the orthogonal group. If,
for X, Y O(n, k), we define X Y if X aY for some a e O(n), G(n, )
0(n,/c)/. Furthermore 0 0(n, ]c) 1. Hence f. 0(n, ]c) and
no division is necessary.

(b) If for n 2, R. is denoted R.k, X1 (xl, X.+), X2
(x2, ..’, X.n+) are denoted respectively X (x, ..., xn+), Y
(yl, ..., s+),

Riik x y xk xf <X, X><Y, Y> <X, Y>2
which is the form of sectioal curvature in locl coordinates [2].

9. LEMMA. C(I) is a critical point off if and only if R, 0 if J differs
from I in precisely one element.

Proof. (See [2, Prop. 5.1].) We use the following local coordinate system
around c(I) suggested by (1). Let I (il, in) e q(n, It). Fix

x., 1, j r (r 1, ..., n)

=0, jr.

Then {x, ]c i for r 1, ..., n} re local coordinates uround c(I).
Note that f,(c(I)) R,. For e any i, let I(1, e) be the sequence
(el, "-, e) with

e. i., j

=e, j =l.

We need to prove that c(I) is criticul if and only if all R,r(,,) 0.
In this coordinate system

gof g, R. + 22;R,(,,)x. + quadratic and higher order terms.

Here the sum ranges over all relevant l, e. Hence

(12) Ogo Of, 2R,(.) + linear and higher order terms.

Since go 1 + quadratic and higher order terms, (12) becomes t c(I) where
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all x,., 0,

The result is immediate.

The special case

We return to the f described iu theorem 2. It is clearly, by Corollary 6,
the case of f when R is diagonal with kr d(I). Thus by Prop. 7, it is
well-defined C function. At c(I), detr= 1 is the only non-zero deter-
minant; hence (a) is established. (d) is trivial. By Lemma 9, the c(I)
are critical. To prove they are nondegeaerate and to find their indices we
proceed as follows. Let d(I) hr. Since f(c(I)) hr, we consider
f(x)

’ (k kr) det (Z)
(13) f(X) Xr

If X e h(I), det (X) 0 unless J <_ I. (In terms of the coordinate system
used in the proof of lemma 9, this amounts to holding x.. 0 if j <: r, k
i .) Invoking Lemma 1, we see thut

(14) f(X) Xr < 0 ifXeA(I) c(I).

Thus the dimension of the negative-definite subspace of the Hessian at c(I)
is >_ d(I). Oa the other hand, if we let the complementary variables vary;
that is hold x.. 0 if j > r, k < i, we get that det (X) 0 unless J >_ I.
Thus the dimension of the positive-definite subspace of the Hessian at c(I) is
>_ dim G(n, k) d(I) nk, d(I). Combining these two facts proves
that c(I) is non-degenerate and the index there is d(I). (14) also proves
part (e).
We are left with proving that the c(I) are the only critical points. We do

this by proving that the gradient Vf 0 at X c(I).

The gradient

We first set some notation. Let X (x.) M(n, k) E’(’*+). The
coordinates ia E(’+) are {x/. Let e O/Ox a typical tangent vector
is y e. Let N(n, k) be the set of all n X (n W k) matrices; then Y
(y) N(n, k) and thus the tangent bundle of M(n, k) is

{(X, Y) X e M(n, k), Y e N(n, ])}.

Let O(n, k) be the Stiefel manifold of orthonormul n frames in (n
space. (See Remark 8(a).) Let v be the projection from A h(n, ]) to
G(n, k) for A M or O. Let Yr denote the transpose of the matrix Y.
denotes the 0 n X n matrix. If A A(n, k) is a manifold, T is its tangent
bundle.
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10. PROIOSITION.

TM {(X, Y) X M(n, k), Y e N(n,

T (X, Y) X e O(n, ]), Y N(n, k), XYr is antisymmetric}
* Ta {(Z, Y) Z e A(n, ), YeN(n, ), XYr 0.}

T T factored out by the equivalence (X, Y) (aX, aY) for e F. Here
A M or 0 whence P is respectively GL or O.

Proof. We remark that the conditio can easily be verified to be dimen-
sionally correct. T was determined above. We coider T. Let E be an
antisymmetric (n ]) X (n W k) matrix, X O(n, ). exp E the ex-
ponent of E e O(n, ).

Y lim X(exp rE) X

is a tangent vector to O(n, ) at X and fuhermore, all tungent vectors are
of this form. We hve

YXT lim
X(exp rE)Xr XXr

XEXr.
to

T XY XEX -XEX -(X) T

(, k), (X) ubmold o (, ) le be e bbule o T
which is tngent t ech point to this submnifold. Let S be the bundle
claimed to be T.
We ll show there is a split exact sequence of bundles

OTTMSO
which, along with its splitting, is respected by the action of GL(n). This
will establish the result.
Let E GL(n). At X GL(n), all vectors in the fiber of T are of the form

lim
(exp tE X X EX.

t0

Thus T {(X, X) M(n, k) X N(n, ) ech row of X, is liaeurly de-
pendent on the rows of X}. Hence S is the oAhogonal complement of T
nd the split sequence is valid. For a e GL(n), define " TM T by (X,
Y) :(aX, aY). induces maps on T and v S which behve as claimed.
Thus the result is proved.
We now want to consider gradients. We use the notation V f which is a

vector field in T. All functions are at least C*.
Suppose F is function on O(n, k). If F is invariant under the left action

of O(n), F induces function f on G(n, ). Vaf can be determined as
follows" let e" TTa be the orthogonal projection. Note that, extend-
ing the notation of the lst proof, a On. Then Vaf eV0 F.



678 JAMES Co ALEXANDER

11. PROeOSITON. Let X (x) e O(n, tc). Let VoF(X) (X, Y) e T
where Y (yi(X) ). Then at o(X) e G(n, k) Va f is the equivalence class of
(X, Z) where Z (z(X)) with

(15) zil yi- xi . xi y.

Proof. Let the rows of X be X, ..., X, those of Y, Y, ..., Y.
X, X are orthoaormal. If 0" T T is the projection ohogonal to
0, 0 1 0’. Let ’ be the projection to the space spauaed by X. Then. Since (Z Y) Z (X, Y) X,

0(,ye) ,,iz Yi x e.

Thus 0’(,y ey) ,,, xy y xa e. The result now is trivial.
Now let G: M(n, k) R be a function, let i: O(n, k) M(n, k) be the

inclusion and " i*TU T the orthogonal projection. It is a special case
of a standard result that

V0(G O(n, It) (i*VM G).

Suppose, as in our case, that G g/go with goO(n, lc) 1. Since

(i*V g0) 0,

(16) V0(G O(n, k)) gi*(go VM g gVM go) Z(i*VM g).

We have g X det (X). Let mia (ij)(X) denote the deternam of
the (i, j) cofactor iu the matrix of which det (X) is the deternant. If
j I, letmin (i)(X) 0. Then VM f(X) (X, Y) where Y (y) and

y , 2X det (X) min (ij)(X).

Using (15) and (16) we have, for X e O(n, ), Vaf(oX) (X, Y) where
Y (y) with

(17) y 2 det (X) min, (ij)(X).. 2h, x x, det (X) min (lk) (X).

Since, for any i,

(lS)

it is the case that

xik min (lk)(X) t det (X),

(19)
y,. 2x kx det (X) mint (ij)(X) 2 x,. det "(X)

2 ’T },T detr (Z) mint (ij) (Z) 2xf(Z).

If all X 1, f ------ 1 and all y. O. Thus we huve proved

12. LEMMA. If X xii) e O( n, ])

(20) det (X) mint (ij)(X) y
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If we substitute the expression for xi. from (20) into (19), we get finally

(21) yi 2, (),, f(X)) detr (X) mint (ij)(X).

The embedding
We have to prove that or r0 (X) # c(I), some yi. in (21) is not zero.

Rather than do this directly, we embed G G(n, k) as a nonsingular variety
in a projective space P and extend f to a functions on all of P. The critical
point set on P will tell us about that on G.

Consider a (C(n, k) 1) -dimensioaM projective space P with homogeneous
coordinates ()(.) We assume r 1. The map e" G -- P given
by det, (X) is known to embed G as a submanifold and non-singular
algebraic variety [1, chap. VIII. The det, are up to sign the Pliicker co-
ordinates. Let

Z () 0(1, C(n, k)), U (,) N(1, C(n, k)).

Then rTe {(Z, H) r n O} as in Proposition 10.
* T TIf X e O(n, k) and (X, Y) e r0 T, the map e. --* is given at, X by

(22) y min (ij) (X).

Note that then, G n, ..Y det, (X) min (ij)(X) ,yx 0

by Lemma 12 and Proposition 10. Thus e.(Ta) Te.
The standard metric ( in Euclidean space induces one in O(n, k).

This metric is invariant under the left action of O(n) and is respected by the
splitting in Proposition 10. Hence it induces a metric in G(n, k) which is

ythe one we have used to define Va. Thus if Y (yy), (y ) are e

N(n, k), the fiber of Te at X,

Y, Y’)o iY Yi

13. PROPOSiTiON. e is an isometry into.

Proof. Because of the homogeneity of the situation, we need prove it at
only one point r0 X, say X (xi) where

xo" 1, 1 _< i,j < n,

0, otherwise

Then if (X, Y) er0*T,yi 0for j_< n. For 1 _<. i__< n,j > n, let[i,j]
e Q(n, k) be the sequence (1, 2, , ni) where denotes omission.
Then.

mint(ij)(X) 1, I [i, j],

0, otherwise.
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Thus

y!/, Y, , ) (: i ()(x) in ()(x))

This proves the result.
We now identify G with its image in P as Riemanan manifolds and drop

the symbol e.
Define F" P R by

(23) F() .
Then F]G f. Also V F() is the class of (, H) where

(24) , 2(x, F()).

Let x e P be the point () where

1, J I,

=0, JI.

Set x equivalent to x if . Then from (24), we have

14. POOSITION. e F 0 precisely on the sub-projective spaces spanned
by equivalent points

Cll this set S.
The singulur point set on G is determined by the following.

15. PROPOSITION. If X e G P, Ve F(X) already tangent to G. Thus

v F(X) vf(X).

Accordingly, V f 0 precisely on S G.

Proof. The metric on P (and on G P) identifies the tagent bundle T
and its dual. Hence we may regard (21) and (24) as the components of
df and dF respectively. Thus e*dF df or equivalently e, Vaf Ve F.
This is wht is needed for the proof.
The final step in the proof of Theorem 2 can now be given. It is simply

case of noting thut if k whenever I J, then

Sy G {x c(I) IeQ(n, )},

und invoking oposition 1.

Comments

o oe pe i opoiio
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Propositions 14 and 15 completely determine the critical point set if R is
diagonal.
We can look at the more general case as follows" let A’E"+ be the nth

exterior product of E+. If el, e+k is a standard basis for E"+ and
n-ke, is its dual basis, we can consider R {Rx.j} as the compotents

of a symmetric bilinear form on A’En+ and write it

where ex 1 / / e and the sum is over all (I, J) (Q(n, k)).
It can be diagonalized in A’E"+ by a C(n, k) C(n, ]c) orthogonal trans-

formation 2, although not necessarily by a power matrix (i.e. 2 need not be
induced by an orthogonal transformation in E’+). 2 operates naturally on
p pC(.)- and we form ee G -- P by e 2-Ie. e is thus a "non-
standard" isometric embedding of G in P. It is easy to see that the function
f of Proposition 7 is the restriction to e G of a function of type (23) on P.
Unfortunately there is no guarantee of a result analogous to proposition 15.
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