ON THE SPECTRAL RADIUS OF ELEMENTS IN A GROUP ALGEBRA1

BY

JOE W. JENKINS

Let G be a discrete group, $l_1(G)$ its group algebra. In [2], it was shown that if G contains a free non-abelian subsemigroup on two generators then $l_1(G)$ is non-symmetric. The proof, highly combinatorial in nature, rested on the fact that if x in $l_1(G)$ has no left inverse then there is a non-zero f in $l_1(G)^*$ such that f(yx) = 0 for each y in $l_1(G)$. This note contains the same theorem, but the proof given offers more insight into the group algebra.

Let α be a Banach *-algebra with identity e. $P(\alpha)$ will denote the set of linear functionals on α such that $f(xx^*) \geq 0$ for each x in α and such that f(e) = 1. Implicit in the usual proof of Raikov's Theorem (c.f. Naimark [3]) is the following:

 α is symmetric if, and only if, for each $x \in \alpha$,

$$\operatorname{sp}(xx^*) \subset \{f(xx^*) \mid f \in P(\mathfrak{a})\}.$$

(Symmetry is defined as in Rickart [4].) We require this result in proving

LEMMA 1. Let α be a symmetric Banach *-algebra with identity. If x and y are normal elements of α then

$$\nu(xy) \leq \nu(x)\nu(y).$$

Proof. We first note that if z in α has no right inverse then there is a f in $P(\alpha)$ such that f(z) = 0. Suppose z has no right inverse. Then zz^* has no right inverse, for if v were such an inverse then z^*x would be a right inverse for z. Hence

$$0 \epsilon \operatorname{sp}(zz^*).$$

By the preceding remark there is an $f \in P(\alpha)$ such that $f(zz^*) = 0$. But then

$$|f(z)|^2 \leq f(zz^*)f(e) = 0,$$

and so

$$f(z) = 0.$$

A similar statement holds if z has no left inverse.

Suppose now that $\alpha \in \operatorname{sp}(xy)$ and $|\alpha| = \nu(xy)$. Then $xy - \alpha e$ either has no left inverse or no right inverse. Hence there is an f_0 in $P(\alpha)$ such that

$$f_0(xy - \alpha e) = f_0(xy) - \alpha = 0.$$

Hence

$$|f_0(xy)| = |\alpha| = \nu(xy).$$

Received March 10, 1969.

¹ This work was partially supported by a National Science Foundation grant.

By the Schwarz inequality

$$|f_0(xy)|^2 \leq f_0(xx^*)f_0(yy^*).$$

Now, for any hermitian element z in α , $|f(z)| \leq \nu(z)$. Also, since x and y are normal elements of α ,

$$\nu(xx^*) \leq \nu(x)^2$$
 and $\nu(yy^*) \leq \nu(y)^2$

(actually we have equality since α is symmetric). Thus

$$|f_0(xy)|^2 \leq \nu(xx^*)\nu(yy)^* \leq \nu(x)^2\nu(y)^2.$$

Therefore

$$\nu(xy) = |f_0(xy)| \leq \nu(x)\nu(y).$$

The mapping $g \to \delta_g$, where $\delta_g(s) = 0$ if $s \neq g$ and $\delta_g(g) = 1$, is the usual embedding of G into $l_1(G)$. We will not distinguish between g and δ_g . Note that each x in $l_1(G)$ may be written as

$$x = \sum_{g \in G} x(g)g.$$

Let $N(x) = \{g \in G \mid x(g) \neq 0\}.$

 $\|$

LEMMA 2. Let x and y be elements of $l_1(G)$ such that for each positive integer n

 $s_1 t_1 \cdots s_n t_n \neq s_{n+1} t_{n+1} \cdots s_{2n} t_{2n}$

if for some $i, 1 \leq i \leq n, s_i \neq s_{n+i}$ or $t_i \neq t_{n+i}$, where $s_j \in N(x)$ and $t_j \in N(y)$ for $1 \leq j \leq 2n$. Then

$$\nu(xy) = ||x|| ||y||.$$

Proof. We first note that if x' and y' are elements of $l_1(G)$ such that $N(x') \cap N(y') = \emptyset$ then

$$\begin{aligned} x' + y' \| &= \sum_{g \in G} |x'(g) + y'(g)| \\ &= \sum_{g \in G} (|x'(g)| + |y'(g)|) \\ &= \sum_{g \in G} |x'(g)| + \sum_{g \in G} |y'(g)| \\ &= \|x'\| + \|y'\|. \end{aligned}$$

Now,

$$\| (xy)^{n} \| = \| \sum_{s_{1}, \dots, s_{n} \in N(x)} x(s_{1}) \cdots x(s_{n}) s_{1}y \cdots s_{n}y \|$$

= $\sum_{s_{1}, \dots, s_{n} \in N(x)} | x(s_{1}) \cdots x(s_{n}) | \| s_{1}y_{1} \cdots s_{n}y \|.$

The last equality derives from the preceding observation and the fact that for (s_1, \dots, s_n) and (s'_1, \dots, s'_n) in $(N(x))^n$ and

$$(s_1, \dots, s_n) \neq (s'_1, \dots, s'_n), \quad N(s_1 y \dots s_n y) \cap N(s'_1 y \dots s'_n y) = \emptyset.$$

Also,

$$\| s_1 y \cdots s_n y \| = \| \sum_{t_1, \cdots, t_n \in N(y)} y(t_1) \cdots y(t_n) s_1 t_1 \cdots s_n t_n \| \\ = \sum_{t_1, \cdots, t_n \in N(y)} | y(t_1) | \cdots | y(t_n) |$$

 $= \|y\|^n$.

552

Hence

$$\| (xy)^n \| = (\sum_{s_1, \dots, s_n \in N(x)} | x(s_1) | \dots | x(s_n) |) \| y \|^n = \| x \|^n \| y \|^n.$$

Therefore

$$\nu(xy) = \inf_n || (xy)^n ||^{1/n} = || x || || y ||.$$

If H is a subgroup of G then there is a canonical embedding of $l_1(H)$ into $l_1(G)$. It is well known that if $x \in l_1(H)$ then

$$\operatorname{sp}_{l_1(H)}(x) = \operatorname{sp}_{l_1(G)}(x)$$

THEOREM 3. If G contains a free non-abelian subsemigroup generated by a and b then $l_1(G)$ is non-symmetric.

Proof. We proceed by contradiction. Suppose $l_1(G)$ is symmetric. Then by Lemma 1,

$$\nu(xy) \leq \nu(x)\nu(y)$$

for each pair of normal elements x and y in $l_1(G)$.

Let α , β , λ be complex numbers such that

$$|\alpha| = |\beta| = |\lambda| = \frac{1}{3}$$
 and $\sup_{|z|=1} |\alpha + \beta z + \lambda z^2| < 1$.

Define x and y in $l_1(G)$ by $x = \alpha a + \beta a^2 + \lambda a^3$ and y = b. Then x and y are normal. Further

$$\nu(x) = \nu_{l_1(\langle a \rangle)}(x) = \sup_{|z|=1} |\alpha z + \beta z^2 + \lambda z^3| < 1$$

and $\nu(y) = 1$. By Lemma 1, $\nu(xy) < 1$. However, since the semigroup generated by a and b is free in G, x and y satisfy the hypothesus of Lemma 2, and hence

$$\nu(xy) = ||x||||y|| = 1.$$

If G is the group defined by setting

$$(a, b)(a', b') = (aa', ab' + b)$$

for each (a, b) and (a', b') in $\{(a, b) \mid a \in R, b \in R, a \neq 0\}$ then the subsemigroup generated by c = (a, 1) and d = (-a, 1). $0 < a < \frac{1}{2}$, is free. Also $cd^{-1} = dc^{-1}$. (See [1], for this example.) By the preceding theorem, $l_1(G)$ is not symmetric, but a more direct proof is in the following observations.

If $l_1(G)$ is symmetric then each maximal commutative self-adjoint subalgebra, \mathfrak{M} , of $l_1(G)$ is also symmetric. Now \mathfrak{M} is symmetric if and only if

$$\nu(x)^2 = \nu(xx^*)$$

for each x in \mathfrak{M} (cf. Rickart [4]).

If we let x = c + id then x is normal and hence an element of some \mathfrak{M} . Also, since the semigroup on c and d is free, $||x^n|| =$ cardinality of $N(x^n) = 2^n$. Hence, $\nu(x) = 2$. However,

$$\nu(xx^*) = \nu(2e) = 2.$$

Therefore,

$$\nu(xx^*) < \nu(x)^2$$

and thus $l_1(G)$ is non-symmetric.

References

- 1. J. JENKINS, An amenable group with a non-symmetric group algebra, Bull. Amer. Math. Soc., vol. 75 (1969), pp. 45–47.
- 2. , Symmetry and non-symmetry in group algebras of discrete groups, Pacific J. Math., vol. 32 (1970), pp. 131-149.
- 3. M. A. NAMARK, Normed rings, P. Noordhoff, Groningen, 1960.
- 4. C. E. RICKART, General theory of banach algebras, Van Nostrand. Princeton, N. J., 1960.

STATE UNIVERSITY OF NEW YORK ALBANY, NEW YORK

554