
VECTOR LATTICES AND SEQUENCE SPACES
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1. Introduction
In [6], Peressini and Sherbert study KSthe sequence spaces and mappings

between these spaces with special emphasis on their order properties. Varia-
tions of these results appear in [5]. The purpose of this paper is to extend
some of these results. Among other things, it will be shown by using tech-
niques involving the Dedekind completion of a vector lattice, that condition
"E is Dedekind complete" can be replaced by "E is Archimedean" in several
places.

Let E be a vector lattice. We say the net {x} order converges to x in E
(we write x, _.o x) if there exists a net {y,} c E such that x x _-< y,
and y, $ 0 (i.e., {y} is down-directed and inf(y,) 0). As in [6], we note
the following significant restrictions which may be put on E.

(A) If A is a subset of E that has a supremum, then there is a countable
subset A’ of A such that sup A sup A. (We say that E is order, separable.)

(B) If {y. } is a sequence in E that order converges to y. in E (for
each n 1, 2, ,) and if {y.} order converges to y0 there is an increasing
sequence {m n 1, 2, ,} of positive integers such that {y. n} order
converges to y0. (We say E has the diagonal property. Note that we use
the definition in [5] rather than [6].)

(C) If {As} is a sequence of non-majorized subsets of E, there exist finite
subsets A’ of A (n 1, 2, ) such that

{sup A’ n 1, 2, ...}
is not u majorized set. (We say that E isfinitely unbounded.)

2. The Dedekind completion
Let E be an Archimedean vector lattice throughout this section. Nakano

has shown [3] that a necessary and sufficient condition that E be Archimedean
is that it possess a Dedekind completion (or cut completion) i.e., that there
exist a complete vector lattice/ such that"

(D1) E is embedded as a subvector lattice in/,
(D2) for each u e/,

u sup Ix:xeE, x <= u} inf{y:yeE, y

_
u}

In [1], it is shown that (D2) can be replaced by

(D2’) For 0 < u e /, there arex, yinEsuchthat 0 < x _-< u y.
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As defined by either set of two conditions,/ is unique up to isomorphism.
It is also shown in the reference just cited, that if E is a subvector lattice of a
complete vector lattice F, D is the ideal in F generated by. E, and 0 <: u e D
implies the existence of x e E such that 0 < x =< u, then D is the Dedekind
completion of E.
What will be shown in this section is that E inherits some properties from/

and vice-versa. These facts will then be used to obtain results about vector
lattices (in particular sequence spaces) free of the hypothesis that E be Dede-
kind complete.
We first note that if/ is order separable, then E is clearly order separable.
Luxemburg and Zaanen prove [2, Theorem 11.5] tha;t an Ar.chimedean

vector lattice L is order separable if and only if every non-empty subset D
which is bounded above has a countable subset possessing the same set of
upper bounds as D. We use this fact to show that L is order separable if
L is.

Let u e L, u sup V where V is a subset of L. For each v e V, let

A= laeL:a<=v}.

Then A (J{A v e V} is a subset of L and sup A u. But, this implies
that u is the smallest of the/-upper bounds of A, hence u =< b where b is
any upper bound of A in E. By definition of the Dedekind Completion,
then, u inf B (in/) where B is the set of upper bounds of A which lie
in E. The result mentioned above [2, Theorem 11.5] gives us a sequence
{a} c A which has B as its set of E-upper bounds. Hence u sup/a}
(in/). But for each n, there is v e V for which a =< vn. {v} is a count-
able subset of V and sup {vn} u. L is thus order separable. We have
shown

Remark. L is order separable if and only if L is order separable.

The following will be useful for our further discussion.

LEMMA 2.1. Let E be an Archimedean order separable vector lattice. Then,
if v} and v,, O, there is a sequence {xn} E such that x,, $ 0 and Vn <--
n 1,2, .".

Proof. Assume{v} c /andv$0. LetAn {xeX:x >- vn}. Then
A (J:-i An is directed downward and inf (A) 0. Since E is order sep-
arable, there exists {y} A such that inf (y) 0 and yk

_
y+l,

k 0, 1, 2, .... By definition of A, there is a subsequenc,e of the integers
1 =n0<n<n.<na...suchthatvn-<y,k=0,1,2,.... Now, Choose
x>v,andletx=ykforn_m-<n+- 1. Then, v-<v=< y x.
Since y $ 0, it is clear that x, 0 and v

_
xn for each n 1, 2, ....

POPOSITIO 2.2. Let E be an Archimedean order separable vector lattice.
Given {,x.} E, then x,, ....o 0 (in E) if and only if x,, -- 0 (in ).

Proof. Clearly, x. ---0 (inE) implies xn --0 (in/). The converse is a
direct application of 2.1.
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PROPOSITION 2.3. Let E be an Archimedean order separable vector lattice.
Then, E has the diagonal property if and only if does.

Proof. The necessity is a routine application of 2.1.

Suppose now that E has the diagonal property. Let v, -- vo, and
v., --. v, n 1, 2, ..., where vn, v0 and v., are in/.
By using 2.1 again, there are sequences {x.} c E and {xn,} c E, (n

1, 2, ..., k 1, 2, ...) such that

Vo v.[

_
x.,

and x. 0, x,k $ 0 as k --. for each n 1, 2, .... Let yn, sup (xn,, xn)
then y., -- xn and x. --. 0 (since inf (sup (x.,, x.) xn). Since E has
the diagonal property, there is for each n an integer k(n) such that y,(.) -. 0.
So, there exists {wn} c E, w. 0 and y.,()

_
w.. But then,

and since (x + w) $ 0, we have v.,(.) v..
The next result concerns property (C) in the introduction.

PROPOSITION 2.4. Let E be an Archimedean vector lattice. Then E isfinitely
unbounded if and only if is finitely unbounded.

Proof. If / is finitely unbounded it follows from the definition that E
inherits the property.

Suppose now that E is finitely unbounded. Let U /, n 1, 2, ...,
form a sequence of non-majorized sets in/. Let., {v: iv

_
u, someuU,,} and A, nnE.

Then, the sequence {A.} of subsets of E is not majorized in E. So, there
exists for each n, a finite set A;, An such that {sup A’.} is not majorized in E.
Let

A’. {a k 1, 2, ..., p(n)}.

Then there is u(.) e Un such that a(.)
_

u(.). So, letting

{u? a, ..., p(n)},

U’. is a finite subset of U. for each n and {sup U’.} is not a majorized set in/.
With this result, it is possible to remove the hypothesis of completeness in

Kantorovich’s characterization of a bounded set in a finitely unbounded
vector lattice.

PROPOSITION 2.5. Let E be a finitely unbounded Archimedean vector lattice.
Then, B c E is an order bounded set if and only if for each sequence {x.} in B
and for any sequence {an} of scalars decreasing to zero, a,x. -- O. (We call
this latter condition "property ".)
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Proof. If B is an order-bounded set, property is easily shown to hold.

Suppose B c E and B has property . Let/ be the solid hull of B in/.
If {un} is a sequence in /, then for each n, there is an xnB such
that un --< xn I. If {an} is a sequence of scalars and an $ 0, then an xn --* 0,
i.e., there is a sequence {yn} c E such that yn $ 0 and in xn =< yn. But
n un =< n xn shows that u -- 0. By 2.4, / is finitely unbounded

and Kantorovich’s result implies that/ is order bounded in/, so B is order
bounded in/, so B is order bounded in E.
We give an example to show that "order-separable" cannot be removed

from the hypotheses of the first three propositions in Section 2.

Example 1. Let (X) be the Dedekind complete vector lattice of all
bounded functions on the uncountable set X, with the usual operations de-
fined. Let (X) be the subvector lattice of functions which assume a single
value on all but a finite number of points in X. By checking conditions (D1)
and (D2’) it is easily shown that !(X) is the Dedekind completion of (X).
Since !(X) is easily seen to be not order separable, (X) is not order sep-
arable by the remark before 2.1.

(a) Let X1 {xl, x, x3,’.-} be a countable subset of X. Define a
sequence (vn) in !(X) as follows"

Vn(X) 1 ifx X,k >--n,
0 otherwise.

(vn) decreases and infn (vn) 0, hence v= 0. But if (fn) is any sequence in
(X) such that vn

_
f,, then each f. assumes a constant value ->_ 1 on all

but a finite subset of X. It is then not possible to have f, 0. This shows
that Lemma 2.1 is false if "order-separable" is removed.

(b) Let (gn) be a sequence in (x) defined as follows"

gn(x) 1 ifx

0 otherwise.

Then 0 -< gn _-< vn, where vn is defined as in (a) above. It follows then that
gn -- 0 in f(X). If, however, (f,) is any sequence in (X) such
that 0 _-< gn _-< fn, n 1, 2, and fn , each fn would have to take on values
larger than or equal to 1 on an infinite set. As in the previous example, it
would then be impossible to have infn (f.) 0. So, g. -- 0 in (X) could
not hold. This shows that Proposition 2.2 does not hold when "order-sep-
arable" is removed.

(c) Let {fn} c (X) be any sequence such that fn 0. Then, given any
a > 0, there is a positive integer no such that f-0 (x) <: a for all x except pos-
sibly a finite set. If not, fn(X) >-- a for each n on some co-finite set. But
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then, there is an uncountable set X0 c X such that f,(x)

_
a for all x e X0

and all n 1, 2, 3, contradicting fn 0. Having such an no, there exists
nl > no such that fnl (x) < a for all x, again since f. 0.
We make (X) into a normed space by putting

sup {I f(x) x}.

It follows from the above paragraph that if g -- g in (X), then
Ilg g]] --* 0. For, g -- g implies there is {f,} c (X) such
that gn g --< f- and f. $ 0. We have shown above that the latter implies
that f $ 0, hence g g --* 0. Since the function e(X) --- 1 is in (X),
norm convergence clearly implies order convergence. We conclude, then,
that norm convergence and order convergence are identical in (X). Since
the topological convergence defined by the norm is diagonalizable, order con-
vergence must. be also. Hence (X) has the diagonal property, f(X),
however does not have the diagonal property as the following argument shows.
Let X0 {xl, x, ..-} be a sequence of distinct elements in X. Consider
the elements hn,m in !(X), given by

h,.,,,(x) n ifx x,i> m,

0 otherwise

Then hn, --. 0 in !(X) for each n, however, for each sequence

{m.’n 1,2,...}

the sequence {h,l is unbounded in the order sense.
We conclude this section with an example of a vector lattice which is order

separable, has the diagonal property, is finitely unbounded but is not Dede-
kind complete.

Example 2. Let k be any natural number. Define ll(k) to be the set of all
sequences of real numbers which are coordinatewise products of two sequences
defined as follows:

c ab

where (as) is a periodic sequence of period k, (b) is a sequence in composed
of constant blocks of length k, i.e.,

bmk+ bk+2 bm(+), each m 0, 1, 2,....

l(k) is a vector lattice with the above stated properties. Indeed, its
Dedekind completion is 11 as is readily verified. Verification that it has the
stated properties reduces to noting that 11 does and then using the results of
this section relating l(k) to 11 (k) .

3. $opolo9ic[ vector ]cices

Let E be a vector lattice. A subset B of E is said to be solid if y e B when-
ever x B and Y =< x !. Suppose that E is also a topological vector space.
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Then E is called a topological vector lattice if the topology has a neighborhood
base at zero consisting of solid sets. If in addition the topology is locally
convex we will call E a loeally convex lattice.

Let : be a locally convex topology on E where E is an Archimedean vector
lattice. Let be a base of neighborhoods of zero for . For each V e ,
define l as the solid hull of V in/. Denote by the collection of all l? for
V e . Routine verification shows that is a base of neighborhoods at zero
for a locally convex topology on . Moreover, a base of solid neighborhoods
at zero for E clearly generates a base of solid neighborhoods of 0 for/. Hence
if E is a locally convex lattice under , then/ is a locally convex lattice under. Examples show that a Hausdorff locally convex topology on E need not
generateone such on/. However, if E is locally convex lattice, the "solidity"
of the neighborhood base generates a Hausdorff topology on/. There are
many interesting questions concerning the relationship of (E, :) to (/, )
but we will not attempt such a study here. We rather state one theorem in
this connection which will be of value to us.

PROPOSITION 1) [5, 1.21, p. 155]. Suppose that (E, ) is a locally convex
lattice with the property that x, o I} converges to 0 for whenever Ix,} O.
Then, there is a locally convex topology on the cut-completion of E such that

induces on E, (E, ) is dense in (, ) and (, ) is a locally convex
lattice.

(Note. The topology in [5] is described by a family {/5 e B} derived
from the family {P e B} of seminorms which describe the topology 2 on E.
If we let Va {x e E Pa(x) < 1}, then under the hypotheses of this proposi-
tion, I?a {u e E /(u) < 1}. The topology described here then, coin-
cides with our previous definition of the naturally generated topology on/.)

Remark. It is also readily shown that if (E, 2) is a metrizable space,
(/, :) is also a metrizable space. Moreover, in Proposition P, we can replace
the hypothesis "Ix,} 0 implies Ix,I -converges to zero" by the following
property which will be of use to us later, when E is order separable.

(P*) {x}:= 0 implies that the sequence/x} -converges to 0 as n -- .The following is a slight generalization of the property "boundedly order-
complete" in [5] and seems more natural in arbitrary (not necessarily Dedelind
complete) vector lattices.

DFrNITIO. (E, ) is monotone bounded if every topologically bounded
monotone increasing net is order bounded above.

The next result gives the precise relationship between the two properties.

PROPOSITION 3.1. If (E, ) is a monotone bounded locally convex lattice,
then , ) is boundedly order complete.
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Proof. Let [u, a e I} be a net in/ which is topologically bounded and
u, ’. We assume wihout loss of generaliW that ua >_- 0, for each a e ?I. For
each a, choose a net {x,. e B,} c E+ so that x,.a u,. Let {y} be the
net of finite suprema of the set

Then y T and for each 7 there exists such that y -< u,. Hence {y} is
topologically bounded. (For any solid neighborhood V of 0 in (E, 2) there
is a posiSve scalar such that u, e l for all a. But then y e V for all ..)
It follows then that {y} is order bounded in E from above by some z e E.
Hence {ua} is also bounded by z in/. So sup{u,} exists in/.

1)ROPOSITION 3.2. If (E, is an order separable locally convex lattice with
property P* then , ) also has property P*.

Proof. Suppose {un} $ 0 in/. By Lemma 2.1, there is a sequence {x.} c E
such that u -< x and x. $ 0. But then, {x.} -converges to 0 in E, and hence,
considered as a sequence in/, {x.} is :-convergent to zero. It follows easily
from the "solidity" of the neighborhood base for : that u.

_
x. implies {u}

also -converges to zero.

The above results will now be applied to show that "a-order complete"
may be replaced by "Archimedean" in Proposition 2.6 in [5], if E is assumed
to be order separable. (cf., [5, p. 164]).

PROPOSITION 3.3. If (E, :) is a metrizable, Archimedean order separable
locally convex lattice with property (P*) and if, in addition, it is mono-
tone bounded, then E has the diagonal property.

Proof: By Proposition (P) and the remark following the topology :
generated on/ makes (/, ) a locally convex lattice which is metrizable.
From 3.1 and 3.2 we have that (/, :) is boundedly order complete and satisfies
condition P*. From [5], Proposition 2.6, we have that / has the diagonal
property.

We conclude this section by giving a condition for sequence spaces that is
equivalent to P* and is more frequently found in the literature.

In being consistent with the usual notation we let denote the set of all
finitely nonzero sequences of real numbers. Further, we define the nth section,
x()ofxbyx") =x,fori_n; =0, fori>n.

PROPOSITION 3.4. Let h be a sequence space with a topology such tha
h, ) is a locally convex lattice. h, satisfies property P* if and only if q is

dense in h,

Proof. Suppose is dense in (h, ) and let {.x}

_
0 in .

We first show that
Z
() --->: Z

for each z in ,. Let be a fundamental system of solid convex neighborhoods
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of 0 for , and W e . By assumption there is a y e with y z e W. There
exists an no such that y 0, n > no. For each n > no,

zCn -zl - lY-Zl and zn-zW.
Let V be an arbitrary element in and choose U e such that U -t- U c V.
By the above there exists an no such that ix ix e U. Since U is solid

and +x =< x, we have x x e U, for each m.
The sequence {nx} $ 0, so {xl coordinatewise converges to 0. Hence,

(no)there is an n such that n > n implies x e U.
Letting n > n, we have x xCn - (x x()) e U - U c V, and

{x} converges to 0 in :.
Converse,y, suppose P* holds. Let x e X. {x x(n)} 0, so

{x x} --.0in: or x(-*in:.

Thus is dense in (,, :).
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