SECONDARY OPERATIONS IN THE COHOMOLOGY OF H-SPACES

BY
Alexander Zabrodsky

0.1 Introduction

The study of the cohomology of H-spaces had several stages-from the purely algebraic study of Hopf algebras-the Hopf and Borel theorems through the study of Hopf algebras over $A(p)$ to the study of higher order operations such as the higher Bockstein operations and the Bockstein spectral sequence as in [2]. Lately K-theory has been used (by J. R. Hubbuck for example) to provide more information regarding the structure of the cohomology of H-spaces.

In this study we use some secondary operations to investigate $H^{*}\left(X, Z_{p}\right), X$ an H-space. It is difficult to state all the consequences of this study. As a sample we have the following.

1. (Proposition 4.1). Let ϕ^{\prime} be a secondary operation associated with the relation

$$
\begin{equation*}
\beta P^{m}=1 / m-1\left(P^{1} \beta P^{m-1}-P^{m} \beta\right) \quad m \not \equiv 1 \bmod p . \tag{1}
\end{equation*}
$$

(For $p=2$, put $P^{m}=S q^{2 m}, \beta=S q^{1}$.) Let (X, μ) be an H-space. Suppose $\beta H^{\text {even }}\left(X, Z_{p}\right)=0$. If $0 \neq x \in Q H^{2 m}\left(X, Z_{p}\right) /$ im P^{1} then x can be represented by an element $x^{\prime} \in H^{2 m}\left(X, Z_{p}\right)$ so that $\phi^{\prime}\left(x^{\prime}\right)$ will have a nonzero image in $Q H^{2 m p}\left(X, Z_{p}\right) / \mathrm{im} P^{1}$. Moreover, there exists a submodule $A, A \subset$ $P H_{2 m}\left(X, Z_{p}\right) n$ ker $P_{1}^{*}\left(P_{1}^{*}\right.$ the dual of $\left.P^{1}\right)$ so that $x \in A^{*}$ and for every $y \in A$

$$
\left.\langle x, y\rangle=\left\langle\phi\left(x^{\prime}\right), y^{p}\right\rangle, \quad y^{p}=y(y \cdots(y \cdot y)) \cdots\right)
$$

2. (Corollary 4.2). Let (X, μ) be an H-space, $\beta H^{*}\left(X, Z_{p}\right)=0 . \quad \phi^{\prime}$ induces a morphism $Q \phi^{\prime}$

$$
Q \phi^{\prime}: Q H^{2 m}\left(X, Z_{p}\right) \rightarrow Q H^{2 m p}\left(X\left\{Z_{p}\right) / \operatorname{im~}^{1} \quad(m \neq 1 \bmod p)\right.
$$

which satisfies $\operatorname{ker} Q \phi^{\prime} \subset \operatorname{im} P^{1}$.
3. (Proposition 4.3). Let (X, μ) be an H-space, $H_{*}\left(X, Z_{p}\right)$ associative and commutative. Suppose $\beta H^{\text {even }}\left(X, Z_{p}\right)=0$. If a class $y \epsilon P H_{2 k}\left(X, Z_{p}\right)$ has a finite height, then $y^{p}=0$ and for every $\lambda \geq 0$ for which $P_{\lambda}^{*} y \in \operatorname{ker} P_{1}^{*}$ we have $\lambda+k \equiv 1 \bmod p$.

Similar results hold for a secondary operation $\phi^{\prime \prime}$ associated with $\beta P^{m}=\beta P^{m}$ (defined on ker $\rho^{m} \cap H^{2 m}\left(X, Z_{p}\right)$).
All spaces considered are of the homotopy type of a CW complex of finite type. All Hopf algebras are graded connected and of finite type. We use

Received April 17, 1969.
the notations in [7] of $Q A, P A$ and ξ for indecomposables primitives and $p^{\text {th }}$ power in a Hopf algebra A. We write $Q: A \rightarrow Q A$ as the projection.

1. On Cartan formulas for secondary operations

In [5] and [6] the existence of a Cartan formula for high order cohomology operations is studied. It was found, for example, that if ϕ is a secondary operation, x, y vectors of cohomology classes so that $x \cdot y=\sum_{i} x_{i} \cdot y_{i}$ is in the domain of ϕ and x, y and ϕ satisfy certain stability conditions then $\phi(x y)=\phi^{\prime} x \cdot a^{\prime} y+$ $a^{\prime \prime} x \cdot \phi^{\prime \prime} y$ for some primary operations a^{\prime} and $a^{\prime \prime}$ and some operations (that might be combinations of primary and secondary operations) ϕ^{\prime} and $\phi^{\prime \prime}$. The limitations on x, y and ϕ are essential if an attempt to compute $a^{\prime}, a^{\prime \prime}, \phi^{\prime}$ and $\phi^{\prime \prime}$ explicitly is to be made. However, if a more general property is sought these conditions can be relaxed. Let p be a prime and let ϕ be the secondary operation defined by the universal example (E, u, v) (in the sense of Adams, see [1, page 55]). By this we mean the following: Given $B=K\left(Z_{p}, m\right)$, $B^{\prime}=\prod_{j} K\left(Z_{p}, n_{j}\right)$ and $b: B \rightarrow B^{\prime} . \quad E$ and $r: E \rightarrow B$ are obtained as the frmation induced by b from the path fibration

$$
\Omega B^{\prime} \rightarrow \& B^{\prime} \rightarrow B^{\prime}
$$

Hence we have

Let $u=r^{*} \iota_{m}$ where $\iota_{m} \in H^{*}\left(B, Z_{p}\right)$ is the fundamental class, and let v be a class in $H^{*}\left(E, Z_{p}\right)$ (usually assumed not to be in im r^{*}).

The operation ϕ is then defined on the natural subset $S \subset H^{*}\left(K, Z_{p}\right)$ of the cohomology of an arbitrary CW complex K consisting of those elements s with $b \circ f_{s \sim *}$ whenever $f_{s}: K \rightarrow B$ and $f_{s}^{*} \iota_{m}=s . \quad \phi(s) \subset H^{*}\left(K, Z_{p}\right)$ is then defined to be the set

$$
\left\{\tilde{f}_{s}^{*} v \mid \tilde{f}_{s}: K \rightarrow E, r \circ \tilde{f}_{s}=f_{s}\right\} .
$$

We shall assume that $b=\Omega b_{1}$ is a loop map; however, v is not necessarily primitive. We shall refer to S as the domain of ϕ.
1.1 Proposition. Let X and Y be CW complexes. Suppose $z=\sum_{i} x_{i} \otimes y_{i} \in H^{m}\left(X \times Y, Z_{p}\right)$ is in the domain of $\phi, \operatorname{dim} x_{i}>0, \operatorname{dim} y_{i}>0$. Let $\rho(x)$ and $\rho(y)$ be the $A(p)$ ideal generated by the x_{i} 's and y_{i} 's respectively. Then

$$
\phi(z) \cap\left[\rho(x) \otimes H^{*}\left(Y, Z_{p}\right)+H^{*}\left(X, Z_{p}\right) \otimes \rho(y)\right] \neq \emptyset
$$

Proof. Let $K_{i}^{\prime}=K\left(Z_{p}, \operatorname{dim} x_{i}\right), K_{i}^{\prime \prime}=K\left(Z_{p}, \operatorname{dim} y_{i}\right)$. Let $X_{0}=\Pi_{i} K_{i}^{\prime}$, $Y_{0}=\prod_{i} K_{i}^{\prime \prime}$ and let $f: X \rightarrow X_{0}$ and $g: Y \rightarrow Y_{0}$ be given by $f^{*} r_{i}^{\prime *} \iota_{i}^{\prime}=x_{i}$,
$g^{*} r_{i}^{\prime \prime *} \iota_{i}^{\prime \prime}=y_{i}\left(r_{i}^{\prime}: X_{0} \rightarrow K_{i}^{\prime}\right.$ and $r_{i}^{\prime \prime}: Y_{0} \rightarrow K_{i}^{\prime \prime}$ are the projections, ι_{i}^{\prime} and $\iota_{i}^{\prime \prime}$ are the fundamental classes in $H^{*}\left(K_{i}^{\prime}, Z_{p}\right)$ and $H^{*}\left(K_{i}^{\prime \prime}, Z_{p}\right)$ respectively $)$. We have the following sequence:

$$
\begin{aligned}
& X \times Y \xrightarrow{f \times g} X_{0} \times Y_{0} \xrightarrow{h} B \xrightarrow{b} B^{\prime} . \\
& h_{\iota_{m}}^{*}=z_{0}=\sum_{i} \iota_{i}^{\prime} \otimes \iota_{i}^{\prime \prime}, h \mid X_{0} \vee Y_{0}=* \text { and } b \circ h \circ(f \times g) \sim *, \text { hence }, \\
& h^{*} \circ b^{*}\left(P H^{*}\left(B^{\prime}, Z_{p}\right)\right) \subset\left[P H^{*}\left(X_{0}, Z_{p}\right) \otimes P H^{*}\left(Y_{0} Z_{p}\right)\right] \cap \operatorname{ker}\left(f^{*} \otimes g^{*}\right) \\
&= {\left[\operatorname{ker} f^{*} \cap P H^{*}\left(X_{0}, Z_{p}\right)\right] \otimes P H^{*}\left(Y_{0}, Z_{p}\right) } \\
&+P H^{*}\left(X_{0}, Z_{p}\right) \otimes\left[\operatorname{ker} g^{*} \cap P H^{*}\left(Y_{0}, Z_{p}\right)\right]
\end{aligned}
$$

and there are $w_{1}, w_{2}: X_{0} \times Y_{0} \rightarrow B^{\prime}, w_{i} \mid X_{0} \vee Y_{0}=*$ so that

$$
b \circ h=w_{1} * w_{2}=\mu_{B^{\prime}} \circ\left(w_{1} \times w_{2}\right) \circ \Delta
$$

($\mu_{B^{\prime}}$ the loop addition, Δ the diagonal) and

$$
w_{1}^{*} P H^{*}\left(B^{\prime}, Z_{p}\right) \subset\left[\operatorname{ker} f^{*} \cap P H^{*}\left(X_{0} Z_{p}\right)\right] \otimes P H^{*}\left(Y_{0}, Z_{p}\right)
$$

and

$$
w_{2}^{*} P H^{*}\left(B^{\prime}, Z_{p}\right) \subset P H^{*}\left(X_{0}, Z_{p}\right) \otimes\left(\operatorname{ker} g^{*} \cap P H^{*}\left(Y_{0}, Z_{p}\right)\right)
$$

Let X_{0}^{\prime} and Y_{0}^{\prime} be generalized Eilenberg McLane spaces,

$$
b^{\prime}: X_{0} \rightarrow X_{0}^{\prime}, \quad b^{\prime \prime}: Y_{0} \rightarrow Y_{0}^{\prime}
$$

be H-mappings with

$$
\begin{aligned}
b^{\prime *}\left(P H^{*}\left(X_{0}^{\prime}, Z_{p}\right)\right) & =\operatorname{ker} f^{*} \cap P H^{*}\left(X_{0}, Z_{p}\right), \\
b^{\prime \prime *}\left(P H^{*}\left(Y_{0}^{\prime}, Z_{p}\right)\right) & =\operatorname{ker} g^{*} \cap P H^{*}\left(Y_{0}, Z_{p}\right)
\end{aligned}
$$

Let $r^{\prime}: E^{\prime} \rightarrow X_{0}$ and $r^{\prime \prime}: E^{\prime \prime} \rightarrow Y_{0}$ be the fibrations induced by b^{\prime} and $b^{\prime \prime}$ from $\Omega X_{0}^{\prime} \rightarrow \mathcal{L} X_{0}^{\prime} \rightarrow X_{0}^{\prime}$ and $\Omega Y_{0}^{\prime} \rightarrow \& Y_{0}^{\prime} \rightarrow Y_{0}^{\prime}$ respectively. Put $j^{\prime}: \Omega X_{0}^{\prime} \rightarrow E^{\prime}$, $j^{\prime \prime}: \Omega Y_{0}^{\prime} \rightarrow E^{\prime \prime}$.

Now $f: X \rightarrow X_{0}$ and $g: Y \rightarrow Y_{0}$ can be lifted to $\bar{f}: X \rightarrow E^{\prime}$ and $\bar{g}: Y \rightarrow E^{\prime \prime}$. Consider now the following diagram:

As

$$
\begin{aligned}
& w_{1}^{*} P H^{*}\left(B^{\prime}, Z_{p}\right) \subset \operatorname{im} \bar{b}^{\prime *} \otimes \bar{H}^{*}\left(Y_{0}, Z_{p}\right) \\
& w_{2}^{*} P H^{*}\left(B^{\prime}, Z_{p}\right) \subset \bar{H}^{*}\left(X_{0}, Z_{p}\right) \otimes \operatorname{im} \bar{b}^{\prime \prime}
\end{aligned}
$$

we have $w_{1}\left(r^{\prime} \times 1\right) \sim *\left(\operatorname{rel} E^{\prime} \vee Y_{0}\right)$ and $w_{2}\left(1 \times r^{\prime \prime}\right) \sim *\left(\right.$ rel $\left.X_{0} \vee E^{\prime \prime}\right)$.

Hence, there exist

$$
\begin{aligned}
& v^{\prime}: E^{\prime} \times Y_{0}, E^{\prime} \vee Y_{0} \rightarrow \& B^{\prime}, * \\
& \quad v^{\prime \prime}: X_{0} \times E^{\prime \prime}, X_{0} \vee E^{\prime \prime} \rightarrow \& B^{\prime}, *
\end{aligned}
$$

with $\varepsilon_{1} \circ v^{\prime}=\omega_{1}\left(r^{\prime} \times 1\right), \varepsilon_{1} \circ v^{\prime \prime}=\omega_{2}\left(1 \times r^{\prime \prime}\right)$ where $\varepsilon_{1}: \mathscr{L} B^{\prime} \rightarrow B^{\prime}$ is the evaluation at 1 .

Define $w: E^{\prime} \times E^{\prime \prime} \rightarrow E \subset B \times \& B^{\prime}$ by

$$
w(\bar{x}, \bar{y})=h\left(r^{\prime}(\bar{x}), r^{\prime \prime}(\bar{y})\right), v^{\prime}\left(\bar{x}, r^{\prime \prime}(\bar{y})\right) * v^{\prime \prime}\left(r^{\prime}(\bar{x}), \bar{y}\right)
$$

where $v^{\prime} * v^{\prime \prime}=\mathscr{L}\left(\mu_{B^{\prime}}\right) \circ\left(v^{\prime} \times v^{\prime \prime}\right)$.
Now, $\left(\bar{f}^{*} \otimes \bar{g}^{*}\right) \circ w^{*}(v) \epsilon \phi(z)$ but as $w \circ\left(j^{\prime} \times j^{\prime \prime}\right)=*$ and therefore,

$$
\left(j^{\prime *} \otimes j^{\prime \prime}\right) \circ w^{*}(v)=0
$$

by [9] Proposition 5.5 III, $w^{*}(v)$ is in the ideal generated by $\operatorname{im}\left(\overline{r^{\prime *} \otimes r^{\prime \prime *}}\right)$, or equivalently, in the ideal generated by

$$
\operatorname{im}{\overline{r^{\prime}}}^{*} \otimes H^{*}\left(E^{\prime \prime}, Z_{p}\right)+H^{*}\left(E^{\prime}, Z_{p}\right) \otimes \operatorname{im} \bar{r}^{\prime \prime}
$$

hence

$$
\bar{f}^{*} \otimes \bar{g}^{*} \circ w^{*}(v) \in \rho(x) \otimes H^{*}\left(Y, Z_{p}\right)+H^{*}\left(X, Z_{p}\right) \otimes \rho(y) .
$$

2. Coproducts and indecomposables

If N is a Hopf algebra over $A(p)$ then $Q N$ is an $A(p)$-module. In general the product in N does not induce a nontrivial product in $Q N$. On the other hand the coproduct ψ induces some operation on $Q N$.

Let $\bar{\Psi}: \bar{N} \rightarrow \bar{N} \otimes \bar{N}$ be given by $\bar{\psi} x=\psi x-1 \otimes x-x \otimes 1$ and let ψ^{k} and $\bar{\psi}^{k}$ be defined inductively by

$$
\begin{gathered}
\psi^{0}=1, \quad \psi^{1}=\psi, \quad \psi^{k}=\left(\psi^{k-1} \otimes 1\right) \circ \psi, \\
\bar{\psi}^{0}=\varepsilon, \text { the augmentation, } \quad \bar{\psi}^{1}=\bar{\psi}, \quad \bar{\psi}^{k}=\left(\bar{\psi}^{k-1} \otimes 1\right) \bar{\psi}, \quad k>1 .
\end{gathered}
$$

2.1 Definition. Let A be a graded module over a ring R and let A^{k} be the k-fold tensor product $A^{2}=A \otimes A, A^{k}=A \otimes A^{k-1}$. Define

$$
\operatorname{shuff}_{j}^{k}: A^{j} \otimes A^{k-j} \rightarrow A^{k}
$$

by
$\operatorname{shuff}_{j}^{k}\left[\left(a_{1} \otimes \cdots \otimes a_{j}\right) \otimes\left(a_{j+1} \otimes \cdots \otimes a_{k}\right)\right]=\sum \varepsilon_{\alpha} a_{\alpha(1)} \otimes \cdots \otimes a_{\alpha(k)}$, summations over all permutations

$$
\alpha:(1,2, \cdots k) \rightarrow(\alpha(1), \cdots \alpha(k))
$$

which satisfy $\alpha(r)<\alpha(s)$ if either $r<s \leq j$ or $j<r<s ; \varepsilon_{\alpha}=\Pi(-1)^{\left|a_{r}\right|\left|a_{s}\right|}$ $\left(a_{r} \in A_{\left|a_{r}\right|}\right)$, the product taken over all r, s with $r \leq j<s$ and $\alpha(r)>\alpha(s)$. $\operatorname{shuff}_{0}^{k}=\operatorname{shuff}_{k}^{k}=1$.

A tedious but straightforward calculation yields
2.2 Proposition. If N is a Hopf algebra, $x, y \in N$ and $D N=\bar{N} \cdot \bar{N}=\operatorname{ker} Q$ then

$$
\bar{\psi}^{k-1}(x \cdot y)=\sum_{j=1}^{k-1} \operatorname{shuff}_{j}^{k} \bar{\psi}^{j-1} x \otimes \bar{\psi}^{k-j-1} y+d
$$

where $d \epsilon \sum_{n=0}^{k-1} N^{n} \otimes D N \otimes N^{k-n-1}$.

As a consequence we have
2.3 Corollary. $\psi: N \rightarrow N \otimes N$ induces a morphism

$$
\widetilde{Q} \bar{\psi}^{k-1}: Q N \rightarrow(Q N)^{k} / \sum_{j=1}^{k-1} \text { im }\left(\operatorname{shuff}_{j}^{k}\right)
$$

3. Coproducts and secondary operations

Let (X, μ) be an H-space, ϕ a nonstable secondary operation associated with a relation

$$
\begin{equation*}
\beta P^{m}=\sum_{i} a_{i} b_{i}, \quad a_{i}, b_{i}, \epsilon A(p), e\left(b_{i}\right)<2 m \tag{1}
\end{equation*}
$$

(e the excess, i.e., if $0 \neq \iota \in H^{n}\left(K\left(Z_{p}, n\right), Z_{p}\right)$ then $a \iota=0$ if and only if $e(a)>n)$.

Thus, in terms of universal examples $\phi=\phi_{n}$ is defined by $\left(E_{n}, u, v\right)$ where E_{n} is given by the fibration

$$
\Omega B_{0} \xrightarrow{j_{0}} E_{n} \xrightarrow{r} K\left(Z_{p}, n\right), \quad n \leq 2 m,
$$

induced by the mapping

$$
g: K\left(Z_{p}, n\right) \rightarrow B_{0}=\prod_{i} K\left(Z_{p}, n+\left|b_{i}\right|\right), \quad g^{*} r_{i}^{*} \iota_{n+\left|b_{i}\right|}=b_{i} \iota_{n}
$$

$\left(r_{i}: B_{0} \rightarrow K\left(Z_{p}, n+\left|b_{i}\right|\right)\right.$ is the projection). Here $u=r^{*} \iota_{n}$ and $v \in H^{*}\left(E_{n}, Z_{p}\right)$ satisfies $j_{0}^{*} v=\sum_{i} a_{i} \sigma^{*}\left(r_{i}^{*} \iota_{n+\left|b_{i}\right|}\right)$. If v is appropriately chosen then ϕ is additive in dimension $<2 m-\phi(x+y)=\phi(x)+\phi(y)(\operatorname{dim} x=$ $\operatorname{dim} y<2 m$) and in dimension $2 m$ we have

3.1 Proposition.

$$
\phi(x+y)=\phi(x)+\phi(y)+\sum_{a=1}^{p-1} 1 / p\binom{p}{a} x^{a} \cdot y^{p-a} .
$$

Proof. For the case $p=2,\left(P^{k}=S q^{2 k}, \beta=S q^{1}\right)$ this is being proved in [4]. Consider the following diagram:

where

$$
g_{0}^{\prime *} r_{i}^{*} \iota_{2 m+1+\left|b_{i}\right|}=b_{i} \iota_{2 m+1}
$$

$\left(r_{i}: B_{0} \rightarrow K\left(Z_{p}, 2 m+1+\left|b_{i}\right|\right)\right.$ is the projection $)$.

$$
g_{0}^{*} \iota_{2 m p+2}=\beta P_{\iota_{2 m+1}}^{m}, \quad h_{0}^{*} \iota_{2 m p+2}=\sum_{i} a_{i}\left(r_{i}^{*} \iota_{2 m+1+\left|b_{i}\right|}\right) .
$$

Then $\Omega E_{1}=E=E_{2 m}, \Omega g_{0}^{\prime}=g$ and $\Omega E_{0} \approx K\left(Z_{p}, 2 m\right) \times K\left(Z_{p}, 2 m p\right)$. The latter equivalence is not unique, but we claim that a representation

$$
\Omega E_{0} \approx K\left(Z_{p}, 2 m\right) \times K\left(Z_{p}, 2 m p\right)
$$

can be chosen so that

$$
\bar{\mu}_{\Omega E_{0}}^{*}\left(1 \otimes \iota_{2 m p}\right)=\sum_{a=1}^{p-1} \frac{1}{p}\binom{p}{a}\left(\iota_{2 m} \otimes 1\right)^{a} \otimes\left(\iota_{2 m} \otimes 1\right)^{p-a} .
$$

Indeed, if $0 \neq t \in H_{2 m}\left(\Omega E_{0}, Z_{p}\right)$ satisfies $t^{p}=0$, then $H^{*}\left(\Omega E_{0}, Z_{p}\right)$ is primitively degenerated in $\operatorname{dim} \leq 2 m p+1$ and $1 \otimes \iota_{2 m p}$ is primitive. By [3, Theorem 5.14], this implies that $1 \otimes \iota_{2 m p} \epsilon \operatorname{im} \sigma^{*}$ which is a contradiction as $\iota_{2 m p+1} € \operatorname{im} j_{0}^{\prime *}$. Hence, $t^{p} \neq 0$ and there exists a class $v_{0} \in Q H^{2 m p}\left(\Omega E_{0}, Z_{p}\right)$ dual to $t^{p} \in P H_{2 m p}$ $\left(\Omega E_{0}, Z_{v}\right)$.

Choosing the representation $\Omega E_{0} \approx K\left(Z_{p}, 2 m\right) \times K\left(Z_{p}, 2 m p\right)$ appropriately we may assume that $v_{0}=1 \otimes \iota_{2 m p}$ and it has the desired coproduct expression. Choosing $v=\Omega f_{1}^{*}\left(1 \otimes \iota_{2 m p}\right)$ we have

$$
\mu_{E}^{*} v=\left(v \otimes 1+1 \otimes v+\sum_{a=1}^{p-1} \frac{1}{p}\binom{p}{a} u^{a} \otimes u^{p-a}\right) \epsilon \phi(u \otimes 1+1 \otimes u)
$$

3.2 Main Calculation. Let (X, μ) be an H-space. Let ϕ be a (nonstable) secondary operation associated with (1). Let $B \subset H^{*}\left(X, Z_{p}\right)$ be an $A(p)$ module, and let

$$
q: H^{*}\left(X, Z_{p}\right) \rightarrow H^{*}\left(X, Z_{p}\right) / / B
$$

be the reduction of $H^{*}\left(X, Z_{p}\right)$ by the ideal B_{1} generated by \bar{B}. If $x \in H^{2 m}\left(X, Z_{p}\right)$, $x \in \mathrm{\Pi}_{i} \operatorname{ker} b_{i}$ and $\bar{\mu}^{*} x \in B_{1} \otimes B_{1}$ then

$$
(q \otimes q) \bar{\mu}^{*} \phi(x)=q \otimes q\left(\sum_{a=1}^{p-1} \frac{1}{p}\binom{p}{a} x^{a} \otimes x^{p-a}+\sum_{i} \operatorname{im} a_{i}\right) .
$$

Proof.

$$
\mu^{*} \phi(x) \subset \phi \mu^{*}(x)=\phi\left(x \otimes 1+1 \otimes x+\sum_{k} x_{k}^{\prime} \otimes x_{k}^{\prime \prime}\right), \quad x_{k}^{\prime}, x_{k}^{\prime \prime} \epsilon B_{1}
$$

Now

$$
\begin{aligned}
& \phi\left(x \otimes 1+1 \otimes x+\sum_{k} x_{k}^{\prime} \otimes x_{k}^{\prime \prime}\right) \\
& \subset \phi(x) \otimes 1+1 \otimes \phi(x)+\sum_{a=1}^{p-1} \frac{1}{p}\binom{p}{a} x^{a} \otimes x^{p-a}+\phi\left(\sum_{k} x_{k}^{\prime} \otimes x_{k}^{\prime \prime}\right) \\
&+\sum_{a=1}^{p-1} \frac{1}{p}\binom{p}{a}(x \otimes 1+1 \otimes x)^{a}\left(\sum_{k} x_{k}^{\prime} \otimes x_{k}^{\prime \prime}\right)^{p-a}
\end{aligned}
$$

Hence $\phi \mu^{*} x$ can be represented by an element \bar{v} with

$$
\bar{\mu}^{*} \bar{v}^{*}=\sum_{a=1}^{p-1} \frac{1}{p}\binom{p}{a} x^{a} \otimes x^{p-a}+\phi\left(\sum_{k} x_{k}^{\prime} \otimes x_{k}^{\prime \prime}\right)+d
$$

where $d \in B_{1} \otimes H^{*}\left(X, Z_{p}\right)+H^{*}\left(X, Z_{p}\right) \otimes B_{1}+\sum_{i} \operatorname{im} a_{i} . \quad\left(\sum_{i} \operatorname{im} a_{i}\right.$ accumulates all indeterminacy of ϕ.) By 1.1, $\phi\left(\sum_{k} x_{k}^{\prime} \otimes x_{k}^{\prime \prime}\right)$ can be represented by an element in $B_{1} \otimes H^{*}\left(X, Z_{p}\right)+H^{*}\left(X, Z_{p}\right) \otimes B_{1}$ and 3.2 follows.

4. Applications

Only few of the application 3.2 are given here. We consider two cases of (1).

$$
\begin{equation*}
\beta P^{m}=\frac{1}{m-1}\left(P^{1} \beta P^{m-1}-P^{m} \beta\right), \quad m \not \equiv 1 \bmod p \tag{1}
\end{equation*}
$$

Here

$$
b_{1}=\frac{1}{m-1} \beta P^{m-1}, \quad b_{2}=\frac{1}{m-1} \beta, \quad a_{1}=P^{1}, \quad a_{2}=P^{m}
$$

and the operation will be denoted by ϕ^{\prime}.
(1)" Define the operation $\phi^{\prime \prime}$ on ker P^{m} corresponding to $b_{1}=P^{m}, a_{1}=\beta$, and $\left(\beta P^{m}\right)>2 m$.
4.1 Proposition. Let (X, μ) be an H-space. Suppose $\beta H^{\text {even }}\left(X, Z_{p}\right)=0$. If $0 \neq x \in Q H^{2 m}\left(X, Z_{p}\right) / \operatorname{im} P^{1}, m \neq 1 \bmod p$, then there exists a class x^{\prime} representing x so that $\phi^{\prime}\left(x^{\prime}\right)$ has nonzero image in $Q H^{2 m p}\left(X, Z_{p}\right) / \mathrm{im} P^{1}$. Moreover, there exists a submodule $M, M \subset P H_{2 m}\left(X, Z_{p}\right) \cap \operatorname{ker} P_{1}^{*}\left(P_{1}^{*}\right.$ the dual of $\left.P^{1}\right)$ so that $x \in M^{*}$ and for every $y \in M$,

$$
\left\langle x^{\prime}, y\right\rangle=\left\langle\phi^{\prime}\left(x^{\prime}\right), y^{p}\right\rangle \quad \text { where } y^{p}=y(y(\cdots(y \cdot y)) \cdots)
$$

Proof. Let $B(n)$ be the $A(p)$ subalgebra of $H^{*}\left(X, Z_{p}\right)$ generated by $\sum_{k \leq n} H^{k}\left(X, Z_{p}\right)$. Let

$$
q_{n}^{\prime}: H^{*}\left(X, Z_{p}\right) \rightarrow Q\left[H^{*}\left(X, Z_{p}\right) / / B(n)\right] / \operatorname{im} P^{1}
$$

Consider the cofiltration

$$
H^{*}\left(X, Z_{p}\right) \rightarrow H^{*}\left(X, Z_{p}\right) / / B(1) \rightarrow \cdots \rightarrow H^{*}\left(X, Z_{p}\right) / / B(k) \rightarrow \cdots
$$

Let n be the smallest integer so that the image of x in

$$
Q\left[H^{*}\left(X\left\{Z_{p}\right) / / B(n+1)\right] / P^{1}\right.
$$

vanishes. Hence, x can be represented by an element in the ideal generated by $B(n+1)$ but as an indecomposable the representative can be chosen to be a nondecomposable element x^{\prime} in $B(n+1), x^{\prime}=\sum_{i} a_{i} x_{i}^{\prime}+d$ where $a_{i} \in A(p)$, $x_{i}^{\prime} \in H^{n+1}\left(X, Z_{p}\right)$ and $d \in B(n)$, hence $\bar{\mu}^{*} x \in B(n) \otimes B(n), q_{n}^{\prime} x^{\prime} \neq 0$. The rest of the proof follows from 3.2 with $B=B(n)$: Take μ_{0}^{*} to be the coproduct induced by μ^{*} on $H^{*}\left(X, Z_{p}\right) / /\left(B(n)+\operatorname{im} P^{1}\right)$ and we have

$$
\widetilde{Q} \bar{\mu}_{0}^{* p-1} q_{n}^{\prime} \phi^{\prime}\left(x^{\prime}\right)=q_{n}^{\prime} x^{\prime} \otimes \cdots \otimes q_{n}^{\prime} x^{\prime} \quad\left(\bmod \sum_{j} \operatorname{im} \operatorname{shuff} j_{j}^{k}\right)
$$

($\widetilde{Q} \bar{\mu}_{0}^{* p-1}$ as in 2.3). Choose $M=M(n)$ to be

$$
\left\{Q\left[H^{*}\left(X, Z_{p}\right) / / B(n)\right] / \operatorname{im} P^{1}\right\}^{*}
$$

and 4.1 follows.
If $\beta H^{*}\left(X, Z_{p}\right)=0$ then it follows from 1.1 that

$$
\phi^{\prime}\left(D H^{*}\left(X, Z_{p}\right)\right) \cap D H^{*}\left(X, Z_{p}\right) \neq 0
$$

hence ϕ^{\prime} induces an operation

$$
Q \phi^{\prime}: Q H^{2 m}\left(X, Z_{p}\right) \rightarrow Q H^{2 m p}\left(X, Z_{p}\right) / \operatorname{im} P^{1}, \quad m \neq 1 \bmod p
$$

and we have
4.2. Corollary. Let (X, μ) be an H-space, $\beta H^{\text {even }}\left(X, Z_{p}\right)=0$. Then $\operatorname{ker} Q \phi^{\prime} \subset \operatorname{im} P^{1}$.

A dualization of 4.1 yields
4.3 Proposition. Let (X, μ) be an H-space, $H_{*}\left(X, Z_{p}\right)$ associative and commutative. Suppose $\beta H^{\text {even }}\left(X, Z_{p}\right)=0$. If a class $y \in P H_{2 k}\left(X, Z_{p}\right)$ has a finite height then $y^{p}=0$ and for every $\lambda \geq 0$ for which $P_{\lambda}^{*} y \in \operatorname{ker} P_{1}^{*}$ we have $\lambda+k \equiv 1$ $\bmod p$.
4.4 Remark. There are quite a few examples of torsion free homology algebras where a two-dimensional class has height p : that of $K(Z, 2), \Omega E_{j}-E_{j}$ the exceptional Lie groups, $j=6,7,8 \bmod 3, j=8 \bmod 5$. An example where $z^{p}=0, \operatorname{dim} z \neq 2$, is the homology of $X=B_{U}(6,8 \cdots \infty) . \quad H^{*}(X, Z)$ is oddtorsion free while the primitive element of $\operatorname{dim} 2 p+2$ has height p. (See [8] for an exact computation.)
4.5 Proposition. Let X, μ be an H-space. Let $x \in H^{2 m}\left(X, Z_{p}\right)$. Suppose $Q x \notin \operatorname{im} \beta, \bar{\mu}^{*} x \in B(n) \otimes B(n), x \notin B(n)$. If $x^{p}=0$ then $\phi^{\prime \prime}(x)$ has nonzero image in $Q H^{*}\left(X, Z_{p}\right) / \operatorname{im} \beta$.

The proof is similar to that of 4.1.

References

1. J. F. Adams, On the nonexistence of Hopf invariant one, Ann. of Math. (2), vol. 72 (1960), pp. 20-104.
2. W. Browder, Torsion in H-spaces, Ann. of Math. (2), vol. 74 (1961), pp. 24-51.
3. -_, On differential Hopf algebras, Trans. Amer. Math. Soc., vol. 107 (1963), pp. 153-176.
4. L. Kristensen, On secondary cohomology operations, Math. Scand., vol. 12 (1963), pp. 57-82.
5. -, On a Cartan formula for secondary cohomology operations, Math. Scand., vol. 16 (1965), pp. 97-115.
6. R. J. Milgram, Cartan formulas, University of Illinois, Chicago (mimeographed).
7. J. W. Milnor and J. C. Moore, On the structure of Hopf algebras, Ann. of Math. (2), vol. 81 (1965), pp. 211-264.
8. W. M. Singer, Connective fibering over B_{U} and U, Topology, vol. 7 (1968), pp. 271-303.
9. L. Smith, Cohomology of stable two stage Postnikov system, Illinois J. Math., vol. 11 (1967), pp. 310-329.

University of Illinois at Chicago Circle
Chicago, Illinois

