VECTOR LATTICES AND SEQUENCE SPACES¹

BY

G. CROFTS AND J. J. MASTERSON

1. Introduction

In [6], Peressini and Sherbert study Köthe sequence spaces and mappings between these spaces with special emphasis on their order properties. Variations of these results appear in [5]. The purpose of this paper is to extend some of these results. Among other things, it will be shown by using techniques involving the Dedekind completion of a vector lattice, that condition "E is Dedekind complete" can be replaced by "E is Archimedean" in several places.

Let *E* be a vector lattice. We say the net $\{x_{\alpha}\}$ order converges to *x* in *E* (we write $x_{\alpha} \rightarrow^{\circ} x$) if there exists a net $\{y_{\alpha}\} \subset E$ such that $|x_{\alpha} - x| \leq y_{\alpha}$ and $y_{\alpha} \downarrow 0$ (i.e., $\{y_{\alpha}\}$ is down-directed and $\inf(y_{\alpha}) = 0$). As in [6], we note the following significant restrictions which may be put on *E*.

(A) If A is a subset of E that has a supremum, then there is a countable subset A' of A such that $\sup A' = \sup A$. (We say that E is order separable.)

(B) If $\{y_{n, m}\}$ is a sequence in E that order converges to y_n in E (for each $n = 1, 2, \dots$,) and if $\{y_n\}$ order converges to y_0 there is an increasing sequence $\{m_n : n = 1, 2, \dots,\}$ of positive integers such that $\{y_{n, m_n}\}$ order converges to y_0 . (We say E has the *diagonal property*. Note that we use the definition in [5] rather than [6].)

(C) If $\{A_n\}$ is a sequence of non-majorized subsets of E, there exist finite subsets A'_n of A_n $(n = 1, 2, \dots)$ such that

 $\{\sup A'_n : n = 1, 2, \cdots\}$

is not a majorized set. (We say that E is finitely unbounded.)

2. The Dedekind completion

Let E be an Archimedean vector lattice throughout this section. Nakano has shown [3] that a necessary and sufficient condition that E be Archimedean is that it possess a Dedekind completion (or cut completion) i.e., that there exist a complete vector lattice \hat{E} such that:

(D1) E is embedded as a subvector lattice in \hat{E} ,

(D2) for each $u \in \hat{E}$,

 $u = \sup \{x : x \in E, x \leq u\} = \inf \{y : y \in E, y \geq u\}$

In [1], it is shown that (D2) can be replaced by

(D2') For $0 < u \in \hat{E}$, there are x, y in E such that $0 < x \leq u < y$.

¹ This work was supported in part by a National Science Foundation grant. Received August 1, 1969.

As defined by either set of two conditions, \hat{E} is unique up to isomorphism. It is also shown in the reference just cited, that if E is a subvector lattice of a complete vector lattice F, D is the ideal in F generated by E, and $0 < u \in D$ implies the existence of $x \in E$ such that $0 < x \leq u$, then D is the Dedekind completion of E.

What will be shown in this section is that E inherits some properties from \hat{E} and vice-versa. These facts will then be used to obtain results about vector lattices (in particular sequence spaces) free of the hypothesis that E be Dede-kind complete.

We first note that if \hat{E} is order separable, then E is clearly order separable.

Luxemburg and Zaanen prove [2, Theorem 11.5] that an Archimedean vector lattice L is order separable if and only if every non-empty subset D which is bounded above has a countable subset possessing the same set of upper bounds as D. We use this fact to show that \hat{L} is order separable if L is.

Let $u \in \hat{L}$, $u = \sup V$ where V is a subset of \hat{L} . For each $v \in V$, let

$$A_v = \{a \in L : a \leq v\}.$$

Then $A = \bigcup\{A_v : v \in V\}$ is a subset of L and $\sup A = u$. But, this implies that u is the smallest of the \hat{E} -upper bounds of A, hence $u \leq b$ where b is any upper bound of A in E. By definition of the Dedekind Completion, then, $u = \inf B$ (in \hat{E}) where B is the set of upper bounds of A which lie in E. The result mentioned above [2, Theorem 11.5] gives us a sequence $\{a_n\} \subset A$ which has B as its set of E-upper bounds. Hence $u = \sup\{a_n\}$ (in \hat{E}). But for each n, there is $v_n \in V$ for which $a_n \leq v_n$. $\{v_n\}$ is a countable subset of V and $\sup\{v_n\} = u$. \hat{L} is thus order separable. We have shown

Remark. L is order separable if and only if \hat{L} is order separable.

The following will be useful for our further discussion.

LEMMA 2.1. Let E be an Archimedean order separable vector lattice. Then, if $\{v_n\} \subset \hat{E}$ and $v_n \downarrow 0$, there is a sequence $\{x_n\} \subset E$ such that $x_n \downarrow 0$ and $v_n \leq x_n$, $n = 1, 2, \cdots$.

Proof. Assume $\{v_n\} \subset \hat{E}$ and $v_n \downarrow 0$. Let $A_n = \{x \in X : x \ge v_n\}$. Then $A = \bigcup_{n=1}^{\infty} A_n$ is directed downward and $\inf(A) = 0$. Since E is order separable, there exists $\{y_k\} \subset A$ such that $\inf(y_k) = 0$ and $y_k \ge y_{k+1}$, $k = 0, 1, 2, \cdots$. By definition of A, there is a subsequence of the integers $1 = n_0 < n_1 < n_2 < n_3 \cdots$ such that $v_{n_k} \le y_k$, $k = 0, 1, 2, \cdots$. Now, choose $x_1 > v_1$, and let $x_m = y_k$ for $n_k \le m \le n_{k+1} - 1$. Then, $v_m \le v_{n_k} \le y_k = x_m$. Since $y_k \downarrow 0$, it is clear that $x_n \downarrow 0$ and $v_n \le x_n$ for each $n = 1, 2, \cdots$.

PROPOSITION 2.2. Let *E* be an Archimedean order separable vector lattice. Given $\{x_n\} \subset E$, then $x_n \to 0$ (in *E*) if and only if $x_n \to 0$ (in \hat{E}).

Proof. Clearly, $x_n \rightarrow 0$ (in E) implies $x_n \rightarrow 0$ (in \hat{E}). The converse is a direct application of 2.1.

PROPOSITION 2.3. Let E be an Archimedean order separable vector lattice. Then, E has the diagonal property if and only if \hat{E} does.

Proof. The necessity is a routine application of 2.1.

Suppose now that E has the diagonal property. Let $v_n \to^{\circ} v_0$, and $v_{n,k} \to^{\circ} v_n$, $n = 1, 2, \dots, \dots$ where v_n , v_0 and $v_{n,k}$ are in \hat{E} .

By using 2.1 again, there are sequences $\{x_n\} \subset E$ and $\{x_{n,k}\} \subset E$, $(n = 1, 2, \dots, k = 1, 2, \dots)$ such that

$$|v_0 - v_n| \leq x_n$$
, $|v_n - v_{n,k}| \leq x_{n,k}$

and $x_n \downarrow 0, x_{n,k} \downarrow 0$ as $k \to \infty$ for each $n = 1, 2, \cdots$. Let $y_{n,k} = \sup (x_{n,k}, x_n)$; then $y_n, \rightarrow^{\circ} x_n$ and $x_n \rightarrow^{\circ} 0$ (since $\inf_k (\sup (x_{n,k}, x_n)) = x_n$). Since *E* has the diagonal property, there is for each *n* an integer k(n) such that $y_{n,k(n)} \rightarrow^{\circ} 0$. So, there exists $\{w_n\} \subset E, w_n \downarrow 0$ and $y_{n,k(n)} \leq w_n$. But then,

$$|v_0 - v_{n,k(n)}| \leq |v_0 - v_n| + |v_n - v_{n,k(n)}| \leq x_n + y_{n,k(n)} \leq x_n + w_n$$

and since $(x_n + w_n) \downarrow 0$, we have $v_{n,k(n)} \rightarrow^{\circ} v_n$.

The next result concerns property (C) in the introduction.

PROPOSITION 2.4. Let E be an Archimedean vector lattice. Then E is finitely unbounded if and only if \hat{E} is finitely unbounded.

Proof. If \hat{E} is finitely unbounded it follows from the definition that E inherits the property.

Suppose now that E is finitely unbounded. Let $U_n \subset \hat{E}$, $n = 1, 2, \dots$, form a sequence of non-majorized sets in \hat{E} . Let

 $\widetilde{A}_n = \{ v \in \widehat{E} : |v| \leq u, \text{ some } u \in U_n \} \text{ and } A_n = \widetilde{A}_n \cap E.$

Then, the sequence $\{A_n\}$ of subsets of E is not majorized in E. So, there exists for each n, a finite set $A'_n \subset A_n$ such that $\{\sup A'_n\}$ is not majorized in E. Let

 $A'_n = \{a_n^{(k)} : k = 1, 2, \cdots, p(n)\}.$

Then there is $u_n^{(k)} \in U_n$ such that $a_n^{(k)} \leq u_n^{(k)}$. So, letting

$$U'_n = \{u_n^{(k)} : k = 1, \dots, p(n)\},\$$

 U'_n is a finite subset of U_n for each n and $\{\sup U'_n\}$ is not a majorized set in \hat{E} .

With this result, it is possible to remove the hypothesis of completeness in Kantorovich's characterization of a bounded set in a finitely unbounded vector lattice.

PROPOSITION 2.5. Let E be a finitely unbounded Archimedean vector lattice. Then, $B \subset E$ is an order bounded set if and only if for each sequence $\{x_n\}$ in B and for any sequence $\{\alpha_n\}$ of scalars decreasing to zero, $\alpha_n x_n \rightarrow 0$. (We call this latter condition "property *".) *Proof.* If B is an order-bounded set, property * is easily shown to hold.

Suppose $B \subset E$ and B has property *. Let \hat{B} be the solid hull of B in \hat{E} . If $\{u_n\}$ is a sequence in \hat{B} , then for each n, there is an $x_n \in B$ such that $|u_n| \leq |x_n|$. If $\{\alpha_n\}$ is a sequence of scalars and $\alpha_n \downarrow 0$, then $\alpha_n x_n \to 0$, i.e., there is a sequence $\{y_n\} \subset E$ such that $y_n \downarrow 0$ and $|\alpha_n x_n| \leq y_n$. But $|\alpha_n u_n| \leq |\alpha_n x_n|$ shows that $\alpha_n u_n \to 0$. By 2.4, \hat{E} is finitely unbounded and Kantorovich's result implies that \hat{B} is order bounded in \hat{E} , so B is order bounded in \hat{E} .

We give an example to show that "order-separable" cannot be removed from the hypotheses of the first three propositions in Section 2.

Example 1. Let $\mathfrak{B}(X)$ be the Dedekind complete vector lattice of all bounded functions on the uncountable set X, with the usual operations defined. Let $\mathfrak{F}(X)$ be the subvector lattice of functions which assume a single value on all but a finite number of points in X. By checking conditions (D1) and (D2') it is easily shown that $\mathfrak{B}(X)$ is the Dedekind completion of $\mathfrak{F}(X)$. Since $\mathfrak{B}(X)$ is easily seen to be not order separable, $\mathfrak{F}(X)$ is not order separable by the remark before 2.1.

(a) Let $X_1 = \{x_1, x_2, x_3, \dots\}$ be a countable subset of X. Define a sequence $\langle v_n \rangle$ in $\mathfrak{B}(X)$ as follows:

$$v_n(x) = 1$$
 if $x = x_k$, $k \ge n$,
= 0 otherwise.

 $\langle v_n \rangle$ decreases and $\inf_n (v_n) = 0$, hence $v_n \downarrow 0$. But if $\langle f_n \rangle$ is any sequence in $\mathfrak{F}(X)$ such that $v_n \leq f_n$, then each f_n assumes a constant value ≥ 1 on all but a finite subset of X. It is then *not* possible to have $f_n \downarrow 0$. This shows that Lemma 2.1 is false if "order-separable" is removed.

(b) Let $\langle g_n \rangle$ be a sequence in $\mathfrak{F}(x)$ defined as follows:

$$g_n(x) = 1$$
 if $x = x_n$,
= 0 otherwise.

Then $0 \leq g_n \leq v_n$, where v_n is defined as in (a) above. It follows then that $g_n \to^{\circ} 0$ in $\mathfrak{B}(X)$. If, however, $\langle f_n \rangle$ is any sequence in $\mathfrak{F}(X)$ such that $0 \leq g_n \leq f_n$, $n = 1, 2, \cdots$ and $f_n \downarrow$, each f_n would have to take on values larger than or equal to 1 on an infinite set. As in the previous example, it would then be impossible to have $\inf_n (f_n) = 0$. So, $g_n \to^{\circ} 0$ in $\mathfrak{F}(X)$ could not hold. This shows that Proposition 2.2 does not hold when "order-separable" is removed.

(c) Let $\{f_n\} \subset \mathfrak{F}(X)$ be any sequence such that $f_n \downarrow 0$. Then, given any $\alpha > 0$, there is a positive integer n_0 such that $f_{n_0}(x) < \alpha$ for all x except possibly a finite set. If not, $f_n(x) \ge \alpha$ for each n on some co-finite set. But

then, there is an uncountable set $X_0 \subset X$ such that $f_n(x) \geq \alpha$ for all $x \in X_0$ and all $n = 1, 2, 3, \cdots$ contradicting $f_n \downarrow 0$. Having such an n_0 , there exists $n_1 > n_0$ such that $f_{n_1}(x) < \alpha$ for all x, again since $f_n \downarrow 0$.

We make $\mathfrak{F}(X)$ into a normed space by putting

$$|| f || = \sup \{ | f(x) | : x \in X \}.$$

It follows from the above paragraph that if $g_n \to^{\circ} g$ in $\mathfrak{F}(X)$, then $||g_n - g|| \to 0$. For, $g_n \to^{\circ} g$ implies there is $\{f_n\} \subset \mathfrak{F}(X)$ such that $|g_n - g| \leq f_n$ and $f_n \downarrow 0$. We have shown above that the latter implies that $||f_n|| \downarrow 0$, hence $||g_n - g|| \to 0$. Since the function $e(X) \equiv 1$ is in $\mathfrak{F}(X)$, norm convergence clearly implies order convergence. We conclude, then, that norm convergence defined by the norm is diagonalizable, order convergence must be also. Hence $\mathfrak{F}(X)$ has the diagonal property. $\mathfrak{F}(X)$, however does not have the diagonal property as the following argument shows. Let $X_0 = \{x_1, x_2, \cdots\}$ be a sequence of distinct elements in X. Consider the elements $h_{n,m}$ in $\mathfrak{B}(X)$, given by

$$h_{n,m}(x) = n$$
 if $x = x_i$, $i > m$,
= 0 otherwise

Then $h_{n,m} \rightarrow^{\circ} 0$ in $\mathfrak{B}(X)$ for each *n*, however, for each sequence

$$\{m_n : n = 1, 2, \cdots\}$$

the sequence $\{h_{n,m_n}\}$ is unbounded in the order sense.

We conclude this section with an example of a vector lattice which is order separable, has the diagonal property, is finitely unbounded but is not Dedekind complete.

Example 2. Let k be any natural number. Define $l^{1}(k)$ to be the set of all sequences of real numbers which are coordinatewise products of two sequences defined as follows:

$$c_i = a_i b_i$$

where $\langle a_i \rangle$ is a periodic sequence of period k, $\langle b_i \rangle$ is a sequence in l^1 composed of constant blocks of length k, i.e.,

$$b_{mk+1} = b_{mk+2} = \cdots = b_{m(k+1)}$$
, each $m = 0, 1, 2, \cdots$.

 $l^{1}(k)$ is a vector lattice with the above stated properties. Indeed, its Dedekind completion is l^{1} as is readily verified. Verification that it has the stated properties reduces to noting that l^{1} does and then using the results of this section relating $l^{1}(k)$ to $l^{1}(k) = l^{1}$.

3. Topological vector lattices

Let *E* be a vector lattice. A subset *B* of *E* is said to be *solid* if $y \in B$ whenever $x \in B$ and $|y| \leq |x|$. Suppose that *E* is also a topological vector space.

Then E is called a *topological vector lattice* if the topology has a neighborhood base at zero consisting of solid sets. If in addition the topology is locally convex we will call E a *locally convex lattice*.

Let \mathfrak{T} be a locally convex topology on E where E is an Archimedean vector lattice. Let ν be a base of neighborhoods of zero for \mathfrak{T} . For each $V \epsilon \nu$, define \hat{V} as the solid hull of V in \hat{E} . Denote by ρ the collection of all \hat{V} for $V \epsilon \nu$. Routine verification shows that ρ is a base of neighborhoods at zero for a locally convex topology on \hat{E} . Moreover, a base of solid neighborhoods at zero for E clearly generates a base of solid neighborhoods of 0 for \hat{E} . Hence if E is a locally convex lattice under \mathfrak{T} , then \hat{E} is a locally convex lattice under \mathfrak{T} . Examples show that a Hausdorff locally convex topology on E need not generate one such on \hat{E} . However, if E is locally convex lattice, the "solidity" of the neighborhood base generates a Hausdorff topology on \hat{E} . There are many interesting questions concerning the relationship of (E, \mathfrak{T}) to (\hat{E}, \mathfrak{T}) but we will not attempt such a study here. We rather state one theorem in this connection which will be of value to us.

PROPOSITION P [5, 1.21, p. 155]. Suppose that (E, \mathfrak{T}) is a locally convex lattice with the property that $\{x_{\alpha} : \alpha \in I\}$ converges to 0 for \mathfrak{T} whenever $\{x_{\alpha}\} \downarrow 0$. Then, there is a locally convex topology \mathfrak{T} on the cut-completion \hat{E} of E such that \mathfrak{T} induces \mathfrak{T} on E, (E, \mathfrak{T}) is dense in (\hat{E}, \mathfrak{T}) and (\hat{E}, \mathfrak{T}) is a locally convex lattice.

(*Note.* The topology \mathfrak{T} in [5] is described by a family $\{\hat{P}_{\beta} : \beta \in B\}$ derived from the family $\{P_{\beta} : \beta \in B\}$ of seminorms which describe the topology \mathfrak{T} on E. If we let $V_{\beta} = \{x \in E : P_{\beta}(x) < 1\}$, then under the hypotheses of this proposition, $\hat{V}_{\beta} = \{u \in E : \hat{P}_{\beta}(u) < 1\}$. The topology \mathfrak{T} described here then, coincides with our previous definition of the naturally generated topology on \hat{E} .)

Remark. It is also readily shown that if (E, \mathfrak{T}) is a metrizable space, $(\hat{E}, \hat{\mathfrak{T}})$ is also a metrizable space. Moreover, in Proposition P, we can replace the hypothesis " $\{x_{\alpha}\} \downarrow 0$ implies $\{x_{\alpha}\}$ T-converges to zero" by the following property which will be of use to us later, when E is order separable.

 $(\mathbf{P}^*) \quad \{x_n\}_{n=1}^{\infty} \downarrow 0 \text{ implies that the sequence } \{x_n\} \mathfrak{T}\text{-converges to } 0 \text{ as } n \to \infty.$

The following is a slight generalization of the property "boundedly ordercomplete" in [5] and seems more natural in arbitrary (not necessarily Dedekind complete) vector lattices.

DEFINITION. (E, \mathfrak{T}) is monotone bounded if every topologically bounded monotone increasing net is order bounded above.

The next result gives the precise relationship between the two properties.

PROPOSITION 3.1. If (E, \mathfrak{T}) is a monotone bounded locally convex lattice, then (\hat{E}, \mathfrak{T}) is boundedly order complete.

Proof. Let $\{u_{\alpha} : \alpha \in \mathfrak{A}\}$ be a net in \widehat{E} which is topologically bounded and $u_{\alpha} \uparrow$. We assume without loss of generality that $u_{\alpha} \geq 0$, for each $\alpha \in \mathfrak{A}$. For each α , choose a net $\{x_{\alpha,\beta} : \beta \in B_{\alpha}\} \subset E^+$ so that $x_{\alpha,\beta} \uparrow u_{\alpha}$. Let $\{y_{\gamma}\}$ be the net of finite suprema of the set

$$\{x_{\alpha,\beta}: \alpha \in \mathfrak{A}, \beta \in B_{\alpha}\}.$$

Then $y_{\gamma} \uparrow$ and for each γ there exists α such that $y_{\gamma} \leq u_{\alpha}$. Hence $\{y_{\gamma}\}$ is topologically bounded. (For any solid neighborhood V of 0 in (E, \mathfrak{T}) there is a positive scalar t such that $u_{\alpha} \epsilon t \hat{V}$ for all α . But then $y_{\gamma} \epsilon t V$ for all γ .) It follows then that $\{y_{\gamma}\}$ is order bounded in E from above by some $z \epsilon E$. Hence $\{u_{\alpha}\}$ is also bounded by z in \hat{E} . So $\sup\{u_{\alpha}\}$ exists in \hat{E} .

PROPOSITION 3.2. If $(E, \mathfrak{T} \text{ is an order separable locally convex lattice with property <math>P^*$ then (\hat{E}, \mathfrak{T}) also has property P^* .

Proof. Suppose $\{u_n\} \downarrow 0$ in \hat{E} . By Lemma 2.1, there is a sequence $\{x_n\} \subset E$ such that $u_n \leq x_n$ and $x_n \downarrow 0$. But then, $\{x_n\}$ \mathfrak{T} -converges to 0 in E, and hence, considered as a sequence in \hat{E} , $\{x_n\}$ is \mathfrak{T} -convergent to zero. It follows easily from the "solidity" of the neighborhood base for \mathfrak{T} that $u_n \leq x_n$ implies $\{u_n\}$ also \mathfrak{T} -converges to zero.

The above results will now be applied to show that " σ -order complete" may be replaced by "Archimedean" in Proposition 2.6 in [5], if E is assumed to be order separable. (cf., [5, p. 164]).

PROPOSITION 3.3. If (E, \mathfrak{T}) is a metrizable, Archimedean order separable locally convex lattice with property (P^*) and if, in addition, it is monotone bounded, then E has the diagonal property.

Proof: By Proposition (P) and the remark following the topology \mathfrak{T} generated on \hat{E} makes (\hat{E}, \mathfrak{T}) a locally convex lattice which is metrizable. From 3.1 and 3.2 we have that (\hat{E}, \mathfrak{T}) is boundedly order complete and satisfies condition P^{*}. From [5], Proposition 2.6, we have that \hat{E} has the diagonal property.

We conclude this section by giving a condition for sequence spaces that is equivalent to P^* and is more frequently found in the literature.

In being consistent with the usual notation we let φ denote the set of all finitely nonzero sequences of real numbers. Further, we define the n^{th} section, $x^{(n)}$ of x by $x_i^{(n)} = x_i$, for $i \leq n$; $x_i^{(n)} = 0$, for i > n.

PROPOSITION 3.4. Let λ be a sequence space with a topology \mathfrak{T} such that (λ, \mathfrak{T}) is a locally convex lattice. (λ, \mathfrak{T}) satisfies property P^* if and only if φ is dense in (λ, \mathfrak{T}) .

Proof. Suppose φ is dense in (λ, \mathfrak{T}) and let $\{nx\}_{n=1}^{\infty} \downarrow 0$ in λ .

We first show that

$$z^{(n)} \rightarrow^{\mathfrak{T}} z$$

for each z in λ . Let ν be a fundamental system of solid convex neighborhoods

of 0 for \mathfrak{T} , and $W \in \nu$. By assumption there is a $y \in \varphi$ with $y - z \in W$. There exists an n_0 such that $y_n = 0, n > n_0$. For each $n > n_0$,

$$|z^{(n)}-z| \leq |y-z|$$
 and $z^{(n)}-z \in W$.

Let V be an arbitrary element in ν and choose $U \epsilon \nu$ such that $U + U \subset V$. By the above there exists an n_0 such that ${}_1x^{(n_0)} - {}_1x \epsilon U$. Since U is solid and ${}_{n+1}x \leq {}_nx$, we have ${}_mx^{(n_0)} - {}_mx \epsilon U$, for each m.

The sequence $\{nx\} \downarrow 0$, so $\{nx\}$ coordinatewise converges to 0. Hence, there is an n_1 such that $n > n_1$ implies $nx^{(n_0)} \epsilon U$.

Letting $n > n_1$, we have $_n x = _n x^{(n_0)} + (_n x - _n x^{(n_0)}) \epsilon U + U \subset V$, and $_n x_1^{(n_0)}$ converges to 0 in \mathfrak{T} .

Conversely, suppose P^{*} holds. Let $x \in \lambda$. $\{x - x^{(n)}\} \downarrow 0$, so

$$\{x - x^{(n)}\} \to 0 \text{ in } \mathfrak{T} \text{ or } x^{(n)} \to x \text{ in } \mathfrak{T}.$$

Thus φ is dense in (λ, \mathfrak{T}) .

References

- 1. W. A. J. LUXEMBURG AND A. C. ZAANEN, Notes on Banach function spaces X, Koninkl, Nederl. Akad. van Wetensch, Series A, vol. 67 (1964), pp. 493-506.
- 2. ____, Riesz spaces, Part I, pre-print of book.
- 3. H. NAKANO, Modern spectral theory, Maruzen, Tokyo, 1950.
- 4. A. L. PERESSINI, Concerning the order structure of Köthe sequence spaces, Michigan Math. J., vol. 11 (1966), pp. 357-364.
- 5. ——, Ordered topological vector spaces, Harper and Row, New York, 1967.
- 6. A. L. PERESSINI AND D. R. SHERBERT, Order properties of linear mappings on sequence spaces, Math. Ann., vol. 165 (1966), pp. 318-332.

VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY BLACKSBURG, VIRGINIA MICHIGAN STATE UNIVERSITY EAST LANSING, MICHIGAN